applied-ai-018 commited on
Commit
a2f9f48
·
verified ·
1 Parent(s): da99466

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_154_mp_rank_00_optim_states.pt +3 -0
  2. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_169_mp_rank_01_optim_states.pt +3 -0
  3. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_191_mp_rank_03_optim_states.pt +3 -0
  4. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_220_mp_rank_03_optim_states.pt +3 -0
  5. venv/lib/python3.10/site-packages/pandas/_libs/byteswap.pyi +5 -0
  6. venv/lib/python3.10/site-packages/pandas/_libs/groupby.pyi +216 -0
  7. venv/lib/python3.10/site-packages/pandas/_libs/hashing.cpython-310-x86_64-linux-gnu.so +0 -0
  8. venv/lib/python3.10/site-packages/pandas/_libs/hashing.pyi +9 -0
  9. venv/lib/python3.10/site-packages/pandas/_libs/index.pyi +100 -0
  10. venv/lib/python3.10/site-packages/pandas/_libs/indexing.cpython-310-x86_64-linux-gnu.so +0 -0
  11. venv/lib/python3.10/site-packages/pandas/_libs/internals.pyi +94 -0
  12. venv/lib/python3.10/site-packages/pandas/_libs/json.cpython-310-x86_64-linux-gnu.so +0 -0
  13. venv/lib/python3.10/site-packages/pandas/_libs/missing.cpython-310-x86_64-linux-gnu.so +0 -0
  14. venv/lib/python3.10/site-packages/pandas/_libs/sparse.pyi +51 -0
  15. venv/lib/python3.10/site-packages/pandas/_libs/tslib.cpython-310-x86_64-linux-gnu.so +0 -0
  16. venv/lib/python3.10/site-packages/pandas/_libs/tslib.pyi +37 -0
  17. venv/lib/python3.10/site-packages/pandas/core/__pycache__/__init__.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/pandas/core/__pycache__/accessor.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/pandas/core/__pycache__/algorithms.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/pandas/core/__pycache__/api.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/pandas/core/__pycache__/apply.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/pandas/core/__pycache__/arraylike.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/pandas/core/__pycache__/base.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/pandas/core/__pycache__/common.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/pandas/core/__pycache__/config_init.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/pandas/core/__pycache__/construction.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/pandas/core/__pycache__/flags.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/pandas/core/__pycache__/frame.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/pandas/core/__pycache__/generic.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/pandas/core/__pycache__/indexing.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/pandas/core/__pycache__/missing.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/pandas/core/__pycache__/nanops.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/pandas/core/__pycache__/resample.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/pandas/core/__pycache__/roperator.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/pandas/core/__pycache__/sample.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/pandas/core/__pycache__/series.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/pandas/core/__pycache__/shared_docs.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/pandas/core/__pycache__/sorting.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/pandas/core/_numba/executor.py +239 -0
  40. venv/lib/python3.10/site-packages/pandas/core/_numba/extensions.py +584 -0
  41. venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/__init__.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/mean_.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/min_max_.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/shared.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/sum_.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/var_.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/pandas/core/computation/__init__.py +0 -0
  48. venv/lib/python3.10/site-packages/pandas/core/computation/__pycache__/__init__.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/pandas/core/computation/__pycache__/align.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/pandas/core/computation/__pycache__/api.cpython-310.pyc +0 -0
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_154_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b875ee81b5c8375be7e5410ba10694a6d6a02a66e9f188eb085970b012668a5a
3
+ size 41830148
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_169_mp_rank_01_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8c1c8c86830ae13ac8451ec68bcea1534070ceac5b00547b696235339aa3af6
3
+ size 41830148
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_191_mp_rank_03_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcb402ef8e202173495e1f2984b5128dcb865c560a032f40686c0af7b3adf760
3
+ size 41830340
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_220_mp_rank_03_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ba7f4713f5a4fd90d981efcbceb2d421b2306259122738a1d3c6eb8aa19b359
3
+ size 41830468
venv/lib/python3.10/site-packages/pandas/_libs/byteswap.pyi ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ def read_float_with_byteswap(data: bytes, offset: int, byteswap: bool) -> float: ...
2
+ def read_double_with_byteswap(data: bytes, offset: int, byteswap: bool) -> float: ...
3
+ def read_uint16_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
4
+ def read_uint32_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
5
+ def read_uint64_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
venv/lib/python3.10/site-packages/pandas/_libs/groupby.pyi ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Literal
2
+
3
+ import numpy as np
4
+
5
+ from pandas._typing import npt
6
+
7
+ def group_median_float64(
8
+ out: np.ndarray, # ndarray[float64_t, ndim=2]
9
+ counts: npt.NDArray[np.int64],
10
+ values: np.ndarray, # ndarray[float64_t, ndim=2]
11
+ labels: npt.NDArray[np.int64],
12
+ min_count: int = ..., # Py_ssize_t
13
+ mask: np.ndarray | None = ...,
14
+ result_mask: np.ndarray | None = ...,
15
+ ) -> None: ...
16
+ def group_cumprod(
17
+ out: np.ndarray, # float64_t[:, ::1]
18
+ values: np.ndarray, # const float64_t[:, :]
19
+ labels: np.ndarray, # const int64_t[:]
20
+ ngroups: int,
21
+ is_datetimelike: bool,
22
+ skipna: bool = ...,
23
+ mask: np.ndarray | None = ...,
24
+ result_mask: np.ndarray | None = ...,
25
+ ) -> None: ...
26
+ def group_cumsum(
27
+ out: np.ndarray, # int64float_t[:, ::1]
28
+ values: np.ndarray, # ndarray[int64float_t, ndim=2]
29
+ labels: np.ndarray, # const int64_t[:]
30
+ ngroups: int,
31
+ is_datetimelike: bool,
32
+ skipna: bool = ...,
33
+ mask: np.ndarray | None = ...,
34
+ result_mask: np.ndarray | None = ...,
35
+ ) -> None: ...
36
+ def group_shift_indexer(
37
+ out: np.ndarray, # int64_t[::1]
38
+ labels: np.ndarray, # const int64_t[:]
39
+ ngroups: int,
40
+ periods: int,
41
+ ) -> None: ...
42
+ def group_fillna_indexer(
43
+ out: np.ndarray, # ndarray[intp_t]
44
+ labels: np.ndarray, # ndarray[int64_t]
45
+ sorted_labels: npt.NDArray[np.intp],
46
+ mask: npt.NDArray[np.uint8],
47
+ limit: int, # int64_t
48
+ dropna: bool,
49
+ ) -> None: ...
50
+ def group_any_all(
51
+ out: np.ndarray, # uint8_t[::1]
52
+ values: np.ndarray, # const uint8_t[::1]
53
+ labels: np.ndarray, # const int64_t[:]
54
+ mask: np.ndarray, # const uint8_t[::1]
55
+ val_test: Literal["any", "all"],
56
+ skipna: bool,
57
+ result_mask: np.ndarray | None,
58
+ ) -> None: ...
59
+ def group_sum(
60
+ out: np.ndarray, # complexfloatingintuint_t[:, ::1]
61
+ counts: np.ndarray, # int64_t[::1]
62
+ values: np.ndarray, # ndarray[complexfloatingintuint_t, ndim=2]
63
+ labels: np.ndarray, # const intp_t[:]
64
+ mask: np.ndarray | None,
65
+ result_mask: np.ndarray | None = ...,
66
+ min_count: int = ...,
67
+ is_datetimelike: bool = ...,
68
+ ) -> None: ...
69
+ def group_prod(
70
+ out: np.ndarray, # int64float_t[:, ::1]
71
+ counts: np.ndarray, # int64_t[::1]
72
+ values: np.ndarray, # ndarray[int64float_t, ndim=2]
73
+ labels: np.ndarray, # const intp_t[:]
74
+ mask: np.ndarray | None,
75
+ result_mask: np.ndarray | None = ...,
76
+ min_count: int = ...,
77
+ ) -> None: ...
