peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/plotting
/_matplotlib
/tools.py
| # being a bit too dynamic | |
| from __future__ import annotations | |
| from math import ceil | |
| from typing import TYPE_CHECKING | |
| import warnings | |
| from matplotlib import ticker | |
| import matplotlib.table | |
| import numpy as np | |
| from pandas.util._exceptions import find_stack_level | |
| from pandas.core.dtypes.common import is_list_like | |
| from pandas.core.dtypes.generic import ( | |
| ABCDataFrame, | |
| ABCIndex, | |
| ABCSeries, | |
| ) | |
| if TYPE_CHECKING: | |
| from collections.abc import ( | |
| Iterable, | |
| Sequence, | |
| ) | |
| from matplotlib.axes import Axes | |
| from matplotlib.axis import Axis | |
| from matplotlib.figure import Figure | |
| from matplotlib.lines import Line2D | |
| from matplotlib.table import Table | |
| from pandas import ( | |
| DataFrame, | |
| Series, | |
| ) | |
| def do_adjust_figure(fig: Figure) -> bool: | |
| """Whether fig has constrained_layout enabled.""" | |
| if not hasattr(fig, "get_constrained_layout"): | |
| return False | |
| return not fig.get_constrained_layout() | |
| def maybe_adjust_figure(fig: Figure, *args, **kwargs) -> None: | |
| """Call fig.subplots_adjust unless fig has constrained_layout enabled.""" | |
| if do_adjust_figure(fig): | |
| fig.subplots_adjust(*args, **kwargs) | |
| def format_date_labels(ax: Axes, rot) -> None: | |
| # mini version of autofmt_xdate | |
| for label in ax.get_xticklabels(): | |
| label.set_horizontalalignment("right") | |
| label.set_rotation(rot) | |
| fig = ax.get_figure() | |
| if fig is not None: | |
| # should always be a Figure but can technically be None | |
| maybe_adjust_figure(fig, bottom=0.2) | |
| def table( | |
| ax, data: DataFrame | Series, rowLabels=None, colLabels=None, **kwargs | |
| ) -> Table: | |
| if isinstance(data, ABCSeries): | |
| data = data.to_frame() | |
| elif isinstance(data, ABCDataFrame): | |
| pass | |
| else: | |
| raise ValueError("Input data must be DataFrame or Series") | |
| if rowLabels is None: | |
| rowLabels = data.index | |
| if colLabels is None: | |
| colLabels = data.columns | |
| cellText = data.values | |
| # error: Argument "cellText" to "table" has incompatible type "ndarray[Any, | |
| # Any]"; expected "Sequence[Sequence[str]] | None" | |
| return matplotlib.table.table( | |
| ax, | |
| cellText=cellText, # type: ignore[arg-type] | |
| rowLabels=rowLabels, | |
| colLabels=colLabels, | |
| **kwargs, | |
| ) | |
| def _get_layout( | |
| nplots: int, | |
| layout: tuple[int, int] | None = None, | |
| layout_type: str = "box", | |
| ) -> tuple[int, int]: | |
| if layout is not None: | |
| if not isinstance(layout, (tuple, list)) or len(layout) != 2: | |
| raise ValueError("Layout must be a tuple of (rows, columns)") | |
| nrows, ncols = layout | |
| if nrows == -1 and ncols > 0: | |
| layout = nrows, ncols = (ceil(nplots / ncols), ncols) | |
| elif ncols == -1 and nrows > 0: | |
| layout = nrows, ncols = (nrows, ceil(nplots / nrows)) | |
| elif ncols <= 0 and nrows <= 0: | |
| msg = "At least one dimension of layout must be positive" | |
| raise ValueError(msg) | |
| if nrows * ncols < nplots: | |
| raise ValueError( | |
| f"Layout of {nrows}x{ncols} must be larger than required size {nplots}" | |
| ) | |
| return layout | |
| if layout_type == "single": | |
| return (1, 1) | |
| elif layout_type == "horizontal": | |
| return (1, nplots) | |
| elif layout_type == "vertical": | |
| return (nplots, 1) | |
| layouts = {1: (1, 1), 2: (1, 2), 3: (2, 2), 4: (2, 2)} | |
| try: | |
| return layouts[nplots] | |
| except KeyError: | |
| k = 1 | |
| while k**2 < nplots: | |
| k += 1 | |
| if (k - 1) * k >= nplots: | |
| return k, (k - 1) | |
| else: | |
| return k, k | |
| # copied from matplotlib/pyplot.py and modified for pandas.plotting | |
| def create_subplots( | |
| naxes: int, | |
| sharex: bool = False, | |
| sharey: bool = False, | |
| squeeze: bool = True, | |
| subplot_kw=None, | |
| ax=None, | |
| layout=None, | |
| layout_type: str = "box", | |
| **fig_kw, | |
| ): | |
| """ | |
| Create a figure with a set of subplots already made. | |
| This utility wrapper makes it convenient to create common layouts of | |
| subplots, including the enclosing figure object, in a single call. | |
