applied-ai-018's picture
Add files using upload-large-folder tool
734b6a1 verified
raw
history blame
20.7 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
from deepspeed.inference.config import DeepSpeedInferenceConfig
from deepspeed.module_inject.replace_policy import replace_policies
from deepspeed.module_inject.utils import policy_to_ds_container
from .engine import DeepSpeedEngine
from .utils import TLinear, get_inactive_params
from deepspeed.runtime.zero import GatheredParameters
import time
import gc
import math
from deepspeed import comm as dist
from deepspeed.accelerator import get_accelerator
from torch import nn
from deepspeed.utils import logger
from deepspeed.ops.op_builder import InferenceBuilder
from deepspeed.module_inject.layers import LinearLayer, Normalize, EmbeddingLayer, OPTEmbedding
try:
import transformers
OPTLearnedPositionalEmbedding = transformers.models.opt.modeling_opt.OPTLearnedPositionalEmbedding
except:
OPTLearnedPositionalEmbedding = None
inference_cuda_module = None
class DeepSpeedHybridEngine(DeepSpeedEngine):
r"""DeepSpeed engine for training and inference."""
inference_mp_group = None
def __init__(self, args, model, **kwargs):
super().__init__(args, model, **kwargs)
# synch seed between all GPUs
_rng_state = get_accelerator().get_rng_state().to(get_accelerator().current_device_name())
dist.broadcast(_rng_state, 0)
get_accelerator().set_rng_state(_rng_state.cpu())
self.Z3_enabled = (self._config.zero_config.stage == 3)
self.gather_all_layers = self._config.hybrid_engine.pin_parameters
# inference containers / fwds
self._inference_containers = []
self._orig_modules = []
self._orig_fwds = []
self.create_inference_module()
# Performance stats
self._t_start = None
self._total_latency = 0
self._iters = 0
self._training_start_time = None
self._generate_latency = 0
self._training_latency = 0
self._total_batch_size = None
self._gather_latency = 0
global inference_cuda_module
if inference_cuda_module is None:
builder = InferenceBuilder()
inference_cuda_module = builder.load()
self.is_lora_fused = False
def convert_to_linear_transposed(self, model):
def _replace_linear_layer(r_module, parent_type=None, prev_type=None):
for name, child in r_module.named_children():
if child.__class__ in [torch.nn.Linear] and \
(parent_type is torch.nn.ModuleList or prev_type is torch.nn.ModuleList):
setattr(r_module, name, TLinear(child, name))
else:
_replace_linear_layer(child, type(r_module), prev_type=parent_type)
return r_module
_replace_linear_layer(model)
def new_inference_container(self, orig_layer, policy_cls, layer_id):
policy = policy_cls(orig_layer, inference=True)
if self._config.fp16_enabled:
inference_dtype = torch.float16
elif self._config.bfloat16_enabled:
inference_dtype = torch.bfloat16
else:
inference_dtype = torch.float32
_container = policy_to_ds_container(
policy=policy,
config=DeepSpeedInferenceConfig(
set_empty_params=True,
dtype=inference_dtype,
max_out_tokens=self._config.hybrid_engine.max_out_tokens,
min_out_tokens=self._config.hybrid_engine.max_out_tokens,
transposed_mode=True,
),
model_config=self.module.config if hasattr(self.module, 'config') else None,
layer_id=layer_id,
child=orig_layer)
if self.mpu is not None:
if hasattr(self.mpu, 'get_model_parallel_world_size'):
_container.set_tensor_parallel_config(self.mpu.get_model_parallel_world_size(),
self.mpu.get_model_parallel_group())
else:
_container.set_tensor_parallel_config(self.mpu.get_tensor_model_parallel_world_size(),