78
+ def group_var(
79
+ out: np.ndarray, # floating[:, ::1]
80
+ counts: np.ndarray, # int64_t[::1]
81
+ values: np.ndarray, # ndarray[floating, ndim=2]
82
+ labels: np.ndarray, # const intp_t[:]
83
+ min_count: int = ..., # Py_ssize_t
84
+ ddof: int = ..., # int64_t
85
+ mask: np.ndarray | None = ...,
86
+ result_mask: np.ndarray | None = ...,
87
+ is_datetimelike: bool = ...,
88
+ name: str = ...,
89
+ ) -> None: ...
90
+ def group_skew(
91
+ out: np.ndarray, # float64_t[:, ::1]
92
+ counts: np.ndarray, # int64_t[::1]
93
+ values: np.ndarray, # ndarray[float64_T, ndim=2]
94
+ labels: np.ndarray, # const intp_t[::1]
95
+ mask: np.ndarray | None = ...,
96
+ result_mask: np.ndarray | None = ...,
97
+ skipna: bool = ...,
98
+ ) -> None: ...
99
+ def group_mean(
100
+ out: np.ndarray, # floating[:, ::1]
101
+ counts: np.ndarray, # int64_t[::1]
102
+ values: np.ndarray, # ndarray[floating, ndim=2]
103
+ labels: np.ndarray, # const intp_t[:]
104
+ min_count: int = ..., # Py_ssize_t
105
+ is_datetimelike: bool = ..., # bint
106
+ mask: np.ndarray | None = ...,
107
+ result_mask: np.ndarray | None = ...,
108
+ ) -> None: ...
109
+ def group_ohlc(
110
+ out: np.ndarray, # floatingintuint_t[:, ::1]
111
+ counts: np.ndarray, # int64_t[::1]
112
+ values: np.ndarray, # ndarray[floatingintuint_t, ndim=2]
113
+ labels: np.ndarray, # const intp_t[:]
114
+ min_count: int = ...,
115
+ mask: np.ndarray | None = ...,
116
+ result_mask: np.ndarray | None = ...,
117
+ ) -> None: ...
118
+ def group_quantile(
119
+ out: npt.NDArray[np.float64],
120
+ values: np.ndarray, # ndarray[numeric, ndim=1]
121
+ labels: npt.NDArray[np.intp],
122
+ mask: npt.NDArray[np.uint8],
123
+ qs: npt.NDArray[np.float64], # const
124
+ starts: npt.NDArray[np.int64],
125
+ ends: npt.NDArray[np.int64],
126
+ interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
127
+ result_mask: np.ndarray | None,
128
+ is_datetimelike: bool,
129
+ ) -> None: ...
130
+ def group_last(
131
+ out: np.ndarray, # rank_t[:, ::1]
132
+ counts: np.ndarray, # int64_t[::1]
133
+ values: np.ndarray, # ndarray[rank_t, ndim=2]
134
+ labels: np.ndarray, # const int64_t[:]
135
+ mask: npt.NDArray[np.bool_] | None,
136
+ result_mask: npt.NDArray[np.bool_] | None = ...,
137
+ min_count: int = ..., # Py_ssize_t
138
+ is_datetimelike: bool = ...,
139
+ skipna: bool = ...,
140
+ ) -> None: ...
141
+ def group_nth(
142
+ out: np.ndarray, # rank_t[:, ::1]
143
+ counts: np.ndarray, # int64_t[::1]
144
+ values: np.ndarray, # ndarray[rank_t, ndim=2]
145
+ labels: np.ndarray, # const int64_t[:]
146
+ mask: npt.NDArray[np.bool_] | None,
147
+ result_mask: npt.NDArray[np.bool_] | None = ...,
148
+ min_count: int = ..., # int64_t
149
+ rank: int = ..., # int64_t
150
+ is_datetimelike: bool = ...,
151
+ skipna: bool = ...,
152
+ ) -> None: ...
153
+ def group_rank(
154
+ out: np.ndarray, # float64_t[:, ::1]
155
+ values: np.ndarray, # ndarray[rank_t, ndim=2]
156
+ labels: np.ndarray, # const int64_t[:]
157
+ ngroups: int,
158
+ is_datetimelike: bool,
159
+ ties_method: Literal["average", "min", "max", "first", "dense"] = ...,
160
+ ascending: bool = ...,
161
+ pct: bool = ...,
162
+ na_option: Literal["keep", "top", "bottom"] = ...,
163
+ mask: npt.NDArray[np.bool_] | None = ...,
164
+ ) -> None: ...
165
+ def group_max(
166
+ out: np.ndarray, # groupby_t[:, ::1]
167
+ counts: np.ndarray, # int64_t[::1]
168
+ values: np.ndarray, # ndarray[groupby_t, ndim=2]
169
+ labels: np.ndarray, # const int64_t[:]
170
+ min_count: int = ...,
171
+ is_datetimelike: bool = ...,
172
+ mask: np.ndarray | None = ...,
173
+ result_mask: np.ndarray | None = ...,
174
+ ) -> None: ...
175
+ def group_min(
176
+ out: np.ndarray, # groupby_t[:, ::1]
177
+ counts: np.ndarray, # int64_t[::1]
178
+ values: np.ndarray, # ndarray[groupby_t, ndim=2]
179
+ labels: np.ndarray, # const int64_t[:]
180
+ min_count: int = ...,
181
+ is_datetimelike: bool = ...,
182
+ mask: np.ndarray | None = ...,
183
+ result_mask: np.ndarray | None = ...,
184
+ ) -> None: ...
185
+ def group_idxmin_idxmax(
186
+ out: npt.NDArray[np.intp],
187
+ counts: npt.NDArray[np.int64],
188
+ values: np.ndarray, # ndarray[groupby_t, ndim=2]
189
+ labels: npt.NDArray[np.intp],
190
+ min_count: int = ...,
191
+ is_datetimelike: bool = ...,
192
+ mask: np.ndarray | None = ...,
193
+ name: str = ...,
194
+ skipna: bool = ...,
195
+ result_mask: np.ndarray | None = ...,
196
+ ) -> None: ...
197
+ def group_cummin(
198
+ out: np.ndarray, # groupby_t[:, ::1]
199
+ values: np.ndarray, # ndarray[groupby_t, ndim=2]
200
+ labels: np.ndarray, # const int64_t[:]
201
+ ngroups: int,
202
+ is_datetimelike: bool,
203
+ mask: np.ndarray | None = ...,
204
+ result_mask: np.ndarray | None = ...,
205
+ skipna: bool = ...,
206
+ ) -> None: ...
207
+ def group_cummax(
208
+ out: np.ndarray, # groupby_t[:, ::1]
209
+ values: np.ndarray, # ndarray[groupby_t, ndim=2]
210
+ labels: np.ndarray, # const int64_t[:]
211
+ ngroups: int,
212
+ is_datetimelike: bool,
213
+ mask: np.ndarray | None = ...,
214
+ result_mask: np.ndarray | None = ...,
215
+ skipna: bool = ...,
216
+ ) -> None: ...
venv/lib/python3.10/site-packages/pandas/_libs/hashing.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (221 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/hashing.pyi ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas._typing import npt
4
+
5
+ def hash_object_array(
6
+ arr: npt.NDArray[np.object_],
7
+ key: str,
8
+ encoding: str = ...,
9
+ ) -> npt.NDArray[np.uint64]: ...
venv/lib/python3.10/site-packages/pandas/_libs/index.pyi ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas._typing import npt
4
+
5
+ from pandas import MultiIndex
6
+ from pandas.core.arrays import ExtensionArray
7
+
8
+ multiindex_nulls_shift: int
9
+
10
+ class IndexEngine:
11
+ over_size_threshold: bool
12
+ def __init__(self, values: np.ndarray) -> None: ...
