peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/spatial
/tests
/test_kdtree.py
# Copyright Anne M. Archibald 2008 | |
# Released under the scipy license | |
import os | |
from numpy.testing import (assert_equal, assert_array_equal, assert_, | |
assert_almost_equal, assert_array_almost_equal, | |
assert_allclose) | |
from pytest import raises as assert_raises | |
import pytest | |
from platform import python_implementation | |
import numpy as np | |
from scipy.spatial import KDTree, Rectangle, distance_matrix, cKDTree | |
from scipy.spatial._ckdtree import cKDTreeNode | |
from scipy.spatial import minkowski_distance | |
import itertools | |
def kdtree_type(request): | |
return request.param | |
def KDTreeTest(kls): | |
"""Class decorator to create test cases for KDTree and cKDTree | |
Tests use the class variable ``kdtree_type`` as the tree constructor. | |
""" | |
if not kls.__name__.startswith('_Test'): | |
raise RuntimeError("Expected a class name starting with _Test") | |
for tree in (KDTree, cKDTree): | |
test_name = kls.__name__[1:] + '_' + tree.__name__ | |
if test_name in globals(): | |
raise RuntimeError("Duplicated test name: " + test_name) | |
# Create a new sub-class with kdtree_type defined | |
test_case = type(test_name, (kls,), {'kdtree_type': tree}) | |
globals()[test_name] = test_case | |
return kls | |
def distance_box(a, b, p, boxsize): | |
diff = a - b | |
diff[diff > 0.5 * boxsize] -= boxsize | |
diff[diff < -0.5 * boxsize] += boxsize | |
d = minkowski_distance(diff, 0, p) | |
return d | |
class ConsistencyTests: | |
def distance(self, a, b, p): | |
return minkowski_distance(a, b, p) | |
def test_nearest(self): | |
x = self.x | |
d, i = self.kdtree.query(x, 1) | |
assert_almost_equal(d**2, np.sum((x-self.data[i])**2)) | |
eps = 1e-8 | |
assert_(np.all(np.sum((self.data-x[np.newaxis, :])**2, axis=1) > d**2-eps)) | |
def test_m_nearest(self): | |
x = self.x | |
m = self.m | |
dd, ii = self.kdtree.query(x, m) | |
d = np.amax(dd) | |
i = ii[np.argmax(dd)] | |
assert_almost_equal(d**2, np.sum((x-self.data[i])**2)) | |
eps = 1e-8 | |
assert_equal( | |
np.sum(np.sum((self.data-x[np.newaxis, :])**2, axis=1) < d**2+eps), | |
m, | |
) | |
def test_points_near(self): | |
x = self.x | |
d = self.d | |
dd, ii = self.kdtree.query(x, k=self.kdtree.n, distance_upper_bound=d) | |
eps = 1e-8 | |
hits = 0 | |
for near_d, near_i in zip(dd, ii): | |
if near_d == np.inf: | |
continue | |
hits += 1 | |
assert_almost_equal(near_d**2, np.sum((x-self.data[near_i])**2)) | |
assert_(near_d < d+eps, f"near_d={near_d:g} should be less than {d:g}") | |
assert_equal(np.sum(self.distance(self.data, x, 2) < d**2+eps), hits) | |
def test_points_near_l1(self): | |
x = self.x | |
d = self.d | |
dd, ii = self.kdtree.query(x, k=self.kdtree.n, p=1, distance_upper_bound=d) | |
eps = 1e-8 | |
hits = 0 | |
for near_d, near_i in zip(dd, ii): | |
if near_d == np.inf: | |
continue | |
hits += 1 | |
assert_almost_equal(near_d, self.distance(x, self.data[near_i], 1)) | |
assert_(near_d < d+eps, f"near_d={near_d:g} should be less than {d:g}") | |
assert_equal(np.sum(self.distance(self.data, x, 1) < d+eps), hits) | |
def test_points_near_linf(self): | |
x = self.x | |
d = self.d | |
dd, ii = self.kdtree.query(x, k=self.kdtree.n, p=np.inf, distance_upper_bound=d) | |
eps = 1e-8 | |
hits = 0 | |
for near_d, near_i in zip(dd, ii): | |
if near_d == np.inf: | |
continue | |
hits += 1 | |
assert_almost_equal(near_d, self.distance(x, self.data[near_i], np.inf)) | |
assert_(near_d < d+eps, f"near_d={near_d:g} should be less than {d:g}") | |
assert_equal(np.sum(self.distance(self.data, x, np.inf) < d+eps), hits) | |
def test_approx(self): | |
x = self.x | |
k = self.k | |
eps = 0.1 | |
d_real, i_real = self.kdtree.query(x, k) | |
d, i = self.kdtree.query(x, k, eps=eps) | |
assert_(np.all(d <= d_real*(1+eps))) | |
class _Test_random(ConsistencyTests): | |
def setup_method(self): | |
self.n = 100 | |
self.m = 4 | |
np.random.seed(1234) | |
self.data = np.random.randn(self.n, self.m) | |
self.kdtree = self.kdtree_type(self.data, leafsize=2) | |
self.x = np.random.randn(self.m) | |
self.d = 0.2 | |
self.k = 10 | |
class _Test_random_far(_Test_random): | |
def setup_method(self): | |
super().setup_method() | |
self.x = np.random.randn(self.m)+10 | |
class _Test_small(ConsistencyTests): | |
def setup_method(self): | |
self.data = np.array([[0, 0, 0], | |
[0, 0, 1], | |
[0, 1, 0], | |
[0, 1, 1], | |
[1, 0, 0], | |
[1, 0, 1], | |
[1, 1, 0], | |
[1, 1, 1]]) | |
self.kdtree = self.kdtree_type(self.data) | |
self.n = self.kdtree.n | |
self.m = self.kdtree.m | |
np.random.seed(1234) | |
self.x = np.random.randn(3) | |
self.d = 0.5 | |
self.k = 4 | |
def test_nearest(self): | |
assert_array_equal( | |
self.kdtree.query((0, 0, 0.1), 1), | |
(0.1, 0)) | |
def test_nearest_two(self): | |
assert_array_equal( | |
self.kdtree.query((0, 0, 0.1), 2), | |
([0.1, 0.9], [0, 1])) | |
class _Test_small_nonleaf(_Test_small): | |
def setup_method(self): | |
super().setup_method() | |
self.kdtree = self.kdtree_type(self.data, leafsize=1) | |
class Test_vectorization_KDTree: | |
def setup_method(self): | |
self.data = np.array([[0, 0, 0], | |
[0, 0, 1], | |
[0, 1, 0], | |
[0, 1, 1], | |
[1, 0, 0], | |
[1, 0, 1], | |
[1, 1, 0], | |
[1, 1, 1]]) | |
self.kdtree = KDTree(self.data) | |
def test_single_query(self): | |
d, i = self.kdtree.query(np.array([0, 0, 0])) | |
assert_(isinstance(d, float)) | |
assert_(np.issubdtype(i, np.signedinteger)) | |
def test_vectorized_query(self): | |
d, i = self.kdtree.query(np.zeros((2, 4, 3))) | |
assert_equal(np.shape(d), (2, 4)) | |
assert_equal(np.shape(i), (2, 4)) | |