self.mpu.get_tensor_model_parallel_group())
else:
_container.set_tensor_parallel_config(self._config.hybrid_engine.inference_tp_size, self.mp_group)
_container.initialize_tensors(enable_training=True)
_container.create_ds_model_config()
_container.create_module()
_container.set_params_wo_copy(Z3_enabled=self.Z3_enabled)
return _container
def populate_all_inference_policies(self):
self.inference_policies = {}
for plcy in replace_policies:
_ = plcy(None)
if isinstance(plcy._orig_layer_class, list):
for orig_layer_class in plcy._orig_layer_class:
self.inference_policies.update({orig_layer_class: (self.new_inference_container, plcy)})
elif plcy._orig_layer_class is not None:
self.inference_policies.update({plcy._orig_layer_class: (self.new_inference_container, plcy)})
self.inference_policies.update({
nn.Linear: (LinearLayer, ),
nn.Embedding: (EmbeddingLayer, ),
nn.LayerNorm: (Normalize, ),
OPTLearnedPositionalEmbedding: (OPTEmbedding, )
})
def _fuse_lora_layer(self, layer_id):
self._inference_containers[layer_id].fuse_lora()
def fuse_lora_weight(self):
for layer_id in range(len(self.layer_params)):
self._fuse_lora_layer(layer_id)
def _unfuse_lora_layer(self, layer_id):
self._inference_containers[layer_id].unfuse_lora()
def unfuse_lora_weight(self):
for layer_id in range(len(self.layer_params)):
self._unfuse_lora_layer(layer_id)
def unfuse_lora_weight_non_pinned(self):
for layer_id in range(len(self.layer_params)):
non_active_params = get_inactive_params(self.layer_params[layer_id])
non_active_lora_params = get_inactive_params(self.layer_lora_params[layer_id])
non_active_params.extend(non_active_lora_params)
with GatheredParameters(non_active_params):
self._unfuse_lora_layer(layer_id)
def retake_inference_cache(self):
if self._config.hybrid_engine.release_inference_cache:
retake_success = inference_cuda_module.retake_workspace()
if not retake_success:
logger.warning("Unable to acquire workspace on first attempt, emptying cache and retrying.")
gc.collect()
get_accelerator().empty_cache()
retake_success = inference_cuda_module.retake_workspace()
if not retake_success:
raise RuntimeError("Unable to retake inference workspace.")
def generate(self, *inputs, **kwargs):
if self._total_batch_size is None:
bsz = inputs[0].shape[0] if len(inputs) > 0 else \
kwargs['input_ids'].shape[0]
self._total_batch_size = bsz * dist.get_world_size()
self._t0 = time.time()
if self.Z3_enabled and self.gather_all_layers:
if self._config.hybrid_engine.inference_tp_size > 1:
non_tp_params = []
for other_layer in self._other_layers:
non_tp_params.extend(list(other_layer.parameters()))
partition_size = self._config.hybrid_engine.tp_gather_partition_size
layer_groups = math.ceil(len(self.layer_params) / partition_size)
for lg in range(layer_groups):
non_active_params = []
non_active_lora_params = []
for layer_id in range(lg * partition_size, min(len(self.layer_params), (lg + 1) * partition_size),
1):
non_tp_params.extend(self.layer_params[layer_id][:4])
non_active_params.extend(get_inactive_params(self.layer_params[layer_id]))
non_active_params.extend(get_inactive_params(self.layer_lora_params[layer_id]))
with GatheredParameters(non_active_params):
for layer_id in range(lg * partition_size,
min(len(self.layer_params), (lg + 1) * partition_size), 1):
if len(self.all_lora_params) > 0:
self._fuse_lora_layer(layer_id)
if self.mpu is not None:
self._inference_containers[layer_id].apply_tensor_parallelism(self.mp_replace,
reversed_dim=True)