13
+ def __contains__(self, val: object) -> bool: ...
14
+
15
+ # -> int | slice | np.ndarray[bool]
16
+ def get_loc(self, val: object) -> int | slice | np.ndarray: ...
17
+ def sizeof(self, deep: bool = ...) -> int: ...
18
+ def __sizeof__(self) -> int: ...
19
+ @property
20
+ def is_unique(self) -> bool: ...
21
+ @property
22
+ def is_monotonic_increasing(self) -> bool: ...
23
+ @property
24
+ def is_monotonic_decreasing(self) -> bool: ...
25
+ @property
26
+ def is_mapping_populated(self) -> bool: ...
27
+ def clear_mapping(self): ...
28
+ def get_indexer(self, values: np.ndarray) -> npt.NDArray[np.intp]: ...
29
+ def get_indexer_non_unique(
30
+ self,
31
+ targets: np.ndarray,
32
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
33
+
34
+ class MaskedIndexEngine(IndexEngine):
35
+ def __init__(self, values: object) -> None: ...
36
+ def get_indexer_non_unique(
37
+ self, targets: object
38
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
39
+
40
+ class Float64Engine(IndexEngine): ...
41
+ class Float32Engine(IndexEngine): ...
42
+ class Complex128Engine(IndexEngine): ...
43
+ class Complex64Engine(IndexEngine): ...
44
+ class Int64Engine(IndexEngine): ...
45
+ class Int32Engine(IndexEngine): ...
46
+ class Int16Engine(IndexEngine): ...
47
+ class Int8Engine(IndexEngine): ...
48
+ class UInt64Engine(IndexEngine): ...
49
+ class UInt32Engine(IndexEngine): ...
50
+ class UInt16Engine(IndexEngine): ...
51
+ class UInt8Engine(IndexEngine): ...
52
+ class ObjectEngine(IndexEngine): ...
53
+ class DatetimeEngine(Int64Engine): ...
54
+ class TimedeltaEngine(DatetimeEngine): ...
55
+ class PeriodEngine(Int64Engine): ...
56
+ class BoolEngine(UInt8Engine): ...
57
+ class MaskedFloat64Engine(MaskedIndexEngine): ...
58
+ class MaskedFloat32Engine(MaskedIndexEngine): ...
59
+ class MaskedComplex128Engine(MaskedIndexEngine): ...
60
+ class MaskedComplex64Engine(MaskedIndexEngine): ...
61
+ class MaskedInt64Engine(MaskedIndexEngine): ...
62
+ class MaskedInt32Engine(MaskedIndexEngine): ...
63
+ class MaskedInt16Engine(MaskedIndexEngine): ...
64
+ class MaskedInt8Engine(MaskedIndexEngine): ...
65
+ class MaskedUInt64Engine(MaskedIndexEngine): ...
66
+ class MaskedUInt32Engine(MaskedIndexEngine): ...
67
+ class MaskedUInt16Engine(MaskedIndexEngine): ...
68
+ class MaskedUInt8Engine(MaskedIndexEngine): ...
69
+ class MaskedBoolEngine(MaskedUInt8Engine): ...
70
+
71
+ class BaseMultiIndexCodesEngine:
72
+ levels: list[np.ndarray]
73
+ offsets: np.ndarray # ndarray[uint64_t, ndim=1]
74
+
75
+ def __init__(
76
+ self,
77
+ levels: list[np.ndarray], # all entries hashable
78
+ labels: list[np.ndarray], # all entries integer-dtyped
79
+ offsets: np.ndarray, # np.ndarray[np.uint64, ndim=1]
80
+ ) -> None: ...
81
+ def get_indexer(self, target: npt.NDArray[np.object_]) -> npt.NDArray[np.intp]: ...
82
+ def _extract_level_codes(self, target: MultiIndex) -> np.ndarray: ...
83
+
84
+ class ExtensionEngine:
85
+ def __init__(self, values: ExtensionArray) -> None: ...
86
+ def __contains__(self, val: object) -> bool: ...
87
+ def get_loc(self, val: object) -> int | slice | np.ndarray: ...
88
+ def get_indexer(self, values: np.ndarray) -> npt.NDArray[np.intp]: ...
89
+ def get_indexer_non_unique(
90
+ self,
91
+ targets: np.ndarray,
92
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
93
+ @property
94
+ def is_unique(self) -> bool: ...
95
+ @property
96
+ def is_monotonic_increasing(self) -> bool: ...
97
+ @property
98
+ def is_monotonic_decreasing(self) -> bool: ...
99
+ def sizeof(self, deep: bool = ...) -> int: ...
100
+ def clear_mapping(self): ...
venv/lib/python3.10/site-packages/pandas/_libs/indexing.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (66.6 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/internals.pyi ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Iterator,
3
+ Sequence,
4
+ final,
5
+ overload,
6
+ )
7
+ import weakref
8
+
9
+ import numpy as np
10
+
11
+ from pandas._typing import (
12
+ ArrayLike,
13
+ Self,
14
+ npt,
15
+ )
16
+
17
+ from pandas import Index
18
+ from pandas.core.internals.blocks import Block as B
19
+
20
+ def slice_len(slc: slice, objlen: int = ...) -> int: ...
21
+ def get_concat_blkno_indexers(
22
+ blknos_list: list[npt.NDArray[np.intp]],
23
+ ) -> list[tuple[npt.NDArray[np.intp], BlockPlacement]]: ...
24
+ def get_blkno_indexers(
25
+ blknos: np.ndarray, # int64_t[:]
26
+ group: bool = ...,
27
+ ) -> list[tuple[int, slice | np.ndarray]]: ...
28
+ def get_blkno_placements(
29
+ blknos: np.ndarray,
30
+ group: bool = ...,
31
+ ) -> Iterator[tuple[int, BlockPlacement]]: ...
32
+ def update_blklocs_and_blknos(
33
+ blklocs: npt.NDArray[np.intp],
34
+ blknos: npt.NDArray[np.intp],
35
+ loc: int,
36
+ nblocks: int,
37
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
38
+ @final
39
+ class BlockPlacement:
40
+ def __init__(self, val: int | slice | np.ndarray) -> None: ...
41
+ @property
42
+ def indexer(self) -> np.ndarray | slice: ...
43
+ @property
44
+ def as_array(self) -> np.ndarray: ...
45
+ @property
46
+ def as_slice(self) -> slice: ...
47
+ @property
48
+ def is_slice_like(self) -> bool: ...
49
+ @overload
50
+ def __getitem__(
51
+ self, loc: slice | Sequence[int] | npt.NDArray[np.intp]
52
+ ) -> BlockPlacement: ...
53
+ @overload
54
+ def __getitem__(self, loc: int) -> int: ...
55
+ def __iter__(self) -> Iterator[int]: ...
56
+ def __len__(self) -> int: ...
57
+ def delete(self, loc) -> BlockPlacement: ...
58
+ def add(self, other) -> BlockPlacement: ...
59
+ def append(self, others: list[BlockPlacement]) -> BlockPlacement: ...
60
+ def tile_for_unstack(self, factor: int) -> npt.NDArray[np.intp]: ...
61
+
62
+ class Block:
63
+ _mgr_locs: BlockPlacement
64
+ ndim: int
65
+ values: ArrayLike
66
+ refs: BlockValuesRefs
67
+ def __init__(
68
+ self,
69
+ values: ArrayLike,
70
+ placement: BlockPlacement,
71
+ ndim: int,
72
+ refs: BlockValuesRefs | None = ...,
73
+ ) -> None: ...
74
+ def slice_block_rows(self, slicer: slice) -> Self: ...