def test_single_query_multiple_neighbors(self): | |
s = 23 | |
kk = self.kdtree.n+s | |
d, i = self.kdtree.query(np.array([0, 0, 0]), k=kk) | |
assert_equal(np.shape(d), (kk,)) | |
assert_equal(np.shape(i), (kk,)) | |
assert_(np.all(~np.isfinite(d[-s:]))) | |
assert_(np.all(i[-s:] == self.kdtree.n)) | |
def test_vectorized_query_multiple_neighbors(self): | |
s = 23 | |
kk = self.kdtree.n+s | |
d, i = self.kdtree.query(np.zeros((2, 4, 3)), k=kk) | |
assert_equal(np.shape(d), (2, 4, kk)) | |
assert_equal(np.shape(i), (2, 4, kk)) | |
assert_(np.all(~np.isfinite(d[:, :, -s:]))) | |
assert_(np.all(i[:, :, -s:] == self.kdtree.n)) | |
def test_query_raises_for_k_none(self): | |
x = 1.0 | |
with pytest.raises(ValueError, match="k must be an integer or*"): | |
self.kdtree.query(x, k=None) | |
class Test_vectorization_cKDTree: | |
def setup_method(self): | |
self.data = np.array([[0, 0, 0], | |
[0, 0, 1], | |
[0, 1, 0], | |
[0, 1, 1], | |
[1, 0, 0], | |
[1, 0, 1], | |
[1, 1, 0], | |
[1, 1, 1]]) | |
self.kdtree = cKDTree(self.data) | |
def test_single_query(self): | |
d, i = self.kdtree.query([0, 0, 0]) | |
assert_(isinstance(d, float)) | |
assert_(isinstance(i, int)) | |
def test_vectorized_query(self): | |
d, i = self.kdtree.query(np.zeros((2, 4, 3))) | |
assert_equal(np.shape(d), (2, 4)) | |
assert_equal(np.shape(i), (2, 4)) | |
def test_vectorized_query_noncontiguous_values(self): | |
np.random.seed(1234) | |
qs = np.random.randn(3, 1000).T | |
ds, i_s = self.kdtree.query(qs) | |
for q, d, i in zip(qs, ds, i_s): | |
assert_equal(self.kdtree.query(q), (d, i)) | |
def test_single_query_multiple_neighbors(self): | |
s = 23 | |
kk = self.kdtree.n+s | |
d, i = self.kdtree.query([0, 0, 0], k=kk) | |
assert_equal(np.shape(d), (kk,)) | |
assert_equal(np.shape(i), (kk,)) | |
assert_(np.all(~np.isfinite(d[-s:]))) | |
assert_(np.all(i[-s:] == self.kdtree.n)) | |
def test_vectorized_query_multiple_neighbors(self): | |
s = 23 | |
kk = self.kdtree.n+s | |
d, i = self.kdtree.query(np.zeros((2, 4, 3)), k=kk) | |
assert_equal(np.shape(d), (2, 4, kk)) | |
assert_equal(np.shape(i), (2, 4, kk)) | |
assert_(np.all(~np.isfinite(d[:, :, -s:]))) | |
assert_(np.all(i[:, :, -s:] == self.kdtree.n)) | |
class ball_consistency: | |
tol = 0.0 | |
def distance(self, a, b, p): | |
return minkowski_distance(a * 1.0, b * 1.0, p) | |
def test_in_ball(self): | |
x = np.atleast_2d(self.x) | |
d = np.broadcast_to(self.d, x.shape[:-1]) | |
l = self.T.query_ball_point(x, self.d, p=self.p, eps=self.eps) | |
for i, ind in enumerate(l): | |
dist = self.distance(self.data[ind], x[i], self.p) - d[i]*(1.+self.eps) | |
norm = self.distance(self.data[ind], x[i], self.p) + d[i]*(1.+self.eps) | |
assert_array_equal(dist < self.tol * norm, True) | |
def test_found_all(self): | |
x = np.atleast_2d(self.x) | |
d = np.broadcast_to(self.d, x.shape[:-1]) | |
l = self.T.query_ball_point(x, self.d, p=self.p, eps=self.eps) | |
for i, ind in enumerate(l): | |
c = np.ones(self.T.n, dtype=bool) | |
c[ind] = False | |
dist = self.distance(self.data[c], x[i], self.p) - d[i]/(1.+self.eps) | |
norm = self.distance(self.data[c], x[i], self.p) + d[i]/(1.+self.eps) | |
assert_array_equal(dist > -self.tol * norm, True) | |
class _Test_random_ball(ball_consistency): | |
def setup_method(self): | |
n = 100 | |
m = 4 | |
np.random.seed(1234) | |
self.data = np.random.randn(n, m) | |
self.T = self.kdtree_type(self.data, leafsize=2) | |
self.x = np.random.randn(m) | |
self.p = 2. | |
self.eps = 0 | |
self.d = 0.2 | |
class _Test_random_ball_periodic(ball_consistency): | |
def distance(self, a, b, p): | |
return distance_box(a, b, p, 1.0) | |
def setup_method(self): | |
n = 10000 | |
m = 4 | |
np.random.seed(1234) | |
self.data = np.random.uniform(size=(n, m)) | |
self.T = self.kdtree_type(self.data, leafsize=2, boxsize=1) | |
self.x = np.full(m, 0.1) | |
self.p = 2. | |
self.eps = 0 | |
self.d = 0.2 | |
def test_in_ball_outside(self): | |
l = self.T.query_ball_point(self.x + 1.0, self.d, p=self.p, eps=self.eps) | |
for i in l: | |
assert_(self.distance(self.data[i], self.x, self.p) <= self.d*(1.+self.eps)) | |
l = self.T.query_ball_point(self.x - 1.0, self.d, p=self.p, eps=self.eps) | |
for i in l: | |
assert_(self.distance(self.data[i], self.x, self.p) <= self.d*(1.+self.eps)) | |
def test_found_all_outside(self): | |
c = np.ones(self.T.n, dtype=bool) | |
l = self.T.query_ball_point(self.x + 1.0, self.d, p=self.p, eps=self.eps) | |
c[l] = False | |
assert np.all( | |
self.distance(self.data[c], self.x, self.p) >= self.d/(1.+self.eps) | |
) | |
l = self.T.query_ball_point(self.x - 1.0, self.d, p=self.p, eps=self.eps) | |
c[l] = False | |
assert np.all( | |
self.distance(self.data[c], self.x, self.p) >= self.d/(1.+self.eps) | |
) | |
class _Test_random_ball_largep_issue9890(ball_consistency): | |
# allow some roundoff errors due to numerical issues | |
tol = 1e-13 | |
def setup_method(self): | |
n = 1000 | |
m = 2 | |
np.random.seed(123) | |
self.data = np.random.randint(100, 1000, size=(n, m)) | |
self.T = self.kdtree_type(self.data) | |
self.x = self.data | |
self.p = 100 | |
self.eps = 0 | |
self.d = 10 | |
class _Test_random_ball_approx(_Test_random_ball): | |
def setup_method(self): | |
super().setup_method() | |
self.eps = 0.1 | |
class _Test_random_ball_approx_periodic(_Test_random_ball): | |
def setup_method(self): | |
super().setup_method() | |
self.eps = 0.1 | |
class _Test_random_ball_far(_Test_random_ball): | |
def setup_method(self): | |
super().setup_method() | |
self.d = 2. | |
class _Test_random_ball_far_periodic(_Test_random_ball_periodic): | |
def setup_method(self): | |
super().setup_method() | |