| Parameters | |
| ---------- | |
| naxes : int | |
| Number of required axes. Exceeded axes are set invisible. Default is | |
| nrows * ncols. | |
| sharex : bool | |
| If True, the X axis will be shared amongst all subplots. | |
| sharey : bool | |
| If True, the Y axis will be shared amongst all subplots. | |
| squeeze : bool | |
| If True, extra dimensions are squeezed out from the returned axis object: | |
| - if only one subplot is constructed (nrows=ncols=1), the resulting | |
| single Axis object is returned as a scalar. | |
| - for Nx1 or 1xN subplots, the returned object is a 1-d numpy object | |
| array of Axis objects are returned as numpy 1-d arrays. | |
| - for NxM subplots with N>1 and M>1 are returned as a 2d array. | |
| If False, no squeezing is done: the returned axis object is always | |
| a 2-d array containing Axis instances, even if it ends up being 1x1. | |
| subplot_kw : dict | |
| Dict with keywords passed to the add_subplot() call used to create each | |
| subplots. | |
| ax : Matplotlib axis object, optional | |
| layout : tuple | |
| Number of rows and columns of the subplot grid. | |
| If not specified, calculated from naxes and layout_type | |
| layout_type : {'box', 'horizontal', 'vertical'}, default 'box' | |
| Specify how to layout the subplot grid. | |
| fig_kw : Other keyword arguments to be passed to the figure() call. | |
| Note that all keywords not recognized above will be | |
| automatically included here. | |
| Returns | |
| ------- | |
| fig, ax : tuple | |
| - fig is the Matplotlib Figure object | |
| - ax can be either a single axis object or an array of axis objects if | |
| more than one subplot was created. The dimensions of the resulting array | |
| can be controlled with the squeeze keyword, see above. | |
| Examples | |
| -------- | |
| x = np.linspace(0, 2*np.pi, 400) | |
| y = np.sin(x**2) | |
| # Just a figure and one subplot | |
| f, ax = plt.subplots() | |
| ax.plot(x, y) | |
| ax.set_title('Simple plot') | |
| # Two subplots, unpack the output array immediately | |
| f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) | |
| ax1.plot(x, y) | |
| ax1.set_title('Sharing Y axis') | |
| ax2.scatter(x, y) | |
| # Four polar axes | |
| plt.subplots(2, 2, subplot_kw=dict(polar=True)) | |
| """ | |
| import matplotlib.pyplot as plt | |
| if subplot_kw is None: | |
| subplot_kw = {} | |
| if ax is None: | |
| fig = plt.figure(**fig_kw) | |
| else: | |
| if is_list_like(ax): | |
| if squeeze: | |
| ax = flatten_axes(ax) | |
| if layout is not None: | |
| warnings.warn( | |
| "When passing multiple axes, layout keyword is ignored.", | |
| UserWarning, | |
| stacklevel=find_stack_level(), | |
| ) | |
| if sharex or sharey: | |
| warnings.warn( | |
| "When passing multiple axes, sharex and sharey " | |
| "are ignored. These settings must be specified when creating axes.", | |
| UserWarning, | |
| stacklevel=find_stack_level(), | |
| ) | |
| if ax.size == naxes: | |
| fig = ax.flat[0].get_figure() | |
| return fig, ax | |
| else: | |
| raise ValueError( | |
| f"The number of passed axes must be {naxes}, the " | |
| "same as the output plot" | |
| ) | |
| fig = ax.get_figure() | |
| # if ax is passed and a number of subplots is 1, return ax as it is | |
| if naxes == 1: | |
| if squeeze: | |
| return fig, ax | |
| else: | |
| return fig, flatten_axes(ax) | |
| else: | |
| warnings.warn( | |
| "To output multiple subplots, the figure containing " | |
| "the passed axes is being cleared.", | |
| UserWarning, | |
| stacklevel=find_stack_level(), | |
| ) | |
| fig.clear() | |
| nrows, ncols = _get_layout(naxes, layout=layout, layout_type=layout_type) | |
| nplots = nrows * ncols | |
| # Create empty object array to hold all axes. It's easiest to make it 1-d | |
| # so we can just append subplots upon creation, and then | |
| axarr = np.empty(nplots, dtype=object) | |
| # Create first subplot separately, so we can share it if requested | |
| ax0 = fig.add_subplot(nrows, ncols, 1, **subplot_kw) | |
| if sharex: | |
| subplot_kw["sharex"] = ax0 | |
| if sharey: | |
| subplot_kw["sharey"] = ax0 | |
| axarr[0] = ax0 | |
| # Note off-by-one counting because add_subplot uses the MATLAB 1-based | |
| # convention. | |
| for i in range(1, nplots): | |
| kwds = subplot_kw.copy() | |