# TODO(cmikeh2) Evaluate if this can be deferred when release_inference_cache
# is enabled.
gc.collect()
get_accelerator().empty_cache()
self._gather_latency = time.time() - self._t0
input_shape = inputs[0].shape if len(inputs) > 0 else \
kwargs['input_ids'].shape
output = torch.zeros(
(input_shape[0] * self._config.hybrid_engine.inference_tp_size, ) + input_shape[1:],
dtype=inputs[0].dtype if len(inputs) > 0 else kwargs['input_ids'].dtype,
device=inputs[0].device if len(inputs) > 0 else kwargs['input_ids'].device)
input_cont = inputs[0].contiguous() if len(inputs) > 0 else kwargs['input_ids'].contiguous()
dist.all_gather_into_tensor(output, input_cont, group=self.mp_group)
if len(inputs) > 0:
inputs = (output, *inputs[1:])
else:
kwargs['input_ids'] = output
self.retake_inference_cache()
non_active_params = get_inactive_params(non_tp_params)
with GatheredParameters(non_active_params):
generate_ret_vals = self._generate(*inputs, **kwargs)
for layer_id in range(len(self.layer_params)):
self._inference_containers[layer_id].release_memory()
rank = dist.get_rank(group=self.mp_group)
generate_ret_vals = generate_ret_vals[input_shape[0] * rank:input_shape[0] * (rank + 1)]
else:
non_active_layers = get_inactive_params(self.all_layers_params)
non_active_lora_params = get_inactive_params(self.all_lora_params)
non_active_layers.extend(non_active_lora_params)
with GatheredParameters(non_active_layers):
self._gather_latency = time.time() - self._t0
if len(self.all_lora_params) > 0:
self.fuse_lora_weight()
self.retake_inference_cache()
generate_ret_vals = self._generate(*inputs, **kwargs)
if len(self.all_lora_params) > 0:
self.unfuse_lora_weight()
else:
if len(self.all_lora_params) > 0 and (not self.Z3_enabled):
self.fuse_lora_weight()
self.retake_inference_cache()
generate_ret_vals = self._generate(*inputs, **kwargs)
if len(self.all_lora_params) > 0:
if (not self.Z3_enabled):
self.unfuse_lora_weight()
else:
self.unfuse_lora_weight_non_pinned()
self.is_lora_fused = False
if self._config.hybrid_engine.release_inference_cache:
inference_cuda_module.release_workspace()
gc.collect()
get_accelerator().empty_cache()
self._generate_latency = time.time() - self._t0 - self._gather_latency
return generate_ret_vals
def create_inference_containers(self, module, layer_id=0):
for name, child in module.named_children():
if child.__class__ in self.inference_policies:
if self.inference_policies[child.__class__][0] == self.new_inference_container:
self._inference_containers.append(self.inference_policies[child.__class__][0](
child, self.inference_policies[child.__class__][-1], layer_id))
self._orig_modules.append(child)
self._orig_fwds.append(child.forward)
self.layer_params.append(self._inference_containers[layer_id].get_all_params())
self.lora_params.append(self._inference_containers[layer_id].get_lora_params())
self.layer_lora_params.append([])
for lora_param in self.lora_params[layer_id]:
self.layer_lora_params[layer_id].extend(lora_param[:-1])
self.all_lora_params.extend(lora_param[:-1])
layer_id += 1
else:
self._other_layers.append(self.inference_policies[child.__class__][0](
weight=child.weight, bias=child.bias if hasattr(child, 'bias') else None))
self._orig_modules_others.append(child)
self._orig_fwds_others.append(child.forward)
else:
self.create_inference_containers(child, layer_id=layer_id)
def create_inference_module(self):
self.layer_params = []
self.layer_lora_params = []
self.lora_params = []
self.all_lora_params = []
self._other_layers = []
self._orig_modules_others = []
self._orig_fwds_others = []
if self._config.hybrid_engine.inference_tp_size > 1:
if self.mpu is None:
global_rank = dist.get_rank()
world_size = dist.get_world_size()
mp_group_id = global_rank // self._config.hybrid_engine.inference_tp_size
num_mp_groups = world_size // self._config.hybrid_engine.inference_tp_size
for mp_group_id in range(num_mp_groups):
ranks = list(
range(mp_group_id * self._config.hybrid_engine.inference_tp_size, \
(mp_group_id + 1) * self._config.hybrid_engine.inference_tp_size, \
1)
)
mp_group = dist.new_group(ranks)
if global_rank in ranks:
# mp_group is used for broader collective
self.mp_group = mp_group