75
+
76
+ class BlockManager:
77
+ blocks: tuple[B, ...]
78
+ axes: list[Index]
79
+ _known_consolidated: bool
80
+ _is_consolidated: bool
81
+ _blknos: np.ndarray
82
+ _blklocs: np.ndarray
83
+ def __init__(
84
+ self, blocks: tuple[B, ...], axes: list[Index], verify_integrity=...
85
+ ) -> None: ...
86
+ def get_slice(self, slobj: slice, axis: int = ...) -> Self: ...
87
+ def _rebuild_blknos_and_blklocs(self) -> None: ...
88
+
89
+ class BlockValuesRefs:
90
+ referenced_blocks: list[weakref.ref]
91
+ def __init__(self, blk: Block | None = ...) -> None: ...
92
+ def add_reference(self, blk: Block) -> None: ...
93
+ def add_index_reference(self, index: Index) -> None: ...
94
+ def has_reference(self) -> bool: ...
venv/lib/python3.10/site-packages/pandas/_libs/json.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (64.3 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/missing.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (211 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/sparse.pyi ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Sequence
2
+
3
+ import numpy as np
4
+
5
+ from pandas._typing import (
6
+ Self,
7
+ npt,
8
+ )
9
+
10
+ class SparseIndex:
11
+ length: int
12
+ npoints: int
13
+ def __init__(self) -> None: ...
14
+ @property
15
+ def ngaps(self) -> int: ...
16
+ @property
17
+ def nbytes(self) -> int: ...
18
+ @property
19
+ def indices(self) -> npt.NDArray[np.int32]: ...
20
+ def equals(self, other) -> bool: ...
21
+ def lookup(self, index: int) -> np.int32: ...
22
+ def lookup_array(self, indexer: npt.NDArray[np.int32]) -> npt.NDArray[np.int32]: ...
23
+ def to_int_index(self) -> IntIndex: ...
24
+ def to_block_index(self) -> BlockIndex: ...
25
+ def intersect(self, y_: SparseIndex) -> Self: ...
26
+ def make_union(self, y_: SparseIndex) -> Self: ...
27
+
28
+ class IntIndex(SparseIndex):
29
+ indices: npt.NDArray[np.int32]
30
+ def __init__(
31
+ self, length: int, indices: Sequence[int], check_integrity: bool = ...
32
+ ) -> None: ...
33
+
34
+ class BlockIndex(SparseIndex):
35
+ nblocks: int
36
+ blocs: np.ndarray
37
+ blengths: np.ndarray
38
+ def __init__(
39
+ self, length: int, blocs: np.ndarray, blengths: np.ndarray
40
+ ) -> None: ...
41
+
42
+ # Override to have correct parameters
43
+ def intersect(self, other: SparseIndex) -> Self: ...
44
+ def make_union(self, y: SparseIndex) -> Self: ...
45
+
46
+ def make_mask_object_ndarray(
47
+ arr: npt.NDArray[np.object_], fill_value
48
+ ) -> npt.NDArray[np.bool_]: ...
49
+ def get_blocks(
50
+ indices: npt.NDArray[np.int32],
51
+ ) -> tuple[npt.NDArray[np.int32], npt.NDArray[np.int32]]: ...
venv/lib/python3.10/site-packages/pandas/_libs/tslib.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (340 kB). View file
 
venv/lib/python3.10/site-packages/pandas/_libs/tslib.pyi ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import tzinfo
2
+
3
+ import numpy as np
4
+
5
+ from pandas._typing import npt
6
+
7
+ def format_array_from_datetime(
8
+ values: npt.NDArray[np.int64],
9
+ tz: tzinfo | None = ...,
10
+ format: str | None = ...,
11
+ na_rep: str | float = ...,
12
+ reso: int = ..., # NPY_DATETIMEUNIT
13
+ ) -> npt.NDArray[np.object_]: ...
14
+ def array_with_unit_to_datetime(
15
+ values: npt.NDArray[np.object_],
16
+ unit: str,
17
+ errors: str = ...,
18
+ ) -> tuple[np.ndarray, tzinfo | None]: ...
19
+ def first_non_null(values: np.ndarray) -> int: ...
20
+ def array_to_datetime(
21
+ values: npt.NDArray[np.object_],
22
+ errors: str = ...,
23
+ dayfirst: bool = ...,
24
+ yearfirst: bool = ...,
25
+ utc: bool = ...,
26
+ creso: int = ...,
27
+ ) -> tuple[np.ndarray, tzinfo | None]: ...
28
+
29
+ # returned ndarray may be object dtype or datetime64[ns]
30
+
31
+ def array_to_datetime_with_tz(
32
+ values: npt.NDArray[np.object_],
33
+ tz: tzinfo,
34
+ dayfirst: bool,
35
+ yearfirst: bool,
36
+ creso: int,
37
+ ) -> npt.NDArray[np.int64]: ...
venv/lib/python3.10/site-packages/pandas/core/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (179 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/accessor.cpython-310.pyc ADDED
Binary file (11.2 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/algorithms.cpython-310.pyc ADDED
Binary file (39.6 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/api.cpython-310.pyc ADDED
Binary file (2.62 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/apply.cpython-310.pyc ADDED
Binary file (49.8 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/arraylike.cpython-310.pyc ADDED
Binary file (14.4 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/base.cpython-310.pyc ADDED
Binary file (37.8 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/common.cpython-310.pyc ADDED
Binary file (17.1 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/config_init.cpython-310.pyc ADDED
Binary file (20.7 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/construction.cpython-310.pyc ADDED
Binary file (19.7 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/flags.cpython-310.pyc ADDED
Binary file (4.34 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/frame.cpython-310.pyc ADDED
Binary file (363 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/generic.cpython-310.pyc ADDED
Binary file (386 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/indexing.cpython-310.pyc ADDED
Binary file (68.7 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/missing.cpython-310.pyc ADDED
Binary file (26.6 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/nanops.cpython-310.pyc ADDED
Binary file (37 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/resample.cpython-310.pyc ADDED
Binary file (74.8 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/roperator.cpython-310.pyc ADDED
Binary file (1.81 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/sample.cpython-310.pyc ADDED
Binary file (3.96 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/series.cpython-310.pyc ADDED
Binary file (176 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/shared_docs.cpython-310.pyc ADDED
Binary file (30.2 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/__pycache__/sorting.cpython-310.pyc ADDED
Binary file (19.9 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/_numba/executor.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import functools
4
+ from typing import (
5
+ TYPE_CHECKING,
6
+ Any,
7
+ Callable,
8
+ )
9
+
10
+ if TYPE_CHECKING:
11
+ from pandas._typing import Scalar
12
+
13
+ import numpy as np
14
+
15
+ from pandas.compat._optional import import_optional_dependency
16
+
17
+
18
+ @functools.cache
19
+ def generate_apply_looper(func, nopython=True, nogil=True, parallel=False):
20
+ if TYPE_CHECKING:
21
+ import numba
22
+ else:
23
+ numba = import_optional_dependency("numba")
24
+ nb_compat_func = numba.extending.register_jitable(func)
25
+
26
+ @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel)
27
+ def nb_looper(values, axis):
28
+ # Operate on the first row/col in order to get
29
+ # the output shape
30
+ if axis == 0:
31
+ first_elem = values[:, 0]
32
+ dim0 = values.shape[1]
33
+ else:
34
+ first_elem = values[0]
35
+ dim0 = values.shape[0]
36
+ res0 = nb_compat_func(first_elem)
37
+ # Use np.asarray to get shape for
38
+ # https://github.com/numba/numba/issues/4202#issuecomment-1185981507
39
+ buf_shape = (dim0,) + np.atleast_1d(np.asarray(res0)).shape
40
+ if axis == 0:
41
+ buf_shape = buf_shape[::-1]
42
+ buff = np.empty(buf_shape)
43
+
44
+ if axis == 1:
45
+ buff[0] = res0
46
+ for i in numba.prange(1, values.shape[0]):
47
+ buff[i] = nb_compat_func(values[i])
48
+ else:
49
+ buff[:, 0] = res0
50
+ for j in numba.prange(1, values.shape[1]):
51
+ buff[:, j] = nb_compat_func(values[:, j])
52
+ return buff
53
+
54
+ return nb_looper
55
+
56
+
57
+ @functools.cache
58
+ def make_looper(func, result_dtype, is_grouped_kernel, nopython, nogil, parallel):
59
