peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/_libs
/groupby.pyi
from typing import Literal | |
import numpy as np | |
from pandas._typing import npt | |
def group_median_float64( | |
out: np.ndarray, # ndarray[float64_t, ndim=2] | |
counts: npt.NDArray[np.int64], | |
values: np.ndarray, # ndarray[float64_t, ndim=2] | |
labels: npt.NDArray[np.int64], | |
min_count: int = ..., # Py_ssize_t | |
mask: np.ndarray | None = ..., | |
result_mask: np.ndarray | None = ..., | |
) -> None: ... | |
def group_cumprod( | |
out: np.ndarray, # float64_t[:, ::1] | |
values: np.ndarray, # const float64_t[:, :] | |
labels: np.ndarray, # const int64_t[:] | |
ngroups: int, | |
is_datetimelike: bool, | |
skipna: bool = ..., | |
mask: np.ndarray | None = ..., | |
result_mask: np.ndarray | None = ..., | |
) -> None: ... | |
def group_cumsum( | |
out: np.ndarray, # int64float_t[:, ::1] | |
values: np.ndarray, # ndarray[int64float_t, ndim=2] | |
labels: np.ndarray, # const int64_t[:] | |
ngroups: int, | |
is_datetimelike: bool, | |
skipna: bool = ..., | |
mask: np.ndarray | None = ..., | |
result_mask: np.ndarray | None = ..., | |
) -> None: ... | |
def group_shift_indexer( | |
out: np.ndarray, # int64_t[::1] | |
labels: np.ndarray, # const int64_t[:] | |
ngroups: int, | |
periods: int, | |
) -> None: ... | |
def group_fillna_indexer( | |
out: np.ndarray, # ndarray[intp_t] | |
labels: np.ndarray, # ndarray[int64_t] | |
sorted_labels: npt.NDArray[np.intp], | |
mask: npt.NDArray[np.uint8], | |
limit: int, # int64_t | |
dropna: bool, | |
) -> None: ... | |
def group_any_all( | |
out: np.ndarray, # uint8_t[::1] | |
values: np.ndarray, # const uint8_t[::1] | |
labels: np.ndarray, # const int64_t[:] | |
mask: np.ndarray, # const uint8_t[::1] | |
val_test: Literal["any", "all"], | |
skipna: bool, | |
result_mask: np.ndarray | None, | |
) -> None: ... | |
def group_sum( | |
out: np.ndarray, # complexfloatingintuint_t[:, ::1] | |
counts: np.ndarray, # int64_t[::1] | |
values: np.ndarray, # ndarray[complexfloatingintuint_t, ndim=2] | |
labels: np.ndarray, # const intp_t[:] | |
mask: np.ndarray | None, | |
result_mask: np.ndarray | None = ..., | |
min_count: int = ..., | |
is_datetimelike: bool = ..., | |
) -> None: ... | |
def group_prod( | |
out: np.ndarray, # int64float_t[:, ::1] | |
counts: np.ndarray, # int64_t[::1] | |
values: np.ndarray, # ndarray[int64float_t, ndim=2] | |
labels: np.ndarray, # const intp_t[:] | |
mask: np.ndarray | None, | |
result_mask: np.ndarray | None = ..., | |
min_count: int = ..., | |
) -> None: ... | |
def group_var( | |
out: np.ndarray, # floating[:, ::1] | |
counts: np.ndarray, # int64_t[::1] | |
values: np.ndarray, # ndarray[floating, ndim=2] | |
labels: np.ndarray, # const intp_t[:] | |
min_count: int = ..., # Py_ssize_t | |
ddof: int = ..., # int64_t | |
mask: np.ndarray | None = ..., | |
result_mask: np.ndarray | None = ..., | |
is_datetimelike: bool = ..., | |
name: str = ..., | |
) -> None: ... | |
def group_skew( | |
out: np.ndarray, # float64_t[:, ::1] | |
counts: np.ndarray, # int64_t[::1] | |
values: np.ndarray, # ndarray[float64_T, ndim=2] | |
labels: np.ndarray, # const intp_t[::1] | |
mask: np.ndarray | None = ..., | |
result_mask: np.ndarray | None = ..., | |
skipna: bool = ..., | |
) -> None: ... | |
def group_mean( | |
out: np.ndarray, # floating[:, ::1] | |
counts: np.ndarray, # int64_t[::1] | |
values: np.ndarray, # ndarray[floating, ndim=2] | |
labels: np.ndarray, # const intp_t[:] | |
min_count: int = ..., # Py_ssize_t | |
is_datetimelike: bool = ..., # bint | |
mask: np.ndarray | None = ..., | |
result_mask: np.ndarray | None = ..., | |
) -> None: ... | |
def group_ohlc( | |
out: np.ndarray, # floatingintuint_t[:, ::1] | |