self.d = 2. | |
class _Test_random_ball_l1(_Test_random_ball): | |
def setup_method(self): | |
super().setup_method() | |
self.p = 1 | |
class _Test_random_ball_linf(_Test_random_ball): | |
def setup_method(self): | |
super().setup_method() | |
self.p = np.inf | |
def test_random_ball_vectorized(kdtree_type): | |
n = 20 | |
m = 5 | |
np.random.seed(1234) | |
T = kdtree_type(np.random.randn(n, m)) | |
r = T.query_ball_point(np.random.randn(2, 3, m), 1) | |
assert_equal(r.shape, (2, 3)) | |
assert_(isinstance(r[0, 0], list)) | |
def test_query_ball_point_multithreading(kdtree_type): | |
np.random.seed(0) | |
n = 5000 | |
k = 2 | |
points = np.random.randn(n, k) | |
T = kdtree_type(points) | |
l1 = T.query_ball_point(points, 0.003, workers=1) | |
l2 = T.query_ball_point(points, 0.003, workers=64) | |
l3 = T.query_ball_point(points, 0.003, workers=-1) | |
for i in range(n): | |
if l1[i] or l2[i]: | |
assert_array_equal(l1[i], l2[i]) | |
for i in range(n): | |
if l1[i] or l3[i]: | |
assert_array_equal(l1[i], l3[i]) | |
class two_trees_consistency: | |
def distance(self, a, b, p): | |
return minkowski_distance(a, b, p) | |
def test_all_in_ball(self): | |
r = self.T1.query_ball_tree(self.T2, self.d, p=self.p, eps=self.eps) | |
for i, l in enumerate(r): | |
for j in l: | |
assert (self.distance(self.data1[i], self.data2[j], self.p) | |
<= self.d*(1.+self.eps)) | |
def test_found_all(self): | |
r = self.T1.query_ball_tree(self.T2, self.d, p=self.p, eps=self.eps) | |
for i, l in enumerate(r): | |
c = np.ones(self.T2.n, dtype=bool) | |
c[l] = False | |
assert np.all(self.distance(self.data2[c], self.data1[i], self.p) | |
>= self.d/(1.+self.eps)) | |
class _Test_two_random_trees(two_trees_consistency): | |
def setup_method(self): | |
n = 50 | |
m = 4 | |
np.random.seed(1234) | |
self.data1 = np.random.randn(n, m) | |
self.T1 = self.kdtree_type(self.data1, leafsize=2) | |
self.data2 = np.random.randn(n, m) | |
self.T2 = self.kdtree_type(self.data2, leafsize=2) | |
self.p = 2. | |
self.eps = 0 | |
self.d = 0.2 | |
class _Test_two_random_trees_periodic(two_trees_consistency): | |
def distance(self, a, b, p): | |
return distance_box(a, b, p, 1.0) | |
def setup_method(self): | |
n = 50 | |
m = 4 | |
np.random.seed(1234) | |
self.data1 = np.random.uniform(size=(n, m)) | |
self.T1 = self.kdtree_type(self.data1, leafsize=2, boxsize=1.0) | |
self.data2 = np.random.uniform(size=(n, m)) | |
self.T2 = self.kdtree_type(self.data2, leafsize=2, boxsize=1.0) | |
self.p = 2. | |
self.eps = 0 | |
self.d = 0.2 | |
class _Test_two_random_trees_far(_Test_two_random_trees): | |
def setup_method(self): | |
super().setup_method() | |
self.d = 2 | |
class _Test_two_random_trees_far_periodic(_Test_two_random_trees_periodic): | |
def setup_method(self): | |
super().setup_method() | |
self.d = 2 | |
class _Test_two_random_trees_linf(_Test_two_random_trees): | |
def setup_method(self): | |
super().setup_method() | |
self.p = np.inf | |
class _Test_two_random_trees_linf_periodic(_Test_two_random_trees_periodic): | |
def setup_method(self): | |
super().setup_method() | |
self.p = np.inf | |
class Test_rectangle: | |
def setup_method(self): | |
self.rect = Rectangle([0, 0], [1, 1]) | |
def test_min_inside(self): | |
assert_almost_equal(self.rect.min_distance_point([0.5, 0.5]), 0) | |
def test_min_one_side(self): | |
assert_almost_equal(self.rect.min_distance_point([0.5, 1.5]), 0.5) | |
def test_min_two_sides(self): | |
assert_almost_equal(self.rect.min_distance_point([2, 2]), np.sqrt(2)) | |
def test_max_inside(self): | |
assert_almost_equal(self.rect.max_distance_point([0.5, 0.5]), 1/np.sqrt(2)) | |
def test_max_one_side(self): | |
assert_almost_equal(self.rect.max_distance_point([0.5, 1.5]), | |
np.hypot(0.5, 1.5)) | |
def test_max_two_sides(self): | |
assert_almost_equal(self.rect.max_distance_point([2, 2]), 2*np.sqrt(2)) | |
def test_split(self): | |
less, greater = self.rect.split(0, 0.1) | |
assert_array_equal(less.maxes, [0.1, 1]) | |
assert_array_equal(less.mins, [0, 0]) | |
assert_array_equal(greater.maxes, [1, 1]) | |
assert_array_equal(greater.mins, [0.1, 0]) | |
def test_distance_l2(): | |
assert_almost_equal(minkowski_distance([0, 0], [1, 1], 2), np.sqrt(2)) | |
def test_distance_l1(): | |
assert_almost_equal(minkowski_distance([0, 0], [1, 1], 1), 2) | |
def test_distance_linf(): | |
assert_almost_equal(minkowski_distance([0, 0], [1, 1], np.inf), 1) | |
def test_distance_vectorization(): | |
np.random.seed(1234) | |
x = np.random.randn(10, 1, 3) | |
y = np.random.randn(1, 7, 3) | |
assert_equal(minkowski_distance(x, y).shape, (10, 7)) | |
class count_neighbors_consistency: | |
def test_one_radius(self): | |
r = 0.2 | |
assert_equal(self.T1.count_neighbors(self.T2, r), | |
np.sum([len(l) for l in self.T1.query_ball_tree(self.T2, r)])) | |
def test_large_radius(self): | |
r = 1000 | |
assert_equal(self.T1.count_neighbors(self.T2, r), | |
np.sum([len(l) for l in self.T1.query_ball_tree(self.T2, r)])) | |
def test_multiple_radius(self): | |
rs = np.exp(np.linspace(np.log(0.01), np.log(10), 3)) | |
results = self.T1.count_neighbors(self.T2, rs) | |
assert_(np.all(np.diff(results) >= 0)) | |
for r, result in zip(rs, results): | |
assert_equal(self.T1.count_neighbors(self.T2, r), result) | |
class _Test_count_neighbors(count_neighbors_consistency): | |
def setup_method(self): | |
n = 50 | |
m = 2 | |
np.random.seed(1234) | |
self.T1 = self.kdtree_type(np.random.randn(n, m), leafsize=2) | |
self.T2 = self.kdtree_type(np.random.randn(n, m), leafsize=2) | |
class sparse_distance_matrix_consistency: | |
def distance(self, a, b, p): | |
return minkowski_distance(a, b, p) | |