+ if TYPE_CHECKING:
60
+ import numba
61
+ else:
62
+ numba = import_optional_dependency("numba")
63
+
64
+ if is_grouped_kernel:
65
+
66
+ @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel)
67
+ def column_looper(
68
+ values: np.ndarray,
69
+ labels: np.ndarray,
70
+ ngroups: int,
71
+ min_periods: int,
72
+ *args,
73
+ ):
74
+ result = np.empty((values.shape[0], ngroups), dtype=result_dtype)
75
+ na_positions = {}
76
+ for i in numba.prange(values.shape[0]):
77
+ output, na_pos = func(
78
+ values[i], result_dtype, labels, ngroups, min_periods, *args
79
+ )
80
+ result[i] = output
81
+ if len(na_pos) > 0:
82
+ na_positions[i] = np.array(na_pos)
83
+ return result, na_positions
84
+
85
+ else:
86
+
87
+ @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel)
88
+ def column_looper(
89
+ values: np.ndarray,
90
+ start: np.ndarray,
91
+ end: np.ndarray,
92
+ min_periods: int,
93
+ *args,
94
+ ):
95
+ result = np.empty((values.shape[0], len(start)), dtype=result_dtype)
96
+ na_positions = {}
97
+ for i in numba.prange(values.shape[0]):
98
+ output, na_pos = func(
99
+ values[i], result_dtype, start, end, min_periods, *args
100
+ )
101
+ result[i] = output
102
+ if len(na_pos) > 0:
103
+ na_positions[i] = np.array(na_pos)
104
+ return result, na_positions
105
+
106
+ return column_looper
107
+
108
+
109
+ default_dtype_mapping: dict[np.dtype, Any] = {
110
+ np.dtype("int8"): np.int64,
111
+ np.dtype("int16"): np.int64,
112
+ np.dtype("int32"): np.int64,
113
+ np.dtype("int64"): np.int64,
114
+ np.dtype("uint8"): np.uint64,
115
+ np.dtype("uint16"): np.uint64,
116
+ np.dtype("uint32"): np.uint64,
117
+ np.dtype("uint64"): np.uint64,
118
+ np.dtype("float32"): np.float64,
119
+ np.dtype("float64"): np.float64,
120
+ np.dtype("complex64"): np.complex128,
121
+ np.dtype("complex128"): np.complex128,
122
+ }
123
+
124
+
125
+ # TODO: Preserve complex dtypes
126
+
127
+ float_dtype_mapping: dict[np.dtype, Any] = {
128
+ np.dtype("int8"): np.float64,
129
+ np.dtype("int16"): np.float64,
130
+ np.dtype("int32"): np.float64,
131
+ np.dtype("int64"): np.float64,
132
+ np.dtype("uint8"): np.float64,
133
+ np.dtype("uint16"): np.float64,
134
+ np.dtype("uint32"): np.float64,
135
+ np.dtype("uint64"): np.float64,
136
+ np.dtype("float32"): np.float64,
137
+ np.dtype("float64"): np.float64,
138
+ np.dtype("complex64"): np.float64,
139
+ np.dtype("complex128"): np.float64,
140
+ }
141
+
142
+ identity_dtype_mapping: dict[np.dtype, Any] = {
143
+ np.dtype("int8"): np.int8,
144
+ np.dtype("int16"): np.int16,
145
+ np.dtype("int32"): np.int32,
146
+ np.dtype("int64"): np.int64,
147
+ np.dtype("uint8"): np.uint8,
148
+ np.dtype("uint16"): np.uint16,
149
+ np.dtype("uint32"): np.uint32,
150
+ np.dtype("uint64"): np.uint64,
151
+ np.dtype("float32"): np.float32,
152
+ np.dtype("float64"): np.float64,
153
+ np.dtype("complex64"): np.complex64,
154
+ np.dtype("complex128"): np.complex128,
155
+ }
156
+
157
+
158
+ def generate_shared_aggregator(
159
+ func: Callable[..., Scalar],
160
+ dtype_mapping: dict[np.dtype, np.dtype],
161
+ is_grouped_kernel: bool,
162
+ nopython: bool,
163
+ nogil: bool,
164
+ parallel: bool,
165
+ ):
166
+ """
167
+ Generate a Numba function that loops over the columns 2D object and applies
168
+ a 1D numba kernel over each column.
169
+
170
+ Parameters
171
+ ----------
172
+ func : function
173
+ aggregation function to be applied to each column
174
+ dtype_mapping: dict or None
175
+ If not None, maps a dtype to a result dtype.
176
+ Otherwise, will fall back to default mapping.
177
+ is_grouped_kernel: bool, default False
178
+ Whether func operates using the group labels (True)
179
+ or using starts/ends arrays
180
+
181
+ If true, you also need to pass the number of groups to this function
182
+ nopython : bool
183
+ nopython to be passed into numba.jit
184
+ nogil : bool
185
+ nogil to be passed into numba.jit
186
+ parallel : bool
187
+ parallel to be passed into numba.jit
188
+
189
+ Returns
190
+ -------
191
+ Numba function
192
+ """
193
+
194
+ # A wrapper around the looper function,
195
+ # to dispatch based on dtype since numba is unable to do that in nopython mode
196
+
197
+ # It also post-processes the values by inserting nans where number of observations
198
+ # is less than min_periods
199
+ # Cannot do this in numba nopython mode
200
+ # (you'll run into type-unification error when you cast int -> float)
201
+ def looper_wrapper(
202
+ values,
203
+ start=None,
204
+ end=None,
205
+ labels=None,
206
+ ngroups=None,
207
+ min_periods: int = 0,
208
+ **kwargs,
209
+ ):
210
+ result_dtype = dtype_mapping[values.dtype]
211
+ column_looper = make_looper(
212
+ func, result_dtype, is_grouped_kernel, nopython, nogil, parallel
213
+ )
214
+ # Need to unpack kwargs since numba only supports *args
215
+ if is_grouped_kernel:
216
+ result, na_positions = column_looper(
217
+ values, labels, ngroups, min_periods, *kwargs.values()
218
+ )
219
+ else:
220
+ result, na_positions = column_looper(
221
+ values, start, end, min_periods, *kwargs.values()
222
+ )
223
+ if result.dtype.kind == "i":
224
+ # Look if na_positions is not empty
225
+ # If so, convert the whole block
226
+ # This is OK since int dtype cannot hold nan,
227
+ # so if min_periods not satisfied for 1 col, it is not satisfied for
228
+ # all columns at that index
229
+ for na_pos in na_positions.values():
230
+ if len(na_pos) > 0:
231
+ result = result.astype("float64")
232
+ break
233
+ # TODO: Optimize this
234
+ for i, na_pos in na_positions.items():
235
+ if len(na_pos) > 0:
236
+ result[i, na_pos] = np.nan
237
+ return result
238
+
239
+ return looper_wrapper
venv/lib/python3.10/site-packages/pandas/core/_numba/extensions.py ADDED
@@ -0,0 +1,584 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Disable type checking for this module since numba's internals
2
+ # are not typed, and we use numba's internals via its extension API
3
+ # mypy: ignore-errors
4
+ """
5
+ Utility classes/functions to let numba recognize
6
+ pandas Index/Series/DataFrame
7
+
8
+ Mostly vendored from https://github.com/numba/numba/blob/main/numba/tests/pdlike_usecase.py
9
+ """
10
+
11
+ from __future__ import annotations
12
+
13
+ from contextlib import contextmanager
14
+ import operator
15
+
16
+ import numba
17
+ from numba import types
18
+ from numba.core import cgutils
19
+ from numba.core.datamodel import models
20
+ from numba.core.extending import (
21
+ NativeValue,
22
+ box,
23
+ lower_builtin,
24
+ make_attribute_wrapper,
25
+ overload,
26
+ overload_attribute,
27
+ overload_method,
28
+ register_model,
29
+ type_callable,
30
+ typeof_impl,
31
+ unbox,
32
+ )
33
+ from numba.core.imputils import impl_ret_borrowed
34
+ import numpy as np
35
+
36
+ from pandas._libs import lib
37
+
38
+ from pandas.core.indexes.base import Index
39
+ from pandas.core.indexing import _iLocIndexer
40
+ from pandas.core.internals import SingleBlockManager
41
+ from pandas.core.series import Series
42
+
43
+
44
+ # Helper function to hack around fact that Index casts numpy string dtype to object
45
+ #
46
+ # Idea is to set an attribute on a Index called _numba_data
47
+ # that is the original data, or the object data casted to numpy string dtype,
48
+ # with a context manager that is unset afterwards
49
+ @contextmanager
50
+ def set_numba_data(index: Index):
51
+ numba_data = index._data
52
+ if numba_data.dtype == object:
53
+ if not lib.is_string_array(numba_data):
54
+ raise ValueError(
55
+ "The numba engine only supports using string or numeric column names"
56
+ )
57
+ numba_data = numba_data.astype("U")
58
+ try:
59
+ index._numba_data = numba_data
60
+ yield index
61
+ finally:
62
+ del index._numba_data
63
+
64
+
65
+ # TODO: Range index support
66
+ # (this currently lowers OK, but does not round-trip)
67
+ class IndexType(types.Type):
68
+ """
69
+ The type class for Index objects.
