peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/_libs
/tslib.pyi
from datetime import tzinfo | |
import numpy as np | |
from pandas._typing import npt | |
def format_array_from_datetime( | |
values: npt.NDArray[np.int64], | |
tz: tzinfo | None = ..., | |
format: str | None = ..., | |
na_rep: str | float = ..., | |
reso: int = ..., # NPY_DATETIMEUNIT | |
) -> npt.NDArray[np.object_]: ... | |
def array_with_unit_to_datetime( | |
values: npt.NDArray[np.object_], | |
unit: str, | |
errors: str = ..., | |
) -> tuple[np.ndarray, tzinfo | None]: ... | |
def first_non_null(values: np.ndarray) -> int: ... | |
def array_to_datetime( | |
values: npt.NDArray[np.object_], | |
errors: str = ..., | |
dayfirst: bool = ..., | |
yearfirst: bool = ..., | |
utc: bool = ..., | |
creso: int = ..., | |
) -> tuple[np.ndarray, tzinfo | None]: ... | |
# returned ndarray may be object dtype or datetime64[ns] | |
def array_to_datetime_with_tz( | |
values: npt.NDArray[np.object_], | |
tz: tzinfo, | |
dayfirst: bool, | |
yearfirst: bool, | |
creso: int, | |
) -> npt.NDArray[np.int64]: ... | |