# mp_replace is used for container tensor slicing
from deepspeed.module_inject import ReplaceWithTensorSlicing
self.mp_replace = ReplaceWithTensorSlicing(
mp_group=self.mp_group,
mp_size=self._config.hybrid_engine.inference_tp_size,
out_dim=0,
in_dim=1)
else:
self.mp_group = self.mpu.get_model_parallel_group() if hasattr(self.mpu, 'get_model_parallel_group') else \
self.mpu.get_tensor_model_parallel_group()
from deepspeed.module_inject import ReplaceWithTensorSlicing
self.mp_replace = ReplaceWithTensorSlicing(mp_group=self.mp_group,
mp_size=self._config.hybrid_engine.inference_tp_size,
out_dim=0,
in_dim=1)
else:
self.mp_group = None
self.mp_replace = None
self.populate_all_inference_policies()
self.all_layers_params = list(self.module.parameters())
self.create_inference_containers(self.module)
if len(self._inference_containers) > 0:
self._generate = self.module.generate
self.module.generate = self.generate
self._t0 = time.time()
def _zero3_forward(self, layer_id):
def run_forward(*inputs, **kwargs):
non_active_params = get_inactive_params(self.layer_params[layer_id])
non_active_lora_params = get_inactive_params(self.layer_lora_params[layer_id])
non_active_params.extend(non_active_lora_params)
with GatheredParameters(non_active_params):
if len(self.all_lora_params) > 0:
# Use the is_lora_fused flag to prevent multiple fusion in Z3 with non-pinned memory
if not self.is_lora_fused:
self._fuse_lora_layer(layer_id)
# Set the is_lora_fused to true when reaching the last layer
if layer_id == len(self.layer_params) - 1:
self.is_lora_fused = True
return self._inference_containers[layer_id].module.forward(*inputs, **kwargs)
return run_forward
def eval(self):
if self._t_start is not None:
latency = time.time() - self._t_start
self._total_latency = self._total_latency + latency
self._iters = self._iters + 1
if not dist.is_initialized() or dist.get_rank() == 0:
if self._total_batch_size is not None:
cur_samples_p_sec = f'|CurSamplesPerSec={(1 / latency * self._total_batch_size):.2f} '
avg_samples_p_sec = f'|AvgSamplesPerSec={(1 / (self._total_latency / self._iters) * self._total_batch_size):.2f}'
else:
cur_samples_p_sec = ''
avg_samples_p_sec = ''
others = latency - (self._generate_latency + self._training_latency)
print(f'|E2E latency={(latency):.2f}s ' + \
f'|Gather latency={self._gather_latency:.2f}s ({(self._gather_latency / latency * 100):.2f}%) '
f'|Generate time={(self._generate_latency):.2f}s ({(self._generate_latency / latency * 100):.2f}%) ' + \
f'|Training time={(self._training_latency):.2f}s ({(self._training_latency / latency * 100):.2f}%) ' + \
f'|Others={others:.2f} ({(others / latency * 100):.2f}%)' + \
cur_samples_p_sec + \
avg_samples_p_sec)
self._t_start = time.time()
self._training_latency = 0
super().eval()
if len(self._inference_containers) > 0:
for i, (orig_module, inference_container) in enumerate(zip(self._orig_modules,
self._inference_containers)):
if self.Z3_enabled and not self.gather_all_layers:
orig_module.forward = self._zero3_forward(i)
else:
orig_module.forward = inference_container.module.forward
inference_container.transform_for_inference()
if not self.Z3_enabled or self.gather_all_layers:
for orig_module, inference_layer in zip(self._orig_modules_others, self._other_layers):
orig_module.forward = inference_layer.forward
if self.Z3_enabled:
gc.collect()
get_accelerator().empty_cache()
if self._t_start is None:
self._t_start = time.time()
def train(self, mode=True):
if mode and len(self._orig_modules) > 0:
for inference_container, orig_module, orig_fwd in zip(self._inference_containers, self._orig_modules,
self._orig_fwds):
inference_container.transform_for_training()
orig_module.forward = orig_fwd
for orig_module, orig_fwd in zip(self._orig_modules_others, self._orig_fwds_others):
orig_module.forward = orig_fwd
super().train(mode)
if mode:
self._training_start_time = time.time()
def step(self, lr_kwargs=None):
super().step(lr_kwargs=lr_kwargs)
if len(self._inference_containers) > 0:
if not self.Z3_enabled:
for inference_container in self._inference_containers:
inference_container.reset_params()
if self._training_start_time is not None:
self._training_latency += (time.time() - self._training_start_time)
self._training_start_time = time.time()