70
+ """
71
+
72
+ def __init__(self, dtype, layout, pyclass: any) -> None:
73
+ self.pyclass = pyclass
74
+ name = f"index({dtype}, {layout})"
75
+ self.dtype = dtype
76
+ self.layout = layout
77
+ super().__init__(name)
78
+
79
+ @property
80
+ def key(self):
81
+ return self.pyclass, self.dtype, self.layout
82
+
83
+ @property
84
+ def as_array(self):
85
+ return types.Array(self.dtype, 1, self.layout)
86
+
87
+ def copy(self, dtype=None, ndim: int = 1, layout=None):
88
+ assert ndim == 1
89
+ if dtype is None:
90
+ dtype = self.dtype
91
+ layout = layout or self.layout
92
+ return type(self)(dtype, layout, self.pyclass)
93
+
94
+
95
+ class SeriesType(types.Type):
96
+ """
97
+ The type class for Series objects.
98
+ """
99
+
100
+ def __init__(self, dtype, index, namety) -> None:
101
+ assert isinstance(index, IndexType)
102
+ self.dtype = dtype
103
+ self.index = index
104
+ self.values = types.Array(self.dtype, 1, "C")
105
+ self.namety = namety
106
+ name = f"series({dtype}, {index}, {namety})"
107
+ super().__init__(name)
108
+
109
+ @property
110
+ def key(self):
111
+ return self.dtype, self.index, self.namety
112
+
113
+ @property
114
+ def as_array(self):
115
+ return self.values
116
+
117
+ def copy(self, dtype=None, ndim: int = 1, layout: str = "C"):
118
+ assert ndim == 1
119
+ assert layout == "C"
120
+ if dtype is None:
121
+ dtype = self.dtype
122
+ return type(self)(dtype, self.index, self.namety)
123
+
124
+
125
+ @typeof_impl.register(Index)
126
+ def typeof_index(val, c):
127
+ """
128
+ This will assume that only strings are in object dtype
129
+ index.
130
+ (you should check this before this gets lowered down to numba)
131
+ """
132
+ # arrty = typeof_impl(val._data, c)
133
+ arrty = typeof_impl(val._numba_data, c)
134
+ assert arrty.ndim == 1
135
+ return IndexType(arrty.dtype, arrty.layout, type(val))
136
+
137
+
138
+ @typeof_impl.register(Series)
139
+ def typeof_series(val, c):
140
+ index = typeof_impl(val.index, c)
141
+ arrty = typeof_impl(val.values, c)
142
+ namety = typeof_impl(val.name, c)
143
+ assert arrty.ndim == 1
144
+ assert arrty.layout == "C"
145
+ return SeriesType(arrty.dtype, index, namety)
146
+
147
+
148
+ @type_callable(Series)
149
+ def type_series_constructor(context):
150
+ def typer(data, index, name=None):
151
+ if isinstance(index, IndexType) and isinstance(data, types.Array):
152
+ assert data.ndim == 1
153
+ if name is None:
154
+ name = types.intp
155
+ return SeriesType(data.dtype, index, name)
156
+
157
+ return typer
158
+
159
+
160
+ @type_callable(Index)
161
+ def type_index_constructor(context):
162
+ def typer(data, hashmap=None):
163
+ if isinstance(data, types.Array):
164
+ assert data.layout == "C"
165
+ assert data.ndim == 1
166
+ assert hashmap is None or isinstance(hashmap, types.DictType)
167
+ return IndexType(data.dtype, layout=data.layout, pyclass=Index)
168
+
169
+ return typer
170
+
171
+
172
+ # Backend extensions for Index and Series and Frame
173
+ @register_model(IndexType)
174
+ class IndexModel(models.StructModel):
175
+ def __init__(self, dmm, fe_type) -> None:
176
+ # We don't want the numpy string scalar type in our hashmap
177
+ members = [
178
+ ("data", fe_type.as_array),
179
+ # This is an attempt to emulate our hashtable code with a numba
180
+ # typed dict
181
+ # It maps from values in the index to their integer positions in the array
182
+ ("hashmap", types.DictType(fe_type.dtype, types.intp)),
183
+ # Pointer to the Index object this was created from, or that it
184
+ # boxes to
185
+ # https://numba.discourse.group/t/qst-how-to-cache-the-boxing-of-an-object/2128/2?u=lithomas1
186
+ ("parent", types.pyobject),
187
+ ]
188
+ models.StructModel.__init__(self, dmm, fe_type, members)
189
+
190
+
191
+ @register_model(SeriesType)
192
+ class SeriesModel(models.StructModel):
193
+ def __init__(self, dmm, fe_type) -> None:
194
+ members = [
195
+ ("index", fe_type.index),
196
+ ("values", fe_type.as_array),
197
+ ("name", fe_type.namety),
198
+ ]
199
+ models.StructModel.__init__(self, dmm, fe_type, members)
200
+
201
+
202
+ make_attribute_wrapper(IndexType, "data", "_data")
203
+ make_attribute_wrapper(IndexType, "hashmap", "hashmap")
204
+
205
+ make_attribute_wrapper(SeriesType, "index", "index")
206
+ make_attribute_wrapper(SeriesType, "values", "values")
207
+ make_attribute_wrapper(SeriesType, "name", "name")
208
+
209
+
210
+ @lower_builtin(Series, types.Array, IndexType)
211
+ def pdseries_constructor(context, builder, sig, args):
212
+ data, index = args
213
+ series = cgutils.create_struct_proxy(sig.return_type)(context, builder)
214
+ series.index = index
215
+ series.values = data
216
+ series.name = context.get_constant(types.intp, 0)
217
+ return impl_ret_borrowed(context, builder, sig.return_type, series._getvalue())
218
+
219
+
220
+ @lower_builtin(Series, types.Array, IndexType, types.intp)
221
+ @lower_builtin(Series, types.Array, IndexType, types.float64)
222
+ @lower_builtin(Series, types.Array, IndexType, types.unicode_type)
223
+ def pdseries_constructor_with_name(context, builder, sig, args):
224
+ data, index, name = args
225
+ series = cgutils.create_struct_proxy(sig.return_type)(context, builder)
226
+ series.index = index
227
+ series.values = data
228
+ series.name = name
229
+ return impl_ret_borrowed(context, builder, sig.return_type, series._getvalue())
230
+
231
+
232
+ @lower_builtin(Index, types.Array, types.DictType, types.pyobject)
233
+ def index_constructor_2arg(context, builder, sig, args):
234
+ (data, hashmap, parent) = args
235
+ index = cgutils.create_struct_proxy(sig.return_type)(context, builder)
236
+
237
+ index.data = data
238
+ index.hashmap = hashmap
239