def test_consistency_with_neighbors(self): | |
M = self.T1.sparse_distance_matrix(self.T2, self.r) | |
r = self.T1.query_ball_tree(self.T2, self.r) | |
for i, l in enumerate(r): | |
for j in l: | |
assert_almost_equal( | |
M[i, j], | |
self.distance(self.T1.data[i], self.T2.data[j], self.p), | |
decimal=14 | |
) | |
for ((i, j), d) in M.items(): | |
assert_(j in r[i]) | |
def test_zero_distance(self): | |
# raises an exception for bug 870 (FIXME: Does it?) | |
self.T1.sparse_distance_matrix(self.T1, self.r) | |
def test_consistency(self): | |
# Test consistency with a distance_matrix | |
M1 = self.T1.sparse_distance_matrix(self.T2, self.r) | |
expected = distance_matrix(self.T1.data, self.T2.data) | |
expected[expected > self.r] = 0 | |
assert_array_almost_equal(M1.toarray(), expected, decimal=14) | |
def test_against_logic_error_regression(self): | |
# regression test for gh-5077 logic error | |
np.random.seed(0) | |
too_many = np.array(np.random.randn(18, 2), dtype=int) | |
tree = self.kdtree_type( | |
too_many, balanced_tree=False, compact_nodes=False) | |
d = tree.sparse_distance_matrix(tree, 3).toarray() | |
assert_array_almost_equal(d, d.T, decimal=14) | |
def test_ckdtree_return_types(self): | |
# brute-force reference | |
ref = np.zeros((self.n, self.n)) | |
for i in range(self.n): | |
for j in range(self.n): | |
v = self.data1[i, :] - self.data2[j, :] | |
ref[i, j] = np.dot(v, v) | |
ref = np.sqrt(ref) | |
ref[ref > self.r] = 0. | |
# test return type 'dict' | |
dist = np.zeros((self.n, self.n)) | |
r = self.T1.sparse_distance_matrix(self.T2, self.r, output_type='dict') | |
for i, j in r.keys(): | |
dist[i, j] = r[(i, j)] | |
assert_array_almost_equal(ref, dist, decimal=14) | |
# test return type 'ndarray' | |
dist = np.zeros((self.n, self.n)) | |
r = self.T1.sparse_distance_matrix(self.T2, self.r, | |
output_type='ndarray') | |
for k in range(r.shape[0]): | |
i = r['i'][k] | |
j = r['j'][k] | |
v = r['v'][k] | |
dist[i, j] = v | |
assert_array_almost_equal(ref, dist, decimal=14) | |
# test return type 'dok_matrix' | |
r = self.T1.sparse_distance_matrix(self.T2, self.r, | |
output_type='dok_matrix') | |
assert_array_almost_equal(ref, r.toarray(), decimal=14) | |
# test return type 'coo_matrix' | |
r = self.T1.sparse_distance_matrix(self.T2, self.r, | |
output_type='coo_matrix') | |
assert_array_almost_equal(ref, r.toarray(), decimal=14) | |
class _Test_sparse_distance_matrix(sparse_distance_matrix_consistency): | |
def setup_method(self): | |
n = 50 | |
m = 4 | |
np.random.seed(1234) | |
data1 = np.random.randn(n, m) | |
data2 = np.random.randn(n, m) | |
self.T1 = self.kdtree_type(data1, leafsize=2) | |
self.T2 = self.kdtree_type(data2, leafsize=2) | |
self.r = 0.5 | |
self.p = 2 | |
self.data1 = data1 | |
self.data2 = data2 | |
self.n = n | |
self.m = m | |
def test_distance_matrix(): | |
m = 10 | |
n = 11 | |
k = 4 | |
np.random.seed(1234) | |
xs = np.random.randn(m, k) | |
ys = np.random.randn(n, k) | |
ds = distance_matrix(xs, ys) | |
assert_equal(ds.shape, (m, n)) | |
for i in range(m): | |
for j in range(n): | |
assert_almost_equal(minkowski_distance(xs[i], ys[j]), ds[i, j]) | |
def test_distance_matrix_looping(): | |
m = 10 | |
n = 11 | |
k = 4 | |
np.random.seed(1234) | |
xs = np.random.randn(m, k) | |
ys = np.random.randn(n, k) | |
ds = distance_matrix(xs, ys) | |
dsl = distance_matrix(xs, ys, threshold=1) | |
assert_equal(ds, dsl) | |
def check_onetree_query(T, d): | |
r = T.query_ball_tree(T, d) | |
s = set() | |
for i, l in enumerate(r): | |
for j in l: | |
if i < j: | |
s.add((i, j)) | |
assert_(s == T.query_pairs(d)) | |
def test_onetree_query(kdtree_type): | |
np.random.seed(0) | |
n = 50 | |
k = 4 | |
points = np.random.randn(n, k) | |
T = kdtree_type(points) | |
check_onetree_query(T, 0.1) | |
points = np.random.randn(3*n, k) | |
points[:n] *= 0.001 | |
points[n:2*n] += 2 | |
T = kdtree_type(points) | |
check_onetree_query(T, 0.1) | |
check_onetree_query(T, 0.001) | |
check_onetree_query(T, 0.00001) | |
check_onetree_query(T, 1e-6) | |
def test_query_pairs_single_node(kdtree_type): | |
tree = kdtree_type([[0, 1]]) | |
assert_equal(tree.query_pairs(0.5), set()) | |
def test_kdtree_query_pairs(kdtree_type): | |
np.random.seed(0) | |
n = 50 | |
k = 2 | |
r = 0.1 | |
r2 = r**2 | |
points = np.random.randn(n, k) | |
T = kdtree_type(points) | |
# brute force reference | |
brute = set() | |
for i in range(n): | |
for j in range(i+1, n): | |
v = points[i, :] - points[j, :] | |
if np.dot(v, v) <= r2: | |
brute.add((i, j)) | |
l0 = sorted(brute) | |
# test default return type | |
s = T.query_pairs(r) | |
l1 = sorted(s) | |
assert_array_equal(l0, l1) | |
# test return type 'set' | |
s = T.query_pairs(r, output_type='set') | |
l1 = sorted(s) | |
assert_array_equal(l0, l1) | |
# test return type 'ndarray' | |
s = set() | |
arr = T.query_pairs(r, output_type='ndarray') | |
for i in range(arr.shape[0]): | |
s.add((int(arr[i, 0]), int(arr[i, 1]))) | |
l2 = sorted(s) | |
assert_array_equal(l0, l2) | |
def test_query_pairs_eps(kdtree_type): | |
spacing = np.sqrt(2) | |
# irrational spacing to have potential rounding errors | |
x_range = np.linspace(0, 3 * spacing, 4) | |
y_range = np.linspace(0, 3 * spacing, 4) | |
xy_array = [(xi, yi) for xi in x_range for yi in y_range] | |
tree = kdtree_type(xy_array) | |
pairs_eps = tree.query_pairs(r=spacing, eps=.1) | |
# result: 24 with eps, 16 without due to rounding | |
pairs = tree.query_pairs(r=spacing * 1.01) | |
# result: 24 | |
assert_equal(pairs, pairs_eps) | |
def test_ball_point_ints(kdtree_type): | |
# Regression test for #1373. | |
x, y = np.mgrid[0:4, 0:4] | |