counts: np.ndarray, # int64_t[::1] | |
values: np.ndarray, # ndarray[floatingintuint_t, ndim=2] | |
labels: np.ndarray, # const intp_t[:] | |
min_count: int = ..., | |
mask: np.ndarray | None = ..., | |
result_mask: np.ndarray | None = ..., | |
) -> None: ... | |
def group_quantile( | |
out: npt.NDArray[np.float64], | |
values: np.ndarray, # ndarray[numeric, ndim=1] | |
labels: npt.NDArray[np.intp], | |
mask: npt.NDArray[np.uint8], | |
qs: npt.NDArray[np.float64], # const | |
starts: npt.NDArray[np.int64], | |
ends: npt.NDArray[np.int64], | |
interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"], | |
result_mask: np.ndarray | None, | |
is_datetimelike: bool, | |
) -> None: ... | |
def group_last( | |
out: np.ndarray, # rank_t[:, ::1] | |
counts: np.ndarray, # int64_t[::1] | |
values: np.ndarray, # ndarray[rank_t, ndim=2] | |
labels: np.ndarray, # const int64_t[:] | |
mask: npt.NDArray[np.bool_] | None, | |
result_mask: npt.NDArray[np.bool_] | None = ..., | |
min_count: int = ..., # Py_ssize_t | |
is_datetimelike: bool = ..., | |
skipna: bool = ..., | |
) -> None: ... | |
def group_nth( | |
out: np.ndarray, # rank_t[:, ::1] | |
counts: np.ndarray, # int64_t[::1] | |
values: np.ndarray, # ndarray[rank_t, ndim=2] | |
labels: np.ndarray, # const int64_t[:] | |
mask: npt.NDArray[np.bool_] | None, | |
result_mask: npt.NDArray[np.bool_] | None = ..., | |
min_count: int = ..., # int64_t | |
rank: int = ..., # int64_t | |
is_datetimelike: bool = ..., | |
skipna: bool = ..., | |
) -> None: ... | |
def group_rank( | |
out: np.ndarray, # float64_t[:, ::1] | |
values: np.ndarray, # ndarray[rank_t, ndim=2] | |
labels: np.ndarray, # const int64_t[:] | |
ngroups: int, | |
is_datetimelike: bool, | |
ties_method: Literal["average", "min", "max", "first", "dense"] = ..., | |
ascending: bool = ..., | |
pct: bool = ..., | |
na_option: Literal["keep", "top", "bottom"] = ..., | |
mask: npt.NDArray[np.bool_] | None = ..., | |
) -> None: ... | |
def group_max( | |
out: np.ndarray, # groupby_t[:, ::1] | |
counts: np.ndarray, # int64_t[::1] | |
values: np.ndarray, # ndarray[groupby_t, ndim=2] | |
labels: np.ndarray, # const int64_t[:] | |
min_count: int = ..., | |
is_datetimelike: bool = ..., | |
mask: np.ndarray | None = ..., | |
result_mask: np.ndarray | None = ..., | |
) -> None: ... | |
def group_min( | |
out: np.ndarray, # groupby_t[:, ::1] | |
counts: np.ndarray, # int64_t[::1] | |
values: np.ndarray, # ndarray[groupby_t, ndim=2] | |
labels: np.ndarray, # const int64_t[:] | |
min_count: int = ..., | |
is_datetimelike: bool = ..., | |
mask: np.ndarray | None = ..., | |
result_mask: np.ndarray | None = ..., | |
) -> None: ... | |
def group_idxmin_idxmax( | |
out: npt.NDArray[np.intp], | |
counts: npt.NDArray[np.int64], | |
values: np.ndarray, # ndarray[groupby_t, ndim=2] | |
labels: npt.NDArray[np.intp], | |
min_count: int = ..., | |
is_datetimelike: bool = ..., | |
mask: np.ndarray | None = ..., | |
name: str = ..., | |
skipna: bool = ..., | |
result_mask: np.ndarray | None = ..., | |
) -> None: ... | |
def group_cummin( | |
out: np.ndarray, # groupby_t[:, ::1] | |
values: np.ndarray, # ndarray[groupby_t, ndim=2] | |
labels: np.ndarray, # const int64_t[:] | |
ngroups: int, | |
is_datetimelike: bool, | |
mask: np.ndarray | None = ..., | |
result_mask: np.ndarray | None = ..., | |
skipna: bool = ..., | |
) -> None: ... | |
def group_cummax( | |
out: np.ndarray, # groupby_t[:, ::1] | |
values: np.ndarray, # ndarray[groupby_t, ndim=2] | |
labels: np.ndarray, # const int64_t[:] | |
ngroups: int, | |
is_datetimelike: bool, | |
mask: np.ndarray | None = ..., | |
result_mask: np.ndarray | None = ..., | |
skipna: bool = ..., | |
) -> None: ... | |