+ index.parent = parent
240
+ return impl_ret_borrowed(context, builder, sig.return_type, index._getvalue())
241
+
242
+
243
+ @lower_builtin(Index, types.Array, types.DictType)
244
+ def index_constructor_2arg_parent(context, builder, sig, args):
245
+ # Basically same as index_constructor_1arg, but also lets you specify the
246
+ # parent object
247
+ (data, hashmap) = args
248
+ index = cgutils.create_struct_proxy(sig.return_type)(context, builder)
249
+
250
+ index.data = data
251
+ index.hashmap = hashmap
252
+ return impl_ret_borrowed(context, builder, sig.return_type, index._getvalue())
253
+
254
+
255
+ @lower_builtin(Index, types.Array)
256
+ def index_constructor_1arg(context, builder, sig, args):
257
+ from numba.typed import Dict
258
+
259
+ key_type = sig.return_type.dtype
260
+ value_type = types.intp
261
+
262
+ def index_impl(data):
263
+ return Index(data, Dict.empty(key_type, value_type))
264
+
265
+ return context.compile_internal(builder, index_impl, sig, args)
266
+
267
+
268
+ # Helper to convert the unicodecharseq (numpy string scalar) into a unicode_type
269
+ # (regular string)
270
+ def maybe_cast_str(x):
271
+ # Dummy function that numba can overload
272
+ pass
273
+
274
+
275
+ @overload(maybe_cast_str)
276
+ def maybe_cast_str_impl(x):
277
+ """Converts numba UnicodeCharSeq (numpy string scalar) -> unicode type (string).
278
+ Is a no-op for other types."""
279
+ if isinstance(x, types.UnicodeCharSeq):
280
+ return lambda x: str(x)
281
+ else:
282
+ return lambda x: x
283
+
284
+
285
+ @unbox(IndexType)
286
+ def unbox_index(typ, obj, c):
287
+ """
288
+ Convert a Index object to a native structure.
289
+
290
+ Note: Object dtype is not allowed here
291
+ """
292
+ data_obj = c.pyapi.object_getattr_string(obj, "_numba_data")
293
+ index = cgutils.create_struct_proxy(typ)(c.context, c.builder)
294
+ # If we see an object array, assume its been validated as only containing strings
295
+ # We still need to do the conversion though
296
+ index.data = c.unbox(typ.as_array, data_obj).value
297
+ typed_dict_obj = c.pyapi.unserialize(c.pyapi.serialize_object(numba.typed.Dict))
298
+ # Create an empty typed dict in numba for the hashmap for indexing
299
+ # equiv of numba.typed.Dict.empty(typ.dtype, types.intp)
300
+ arr_type_obj = c.pyapi.unserialize(c.pyapi.serialize_object(typ.dtype))
301
+ intp_type_obj = c.pyapi.unserialize(c.pyapi.serialize_object(types.intp))
302
+ hashmap_obj = c.pyapi.call_method(
303
+ typed_dict_obj, "empty", (arr_type_obj, intp_type_obj)
304
+ )
305
+ index.hashmap = c.unbox(types.DictType(typ.dtype, types.intp), hashmap_obj).value
306
+ # Set the parent for speedy boxing.
307
+ index.parent = obj
308
+
309
+ # Decrefs
310
+ c.pyapi.decref(data_obj)
311
+ c.pyapi.decref(arr_type_obj)
312
+ c.pyapi.decref(intp_type_obj)
313
+ c.pyapi.decref(typed_dict_obj)
314
+
315
+ return NativeValue(index._getvalue())
316
+
317
+
318
+ @unbox(SeriesType)
319
+ def unbox_series(typ, obj, c):
320
+ """
321
+ Convert a Series object to a native structure.
322
+ """
323
+ index_obj = c.pyapi.object_getattr_string(obj, "index")
324
+ values_obj = c.pyapi.object_getattr_string(obj, "values")
325
+ name_obj = c.pyapi.object_getattr_string(obj, "name")
326
+
327
+ series = cgutils.create_struct_proxy(typ)(c.context, c.builder)
328
+ series.index = c.unbox(typ.index, index_obj).value
329
+ series.values = c.unbox(typ.values, values_obj).value
330
+ series.name = c.unbox(typ.namety, name_obj).value
331
+
332
+ # Decrefs
333
+ c.pyapi.decref(index_obj)
334
+ c.pyapi.decref(values_obj)
335
+ c.pyapi.decref(name_obj)
336
+
337
+ return NativeValue(series._getvalue())
338
+
339
+
340
+ @box(IndexType)
341
+ def box_index(typ, val, c):
342
+ """
343
+ Convert a native index structure to a Index object.
344
+
345
+ If our native index is of a numpy string dtype, we'll cast it to
346
+ object.
347
+ """
348
+ # First build a Numpy array object, then wrap it in a Index
349
+ index = cgutils.create_struct_proxy(typ)(c.context, c.builder, value=val)
350
+
351
+ res = cgutils.alloca_once_value(c.builder, index.parent)
352
+
353
+ # Does parent exist?
354
+ # (it means already boxed once, or Index same as original df.index or df.columns)
355
+ # xref https://github.com/numba/numba/blob/596e8a55334cc46854e3192766e643767bd7c934/numba/core/boxing.py#L593C17-L593C17
356
+ with c.builder.if_else(cgutils.is_not_null(c.builder, index.parent)) as (
357
+ has_parent,
358
+ otherwise,
359
+ ):
360
+ with has_parent:
361
+ c.pyapi.incref(index.parent)
362
+ with otherwise:
363
+ # TODO: preserve the original class for the index
364
+ # Also need preserve the name of the Index
365
+ # class_obj = c.pyapi.unserialize(c.pyapi.serialize_object(typ.pyclass))
366
+ class_obj = c.pyapi.unserialize(c.pyapi.serialize_object(Index))
367
+ array_obj = c.box(typ.as_array, index.data)
368
+ if isinstance(typ.dtype, types.UnicodeCharSeq):
369
+ # We converted to numpy string dtype, convert back
370
+ # to object since _simple_new won't do that for uss
371
+ object_str_obj = c.pyapi.unserialize(c.pyapi.serialize_object("object"))
372
+ array_obj = c.pyapi.call_method(array_obj, "astype", (object_str_obj,))
373
+ c.pyapi.decref(object_str_obj)
374
+ # this is basically Index._simple_new(array_obj, name_obj) in python
375
+ index_obj = c.pyapi.call_method(class_obj, "_simple_new", (array_obj,))
376
+ index.parent = index_obj
377
+ c.builder.store(index_obj, res)
378
+
379
+ # Decrefs
380
+ c.pyapi.decref(class_obj)
381
+ c.pyapi.decref(array_obj)
382
+ return c.builder.load(res)
383
+
384
+
385
+ @box(SeriesType)
386
+ def box_series(typ, val, c):
387
+ """
388
+ Convert a native series structure to a Series object.