points = list(zip(x.ravel(), y.ravel())) | |
tree = kdtree_type(points) | |
assert_equal(sorted([4, 8, 9, 12]), | |
sorted(tree.query_ball_point((2, 0), 1))) | |
points = np.asarray(points, dtype=float) | |
tree = kdtree_type(points) | |
assert_equal(sorted([4, 8, 9, 12]), | |
sorted(tree.query_ball_point((2, 0), 1))) | |
def test_kdtree_comparisons(): | |
# Regression test: node comparisons were done wrong in 0.12 w/Py3. | |
nodes = [KDTree.node() for _ in range(3)] | |
assert_equal(sorted(nodes), sorted(nodes[::-1])) | |
def test_kdtree_build_modes(kdtree_type): | |
# check if different build modes for KDTree give similar query results | |
np.random.seed(0) | |
n = 5000 | |
k = 4 | |
points = np.random.randn(n, k) | |
T1 = kdtree_type(points).query(points, k=5)[-1] | |
T2 = kdtree_type(points, compact_nodes=False).query(points, k=5)[-1] | |
T3 = kdtree_type(points, balanced_tree=False).query(points, k=5)[-1] | |
T4 = kdtree_type(points, compact_nodes=False, | |
balanced_tree=False).query(points, k=5)[-1] | |
assert_array_equal(T1, T2) | |
assert_array_equal(T1, T3) | |
assert_array_equal(T1, T4) | |
def test_kdtree_pickle(kdtree_type): | |
# test if it is possible to pickle a KDTree | |
import pickle | |
np.random.seed(0) | |
n = 50 | |
k = 4 | |
points = np.random.randn(n, k) | |
T1 = kdtree_type(points) | |
tmp = pickle.dumps(T1) | |
T2 = pickle.loads(tmp) | |
T1 = T1.query(points, k=5)[-1] | |
T2 = T2.query(points, k=5)[-1] | |
assert_array_equal(T1, T2) | |
def test_kdtree_pickle_boxsize(kdtree_type): | |
# test if it is possible to pickle a periodic KDTree | |
import pickle | |
np.random.seed(0) | |
n = 50 | |
k = 4 | |
points = np.random.uniform(size=(n, k)) | |
T1 = kdtree_type(points, boxsize=1.0) | |
tmp = pickle.dumps(T1) | |
T2 = pickle.loads(tmp) | |
T1 = T1.query(points, k=5)[-1] | |
T2 = T2.query(points, k=5)[-1] | |
assert_array_equal(T1, T2) | |
def test_kdtree_copy_data(kdtree_type): | |
# check if copy_data=True makes the kd-tree | |
# impervious to data corruption by modification of | |
# the data arrray | |
np.random.seed(0) | |
n = 5000 | |
k = 4 | |
points = np.random.randn(n, k) | |
T = kdtree_type(points, copy_data=True) | |
q = points.copy() | |
T1 = T.query(q, k=5)[-1] | |
points[...] = np.random.randn(n, k) | |
T2 = T.query(q, k=5)[-1] | |
assert_array_equal(T1, T2) | |
def test_ckdtree_parallel(kdtree_type, monkeypatch): | |
# check if parallel=True also generates correct query results | |
np.random.seed(0) | |
n = 5000 | |
k = 4 | |
points = np.random.randn(n, k) | |
T = kdtree_type(points) | |
T1 = T.query(points, k=5, workers=64)[-1] | |
T2 = T.query(points, k=5, workers=-1)[-1] | |
T3 = T.query(points, k=5)[-1] | |
assert_array_equal(T1, T2) | |
assert_array_equal(T1, T3) | |
monkeypatch.setattr(os, 'cpu_count', lambda: None) | |
with pytest.raises(NotImplementedError, match="Cannot determine the"): | |
T.query(points, 1, workers=-1) | |
def test_ckdtree_view(): | |
# Check that the nodes can be correctly viewed from Python. | |
# This test also sanity checks each node in the cKDTree, and | |
# thus verifies the internal structure of the kd-tree. | |
np.random.seed(0) | |
n = 100 | |
k = 4 | |
points = np.random.randn(n, k) | |
kdtree = cKDTree(points) | |
# walk the whole kd-tree and sanity check each node | |
def recurse_tree(n): | |
assert_(isinstance(n, cKDTreeNode)) | |
if n.split_dim == -1: | |
assert_(n.lesser is None) | |
assert_(n.greater is None) | |
assert_(n.indices.shape[0] <= kdtree.leafsize) | |
else: | |
recurse_tree(n.lesser) | |
recurse_tree(n.greater) | |
x = n.lesser.data_points[:, n.split_dim] | |
y = n.greater.data_points[:, n.split_dim] | |
assert_(x.max() < y.min()) | |
recurse_tree(kdtree.tree) | |
# check that indices are correctly retrieved | |
n = kdtree.tree | |
assert_array_equal(np.sort(n.indices), range(100)) | |
# check that data_points are correctly retrieved | |
assert_array_equal(kdtree.data[n.indices, :], n.data_points) | |
# KDTree is specialized to type double points, so no need to make | |
# a unit test corresponding to test_ball_point_ints() | |
def test_kdtree_list_k(kdtree_type): | |
# check kdtree periodic boundary | |
n = 200 | |
m = 2 | |
klist = [1, 2, 3] | |
kint = 3 | |
np.random.seed(1234) | |
data = np.random.uniform(size=(n, m)) | |
kdtree = kdtree_type(data, leafsize=1) | |
# check agreement between arange(1, k+1) and k | |
dd, ii = kdtree.query(data, klist) | |
dd1, ii1 = kdtree.query(data, kint) | |
assert_equal(dd, dd1) | |
assert_equal(ii, ii1) | |
# now check skipping one element | |
klist = np.array([1, 3]) | |
kint = 3 | |
dd, ii = kdtree.query(data, kint) | |
dd1, ii1 = kdtree.query(data, klist) | |
assert_equal(dd1, dd[..., klist - 1]) | |
assert_equal(ii1, ii[..., klist - 1]) | |
# check k == 1 special case | |
# and k == [1] non-special case | |
dd, ii = kdtree.query(data, 1) | |
dd1, ii1 = kdtree.query(data, [1]) | |
assert_equal(len(dd.shape), 1) | |
assert_equal(len(dd1.shape), 2) | |
assert_equal(dd, np.ravel(dd1)) | |
assert_equal(ii, np.ravel(ii1)) | |
def test_kdtree_box(kdtree_type): | |
# check ckdtree periodic boundary | |
n = 2000 | |
m = 3 | |
k = 3 | |
np.random.seed(1234) | |
data = np.random.uniform(size=(n, m)) | |
kdtree = kdtree_type(data, leafsize=1, boxsize=1.0) | |
# use the standard python KDTree for the simulated periodic box | |
kdtree2 = kdtree_type(data, leafsize=1) | |
for p in [1, 2, 3.0, np.inf]: | |
dd, ii = kdtree.query(data, k, p=p) | |
dd1, ii1 = kdtree.query(data + 1.0, k, p=p) | |
assert_almost_equal(dd, dd1) | |
assert_equal(ii, ii1) | |
dd1, ii1 = kdtree.query(data - 1.0, k, p=p) | |
assert_almost_equal(dd, dd1) | |