389
+ """
390
+ series = cgutils.create_struct_proxy(typ)(c.context, c.builder, value=val)
391
+ series_const_obj = c.pyapi.unserialize(c.pyapi.serialize_object(Series._from_mgr))
392
+ mgr_const_obj = c.pyapi.unserialize(
393
+ c.pyapi.serialize_object(SingleBlockManager.from_array)
394
+ )
395
+ index_obj = c.box(typ.index, series.index)
396
+ array_obj = c.box(typ.as_array, series.values)
397
+ name_obj = c.box(typ.namety, series.name)
398
+ # This is basically equivalent of
399
+ # pd.Series(data=array_obj, index=index_obj)
400
+ # To improve perf, we will construct the Series from a manager
401
+ # object to avoid checks.
402
+ # We'll also set the name attribute manually to avoid validation
403
+ mgr_obj = c.pyapi.call_function_objargs(
404
+ mgr_const_obj,
405
+ (
406
+ array_obj,
407
+ index_obj,
408
+ ),
409
+ )
410
+ mgr_axes_obj = c.pyapi.object_getattr_string(mgr_obj, "axes")
411
+ # Series._constructor_from_mgr(mgr, axes)
412
+ series_obj = c.pyapi.call_function_objargs(
413
+ series_const_obj, (mgr_obj, mgr_axes_obj)
414
+ )
415
+ c.pyapi.object_setattr_string(series_obj, "_name", name_obj)
416
+
417
+ # Decrefs
418
+ c.pyapi.decref(series_const_obj)
419
+ c.pyapi.decref(mgr_axes_obj)
420
+ c.pyapi.decref(mgr_obj)
421
+ c.pyapi.decref(mgr_const_obj)
422
+ c.pyapi.decref(index_obj)
423
+ c.pyapi.decref(array_obj)
424
+ c.pyapi.decref(name_obj)
425
+
426
+ return series_obj
427
+
428
+
429
+ # Add common series reductions (e.g. mean, sum),
430
+ # and also add common binops (e.g. add, sub, mul, div)
431
+ def generate_series_reduction(ser_reduction, ser_method):
432
+ @overload_method(SeriesType, ser_reduction)
433
+ def series_reduction(series):
434
+ def series_reduction_impl(series):
435
+ return ser_method(series.values)
436
+
437
+ return series_reduction_impl
438
+
439
+ return series_reduction
440
+
441
+
442
+ def generate_series_binop(binop):
443
+ @overload(binop)
444
+ def series_binop(series1, value):
445
+ if isinstance(series1, SeriesType):
446
+ if isinstance(value, SeriesType):
447
+
448
+ def series_binop_impl(series1, series2):
449
+ # TODO: Check index matching?
450
+ return Series(
451
+ binop(series1.values, series2.values),
452
+ series1.index,
453
+ series1.name,
454
+ )
455
+
456
+ return series_binop_impl
457
+ else:
458
+
459
+ def series_binop_impl(series1, value):
460
+ return Series(
461
+ binop(series1.values, value), series1.index, series1.name
462
+ )
463
+
464
+ return series_binop_impl
465
+
466
+ return series_binop
467
+
468
+
469
+ series_reductions = [
470
+ ("sum", np.sum),
471
+ ("mean", np.mean),
472
+ # Disabled due to discrepancies between numba std. dev
473
+ # and pandas std. dev (no way to specify dof)
474
+ # ("std", np.std),
475
+ # ("var", np.var),
476
+ ("min", np.min),
477
+ ("max", np.max),
478
+ ]
479
+ for reduction, reduction_method in series_reductions:
480
+ generate_series_reduction(reduction, reduction_method)
481
+
482
+ series_binops = [operator.add, operator.sub, operator.mul, operator.truediv]
483
+
484
+ for ser_binop in series_binops:
485
+ generate_series_binop(ser_binop)
486
+
487
+
488
+ # get_loc on Index
489
+ @overload_method(IndexType, "get_loc")
490
+ def index_get_loc(index, item):
491
+ def index_get_loc_impl(index, item):
492
+ # Initialize the hash table if not initialized
493
+ if len(index.hashmap) == 0:
494
+ for i, val in enumerate(index._data):
495
+ index.hashmap[val] = i
496
+ return index.hashmap[item]
497
+
498
+ return index_get_loc_impl
499
+
500
+
501
+ # Indexing for Series/Index
502
+ @overload(operator.getitem)
503
+ def series_indexing(series, item):
504
+ if isinstance(series, SeriesType):
505
+
506
+ def series_getitem(series, item):
507
+ loc = series.index.get_loc(item)
508
+ return series.iloc[loc]
509
+
510
+ return series_getitem
511
+
512
+
513
+ @overload(operator.getitem)
514
+ def index_indexing(index, idx):
515
+ if isinstance(index, IndexType):
516
+
517
+ def index_getitem(index, idx):
518
+ return index._data[idx]
519
+
520
+ return index_getitem
521
+
522
+
523
+ class IlocType(types.Type):
524
+ def __init__(self, obj_type) -> None:
525
+ self.obj_type = obj_type
526
+ name = f"iLocIndexer({obj_type})"
527
+ super().__init__(name=name)
528
+
529
+ @property
530
+ def key(self):
531
+ return self.obj_type
532
+
533
+
534
+ @typeof_impl.register(_iLocIndexer)
535
+ def typeof_iloc(val, c):
536
+ objtype = typeof_impl(val.obj, c)
537
+ return IlocType(objtype)
538
+
539
+
540
+ @type_callable(_iLocIndexer)
541
+ def type_iloc_constructor(context):
542
+ def typer(obj):
543
+ if isinstance(obj, SeriesType):
544
+ return IlocType(obj)
545
+
546
+ return typer
547
+
548
+
549
+ @lower_builtin(_iLocIndexer, SeriesType)
550
+ def iloc_constructor(context, builder, sig, args):
551
+ (obj,) = args
552
+ iloc_indexer = cgutils.create_struct_proxy(sig.return_type)(context, builder)
553
+ iloc_indexer.obj = obj
554
+ return impl_ret_borrowed(
555
+ context, builder, sig.return_type, iloc_indexer._getvalue()
556
+ )
557
+
558
+
559
+ @register_model(IlocType)
560
+ class ILocModel(models.StructModel):
561
+ def __init__(self, dmm, fe_type) -> None:
562
+ members = [("obj", fe_type.obj_type)]
563
+ models.StructModel.__init__(self, dmm, fe_type, members)
564
+
565
+
566
+ make_attribute_wrapper(IlocType, "obj", "obj")
567
+
568
+
569
+ @overload_attribute(SeriesType, "iloc")
570
+ def series_iloc(series):
571
+ def get(series):
572
+ return _iLocIndexer(series)
573
+
574
+ return get
575
+
576
+
577
+ @overload(operator.getitem)
578
+ def iloc_getitem(iloc_indexer, i):
579
+ if isinstance(iloc_indexer, IlocType):
580
+
581
+ def getitem_impl(iloc_indexer, i):
582
+ return iloc_indexer.obj.values[i]
583
+
584
+ return getitem_impl
venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (626 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/mean_.cpython-310.pyc ADDED
Binary file (3.49 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/min_max_.cpython-310.pyc ADDED
Binary file (2.45 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/shared.cpython-310.pyc ADDED
Binary file (785 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/sum_.cpython-310.pyc ADDED
Binary file (3.81 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/var_.cpython-310.pyc ADDED
Binary file (3.95 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/computation/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/pandas/core/computation/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (191 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/core/computation/__pycache__/align.cpython-310.pyc ADDED
Binary file (6.12 kB). View file
 
venv/lib/python3.10/site-packages/pandas/core/computation/__pycache__/api.cpython-310.pyc ADDED
Binary file (265 Bytes). View file