assert_equal(ii, ii1) | |
dd2, ii2 = simulate_periodic_box(kdtree2, data, k, boxsize=1.0, p=p) | |
assert_almost_equal(dd, dd2) | |
assert_equal(ii, ii2) | |
def test_kdtree_box_0boxsize(kdtree_type): | |
# check ckdtree periodic boundary that mimics non-periodic | |
n = 2000 | |
m = 2 | |
k = 3 | |
np.random.seed(1234) | |
data = np.random.uniform(size=(n, m)) | |
kdtree = kdtree_type(data, leafsize=1, boxsize=0.0) | |
# use the standard python KDTree for the simulated periodic box | |
kdtree2 = kdtree_type(data, leafsize=1) | |
for p in [1, 2, np.inf]: | |
dd, ii = kdtree.query(data, k, p=p) | |
dd1, ii1 = kdtree2.query(data, k, p=p) | |
assert_almost_equal(dd, dd1) | |
assert_equal(ii, ii1) | |
def test_kdtree_box_upper_bounds(kdtree_type): | |
data = np.linspace(0, 2, 10).reshape(-1, 2) | |
data[:, 1] += 10 | |
with pytest.raises(ValueError): | |
kdtree_type(data, leafsize=1, boxsize=1.0) | |
with pytest.raises(ValueError): | |
kdtree_type(data, leafsize=1, boxsize=(0.0, 2.0)) | |
# skip a dimension. | |
kdtree_type(data, leafsize=1, boxsize=(2.0, 0.0)) | |
def test_kdtree_box_lower_bounds(kdtree_type): | |
data = np.linspace(-1, 1, 10) | |
assert_raises(ValueError, kdtree_type, data, leafsize=1, boxsize=1.0) | |
def simulate_periodic_box(kdtree, data, k, boxsize, p): | |
dd = [] | |
ii = [] | |
x = np.arange(3 ** data.shape[1]) | |
nn = np.array(np.unravel_index(x, [3] * data.shape[1])).T | |
nn = nn - 1.0 | |
for n in nn: | |
image = data + n * 1.0 * boxsize | |
dd2, ii2 = kdtree.query(image, k, p=p) | |
dd2 = dd2.reshape(-1, k) | |
ii2 = ii2.reshape(-1, k) | |
dd.append(dd2) | |
ii.append(ii2) | |
dd = np.concatenate(dd, axis=-1) | |
ii = np.concatenate(ii, axis=-1) | |
result = np.empty([len(data), len(nn) * k], dtype=[ | |
('ii', 'i8'), | |
('dd', 'f8')]) | |
result['ii'][:] = ii | |
result['dd'][:] = dd | |
result.sort(order='dd') | |
return result['dd'][:, :k], result['ii'][:, :k] | |
def test_ckdtree_memuse(): | |
# unit test adaptation of gh-5630 | |
# NOTE: this will fail when run via valgrind, | |
# because rss is no longer a reliable memory usage indicator. | |
try: | |
import resource | |
except ImportError: | |
# resource is not available on Windows | |
return | |
# Make some data | |
dx, dy = 0.05, 0.05 | |
y, x = np.mgrid[slice(1, 5 + dy, dy), | |
slice(1, 5 + dx, dx)] | |
z = np.sin(x)**10 + np.cos(10 + y*x) * np.cos(x) | |
z_copy = np.empty_like(z) | |
z_copy[:] = z | |
# Place FILLVAL in z_copy at random number of random locations | |
FILLVAL = 99. | |
mask = np.random.randint(0, z.size, np.random.randint(50) + 5) | |
z_copy.flat[mask] = FILLVAL | |
igood = np.vstack(np.nonzero(x != FILLVAL)).T | |
ibad = np.vstack(np.nonzero(x == FILLVAL)).T | |
mem_use = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss | |
# burn-in | |
for i in range(10): | |
tree = cKDTree(igood) | |
# count memleaks while constructing and querying cKDTree | |
num_leaks = 0 | |
for i in range(100): | |
mem_use = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss | |
tree = cKDTree(igood) | |
dist, iquery = tree.query(ibad, k=4, p=2) | |
new_mem_use = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss | |
if new_mem_use > mem_use: | |
num_leaks += 1 | |
# ideally zero leaks, but errors might accidentally happen | |
# outside cKDTree | |
assert_(num_leaks < 10) | |
def test_kdtree_weights(kdtree_type): | |
data = np.linspace(0, 1, 4).reshape(-1, 1) | |
tree1 = kdtree_type(data, leafsize=1) | |
weights = np.ones(len(data), dtype='f4') | |
nw = tree1._build_weights(weights) | |
assert_array_equal(nw, [4, 2, 1, 1, 2, 1, 1]) | |
assert_raises(ValueError, tree1._build_weights, weights[:-1]) | |
for i in range(10): | |
# since weights are uniform, these shall agree: | |
c1 = tree1.count_neighbors(tree1, np.linspace(0, 10, i)) | |
c2 = tree1.count_neighbors(tree1, np.linspace(0, 10, i), | |
weights=(weights, weights)) | |
c3 = tree1.count_neighbors(tree1, np.linspace(0, 10, i), | |
weights=(weights, None)) | |
c4 = tree1.count_neighbors(tree1, np.linspace(0, 10, i), | |
weights=(None, weights)) | |
tree1.count_neighbors(tree1, np.linspace(0, 10, i), | |
weights=weights) | |
assert_array_equal(c1, c2) | |
assert_array_equal(c1, c3) | |
assert_array_equal(c1, c4) | |
for i in range(len(data)): | |
# this tests removal of one data point by setting weight to 0 | |
w1 = weights.copy() | |
w1[i] = 0 | |
data2 = data[w1 != 0] | |
tree2 = kdtree_type(data2) | |
c1 = tree1.count_neighbors(tree1, np.linspace(0, 10, 100), | |
weights=(w1, w1)) | |
# "c2 is correct" | |
c2 = tree2.count_neighbors(tree2, np.linspace(0, 10, 100)) | |
assert_array_equal(c1, c2) | |
#this asserts for two different trees, singular weights | |
# crashes | |
assert_raises(ValueError, tree1.count_neighbors, | |
tree2, np.linspace(0, 10, 100), weights=w1) | |
def test_kdtree_count_neighbous_multiple_r(kdtree_type): | |
n = 2000 | |
m = 2 | |
np.random.seed(1234) | |
data = np.random.normal(size=(n, m)) | |
kdtree = kdtree_type(data, leafsize=1) | |
r0 = [0, 0.01, 0.01, 0.02, 0.05] | |
i0 = np.arange(len(r0)) | |
n0 = kdtree.count_neighbors(kdtree, r0) | |
nnc = kdtree.count_neighbors(kdtree, r0, cumulative=False) | |
assert_equal(n0, nnc.cumsum()) | |
for i, r in zip(itertools.permutations(i0), | |
itertools.permutations(r0)): | |
# permute n0 by i and it shall agree | |
n = kdtree.count_neighbors(kdtree, r) | |
assert_array_equal(n, n0[list(i)]) | |
def test_len0_arrays(kdtree_type): | |
# make sure len-0 arrays are handled correctly | |
# in range queries (gh-5639) | |
np.random.seed(1234) | |
X = np.random.rand(10, 2) | |
Y = np.random.rand(10, 2) | |
tree = kdtree_type(X) | |
# query_ball_point (single) | |
d, i = tree.query([.5, .5], k=1) | |
z = tree.query_ball_point([.5, .5], 0.1*d) | |
assert_array_equal(z, []) | |
# query_ball_point (multiple) | |
d, i = tree.query(Y, k=1) | |
mind = d.min() | |
z = tree.query_ball_point(Y, 0.1*mind) | |
y = np.empty(shape=(10, ), dtype=object) | |
y.fill([]) | |
assert_array_equal(y, z) | |
# query_ball_tree | |
other = kdtree_type(Y) | |
y = tree.query_ball_tree(other, 0.1*mind) | |
assert_array_equal(10*[[]], y) | |
# count_neighbors | |
y = tree.count_neighbors(other, 0.1*mind) | |
assert_(y == 0) | |
# sparse_distance_matrix | |
y = tree.sparse_distance_matrix(other, 0.1*mind, output_type='dok_matrix') | |
assert_array_equal(y == np.zeros((10, 10)), True) | |
y = tree.sparse_distance_matrix(other, 0.1*mind, output_type='coo_matrix') | |
assert_array_equal(y == np.zeros((10, 10)), True) | |
y = tree.sparse_distance_matrix(other, 0.1*mind, output_type='dict') | |
assert_equal(y, {}) | |
y = tree.sparse_distance_matrix(other, 0.1*mind, output_type='ndarray') | |
_dtype = [('i', np.intp), ('j', np.intp), ('v', np.float64)] | |
res_dtype = np.dtype(_dtype, align=True) | |
z = np.empty(shape=(0, ), dtype=res_dtype) | |
assert_array_equal(y, z) | |
# query_pairs | |
d, i = tree.query(X, k=2) | |
mind = d[:, -1].min() | |
y = tree.query_pairs(0.1*mind, output_type='set') | |
assert_equal(y, set()) | |
y = tree.query_pairs(0.1*mind, output_type='ndarray') | |
z = np.empty(shape=(0, 2), dtype=np.intp) | |
assert_array_equal(y, z) | |
def test_kdtree_duplicated_inputs(kdtree_type): | |
# check kdtree with duplicated inputs | |
n = 1024 | |
for m in range(1, 8): | |
data = np.ones((n, m)) | |
data[n//2:] = 2 | |
for balanced, compact in itertools.product((False, True), repeat=2): | |
kdtree = kdtree_type(data, balanced_tree=balanced, | |
compact_nodes=compact, leafsize=1) | |
assert kdtree.size == 3 | |
tree = (kdtree.tree if kdtree_type is cKDTree else | |
kdtree.tree._node) | |
assert_equal( | |
np.sort(tree.lesser.indices), | |
np.arange(0, n // 2)) | |
assert_equal( | |
np.sort(tree.greater.indices), | |
np.arange(n // 2, n)) | |
def test_kdtree_noncumulative_nondecreasing(kdtree_type): | |
# check kdtree with duplicated inputs | |
# it shall not divide more than 3 nodes. | |
# root left (1), and right (2) | |
kdtree = kdtree_type([[0]], leafsize=1) | |
assert_raises(ValueError, kdtree.count_neighbors, | |
kdtree, [0.1, 0], cumulative=False) | |
def test_short_knn(kdtree_type): | |
# The test case is based on github: #6425 by @SteveDoyle2 | |
xyz = np.array([ | |
[0., 0., 0.], | |
[1.01, 0., 0.], | |
[0., 1., 0.], | |
[0., 1.01, 0.], | |
[1., 0., 0.], | |
[1., 1., 0.]], | |
dtype='float64') | |
ckdt = kdtree_type(xyz) | |
deq, ieq = ckdt.query(xyz, k=4, distance_upper_bound=0.2) | |
assert_array_almost_equal(deq, | |
[[0., np.inf, np.inf, np.inf], | |
[0., 0.01, np.inf, np.inf], | |
[0., 0.01, np.inf, np.inf], | |
[0., 0.01, np.inf, np.inf], | |
[0., 0.01, np.inf, np.inf], | |
[0., np.inf, np.inf, np.inf]]) | |
def test_query_ball_point_vector_r(kdtree_type): | |
np.random.seed(1234) | |
data = np.random.normal(size=(100, 3)) | |
query = np.random.normal(size=(100, 3)) | |
tree = kdtree_type(data) | |
d = np.random.uniform(0, 0.3, size=len(query)) | |
rvector = tree.query_ball_point(query, d) | |
rscalar = [tree.query_ball_point(qi, di) for qi, di in zip(query, d)] | |
for a, b in zip(rvector, rscalar): | |
assert_array_equal(sorted(a), sorted(b)) | |
def test_query_ball_point_length(kdtree_type): | |
np.random.seed(1234) | |
data = np.random.normal(size=(100, 3)) | |
query = np.random.normal(size=(100, 3)) | |
tree = kdtree_type(data) | |
d = 0.3 | |
length = tree.query_ball_point(query, d, return_length=True) | |
length2 = [len(ind) for ind in tree.query_ball_point(query, d, return_length=False)] | |
length3 = [len(tree.query_ball_point(qi, d)) for qi in query] | |
length4 = [tree.query_ball_point(qi, d, return_length=True) for qi in query] | |
assert_array_equal(length, length2) | |
assert_array_equal(length, length3) | |
assert_array_equal(length, length4) | |
def test_discontiguous(kdtree_type): | |
np.random.seed(1234) | |
data = np.random.normal(size=(100, 3)) | |
d_contiguous = np.arange(100) * 0.04 | |
d_discontiguous = np.ascontiguousarray( | |
np.arange(100)[::-1] * 0.04)[::-1] | |
query_contiguous = np.random.normal(size=(100, 3)) | |
query_discontiguous = np.ascontiguousarray(query_contiguous.T).T | |
assert query_discontiguous.strides[-1] != query_contiguous.strides[-1] | |
assert d_discontiguous.strides[-1] != d_contiguous.strides[-1] | |
tree = kdtree_type(data) | |
length1 = tree.query_ball_point(query_contiguous, | |
d_contiguous, return_length=True) | |
length2 = tree.query_ball_point(query_discontiguous, | |
d_discontiguous, return_length=True) | |
assert_array_equal(length1, length2) | |
d1, i1 = tree.query(query_contiguous, 1) | |
d2, i2 = tree.query(query_discontiguous, 1) | |
assert_array_equal(d1, d2) | |
assert_array_equal(i1, i2) | |
def test_kdtree_empty_input(kdtree_type, balanced_tree, compact_nodes): | |
# https://github.com/scipy/scipy/issues/5040 | |
np.random.seed(1234) | |
empty_v3 = np.empty(shape=(0, 3)) | |
query_v3 = np.ones(shape=(1, 3)) | |
query_v2 = np.ones(shape=(2, 3)) | |
tree = kdtree_type(empty_v3, balanced_tree=balanced_tree, | |
compact_nodes=compact_nodes) | |
length = tree.query_ball_point(query_v3, 0.3, return_length=True) | |
assert length == 0 | |
dd, ii = tree.query(query_v2, 2) | |
assert ii.shape == (2, 2) | |
assert dd.shape == (2, 2) | |
assert np.isinf(dd).all() | |
N = tree.count_neighbors(tree, [0, 1]) | |
assert_array_equal(N, [0, 0]) | |
M = tree.sparse_distance_matrix(tree, 0.3) | |
assert M.shape == (0, 0) | |
class _Test_sorted_query_ball_point: | |
def setup_method(self): | |
np.random.seed(1234) | |
self.x = np.random.randn(100, 1) | |
self.ckdt = self.kdtree_type(self.x) | |
def test_return_sorted_True(self): | |
idxs_list = self.ckdt.query_ball_point(self.x, 1., return_sorted=True) | |
for idxs in idxs_list: | |
assert_array_equal(idxs, sorted(idxs)) | |
for xi in self.x: | |
idxs = self.ckdt.query_ball_point(xi, 1., return_sorted=True) | |
assert_array_equal(idxs, sorted(idxs)) | |
def test_return_sorted_None(self): | |
"""Previous behavior was to sort the returned indices if there were | |
multiple points per query but not sort them if there was a single point | |
per query.""" | |
idxs_list = self.ckdt.query_ball_point(self.x, 1.) | |
for idxs in idxs_list: | |
assert_array_equal(idxs, sorted(idxs)) | |
idxs_list_single = [self.ckdt.query_ball_point(xi, 1.) for xi in self.x] | |
idxs_list_False = self.ckdt.query_ball_point(self.x, 1., return_sorted=False) | |
for idxs0, idxs1 in zip(idxs_list_False, idxs_list_single): | |
assert_array_equal(idxs0, idxs1) | |
def test_kdtree_complex_data(): | |
# Test that KDTree rejects complex input points (gh-9108) | |
points = np.random.rand(10, 2).view(complex) | |
with pytest.raises(TypeError, match="complex data"): | |
t = KDTree(points) | |
t = KDTree(points.real) | |
with pytest.raises(TypeError, match="complex data"): | |
t.query(points) | |
with pytest.raises(TypeError, match="complex data"): | |
t.query_ball_point(points, r=1) | |
def test_kdtree_tree_access(): | |
# Test KDTree.tree can be used to traverse the KDTree | |
np.random.seed(1234) | |
points = np.random.rand(100, 4) | |
t = KDTree(points) | |
root = t.tree | |
assert isinstance(root, KDTree.innernode) | |
assert root.children == points.shape[0] | |
# Visit the tree and assert some basic properties for each node | |
nodes = [root] | |
while nodes: | |
n = nodes.pop(-1) | |
if isinstance(n, KDTree.leafnode): | |
assert isinstance(n.children, int) | |
assert n.children == len(n.idx) | |
assert_array_equal(points[n.idx], n._node.data_points) | |
else: | |
assert isinstance(n, KDTree.innernode) | |
assert isinstance(n.split_dim, int) | |
assert 0 <= n.split_dim < t.m | |
assert isinstance(n.split, float) | |
assert isinstance(n.children, int) | |
assert n.children == n.less.children + n.greater.children | |
nodes.append(n.greater) | |
nodes.append(n.less) | |
def test_kdtree_attributes(): | |
# Test KDTree's attributes are available | |
np.random.seed(1234) | |
points = np.random.rand(100, 4) | |
t = KDTree(points) | |
assert isinstance(t.m, int) | |
assert t.n == points.shape[0] | |
assert isinstance(t.n, int) | |
assert t.m == points.shape[1] | |
assert isinstance(t.leafsize, int) | |
assert t.leafsize == 10 | |
assert_array_equal(t.maxes, np.amax(points, axis=0)) | |
assert_array_equal(t.mins, np.amin(points, axis=0)) | |
assert t.data is points | |
def test_kdtree_count_neighbors_weighted(kdtree_class): | |
np.random.seed(1234) | |
r = np.arange(0.05, 1, 0.05) | |
A = np.random.random(21).reshape((7,3)) | |
B = np.random.random(45).reshape((15,3)) | |
wA = np.random.random(7) | |
wB = np.random.random(15) | |
kdA = kdtree_class(A) | |
kdB = kdtree_class(B) | |
nAB = kdA.count_neighbors(kdB, r, cumulative=False, weights=(wA,wB)) | |
# Compare against brute-force | |
weights = wA[None, :] * wB[:, None] | |
dist = np.linalg.norm(A[None, :, :] - B[:, None, :], axis=-1) | |
expect = [np.sum(weights[(prev_radius < dist) & (dist <= radius)]) | |
for prev_radius, radius in zip(itertools.chain([0], r[:-1]), r)] | |
assert_allclose(nAB, expect) | |
def test_kdtree_nan(): | |
vals = [1, 5, -10, 7, -4, -16, -6, 6, 3, -11] | |
n = len(vals) | |
data = np.concatenate([vals, np.full(n, np.nan)])[:, None] | |
with pytest.raises(ValueError, match="must be finite"): | |
KDTree(data) | |
def test_nonfinite_inputs_gh_18223(): | |
rng = np.random.default_rng(12345) | |
coords = rng.uniform(size=(100, 3), low=0.0, high=0.1) | |
t = KDTree(coords, balanced_tree=False, compact_nodes=False) | |
bad_coord = [np.nan for _ in range(3)] | |
with pytest.raises(ValueError, match="must be finite"): | |
t.query(bad_coord) | |
with pytest.raises(ValueError, match="must be finite"): | |
t.query_ball_point(bad_coord, 1) | |
coords[0, :] = np.nan | |
with pytest.raises(ValueError, match="must be finite"): | |
KDTree(coords, balanced_tree=True, compact_nodes=False) | |
with pytest.raises(ValueError, match="must be finite"): | |
KDTree(coords, balanced_tree=False, compact_nodes=True) | |
with pytest.raises(ValueError, match="must be finite"): | |
KDTree(coords, balanced_tree=True, compact_nodes=True) | |
with pytest.raises(ValueError, match="must be finite"): | |
KDTree(coords, balanced_tree=False, compact_nodes=False) | |
def test_gh_18800(incantation): | |
# our prohibition on non-finite values | |
# in kd-tree workflows means we need | |
# coercion to NumPy arrays enforced | |
class ArrLike(np.ndarray): | |
def __new__(cls, input_array): | |
obj = np.asarray(input_array).view(cls) | |
# we override all() to mimic the problem | |
# pandas DataFrames encountered in gh-18800 | |
obj.all = None | |
return obj | |
def __array_finalize__(self, obj): | |
if obj is None: | |
return | |
self.all = getattr(obj, 'all', None) | |
points = [ | |
[66.22, 32.54], | |
[22.52, 22.39], | |
[31.01, 81.21], | |
] | |
arr = np.array(points) | |
arr_like = ArrLike(arr) | |
tree = incantation(points, 10) | |
tree.query(arr_like, 1) | |
tree.query_ball_point(arr_like, 200) | |