| # Set sharex and sharey to None for blank/dummy axes, these can | |
| # interfere with proper axis limits on the visible axes if | |
| # they share axes e.g. issue #7528 | |
| if i >= naxes: | |
| kwds["sharex"] = None | |
| kwds["sharey"] = None | |
| ax = fig.add_subplot(nrows, ncols, i + 1, **kwds) | |
| axarr[i] = ax | |
| if naxes != nplots: | |
| for ax in axarr[naxes:]: | |
| ax.set_visible(False) | |
| handle_shared_axes(axarr, nplots, naxes, nrows, ncols, sharex, sharey) | |
| if squeeze: | |
| # Reshape the array to have the final desired dimension (nrow,ncol), | |
| # though discarding unneeded dimensions that equal 1. If we only have | |
| # one subplot, just return it instead of a 1-element array. | |
| if nplots == 1: | |
| axes = axarr[0] | |
| else: | |
| axes = axarr.reshape(nrows, ncols).squeeze() | |
| else: | |
| # returned axis array will be always 2-d, even if nrows=ncols=1 | |
| axes = axarr.reshape(nrows, ncols) | |
| return fig, axes | |
| def _remove_labels_from_axis(axis: Axis) -> None: | |
| for t in axis.get_majorticklabels(): | |
| t.set_visible(False) | |
| # set_visible will not be effective if | |
| # minor axis has NullLocator and NullFormatter (default) | |
| if isinstance(axis.get_minor_locator(), ticker.NullLocator): | |
| axis.set_minor_locator(ticker.AutoLocator()) | |
| if isinstance(axis.get_minor_formatter(), ticker.NullFormatter): | |
| axis.set_minor_formatter(ticker.FormatStrFormatter("")) | |
| for t in axis.get_minorticklabels(): | |
| t.set_visible(False) | |
| axis.get_label().set_visible(False) | |
| def _has_externally_shared_axis(ax1: Axes, compare_axis: str) -> bool: | |
| """ | |
| Return whether an axis is externally shared. | |
| Parameters | |
| ---------- | |
| ax1 : matplotlib.axes.Axes | |
| Axis to query. | |
| compare_axis : str | |
| `"x"` or `"y"` according to whether the X-axis or Y-axis is being | |
| compared. | |
| Returns | |
| ------- | |
| bool | |
| `True` if the axis is externally shared. Otherwise `False`. | |
| Notes | |
| ----- | |
| If two axes with different positions are sharing an axis, they can be | |
| referred to as *externally* sharing the common axis. | |
| If two axes sharing an axis also have the same position, they can be | |
| referred to as *internally* sharing the common axis (a.k.a twinning). | |
| _handle_shared_axes() is only interested in axes externally sharing an | |
| axis, regardless of whether either of the axes is also internally sharing | |
| with a third axis. | |
| """ | |
| if compare_axis == "x": | |
| axes = ax1.get_shared_x_axes() | |
| elif compare_axis == "y": | |
| axes = ax1.get_shared_y_axes() | |
| else: | |
| raise ValueError( | |
| "_has_externally_shared_axis() needs 'x' or 'y' as a second parameter" | |
| ) | |
| axes_siblings = axes.get_siblings(ax1) | |
| # Retain ax1 and any of its siblings which aren't in the same position as it | |
| ax1_points = ax1.get_position().get_points() | |
| for ax2 in axes_siblings: | |
| if not np.array_equal(ax1_points, ax2.get_position().get_points()): | |
| return True | |
| return False | |
| def handle_shared_axes( | |
| axarr: Iterable[Axes], | |
| nplots: int, | |
| naxes: int, | |
| nrows: int, | |
| ncols: int, | |
| sharex: bool, | |
| sharey: bool, | |
| ) -> None: | |
| if nplots > 1: | |
| row_num = lambda x: x.get_subplotspec().rowspan.start | |
| col_num = lambda x: x.get_subplotspec().colspan.start | |
| is_first_col = lambda x: x.get_subplotspec().is_first_col() | |
| if nrows > 1: | |
| try: | |
| # first find out the ax layout, | |
| # so that we can correctly handle 'gaps" | |
| layout = np.zeros((nrows + 1, ncols + 1), dtype=np.bool_) | |
| for ax in axarr: | |
| layout[row_num(ax), col_num(ax)] = ax.get_visible() | |
| for ax in axarr: | |
| # only the last row of subplots should get x labels -> all | |
| # other off layout handles the case that the subplot is | |
| # the last in the column, because below is no subplot/gap. | |
| if not layout[row_num(ax) + 1, col_num(ax)]: | |
| continue | |
| if sharex or _has_externally_shared_axis(ax, "x"): | |
| _remove_labels_from_axis(ax.xaxis) | |
| except IndexError: | |
| # if gridspec is used, ax.rowNum and ax.colNum may different | |
| # from layout shape. in this case, use last_row logic | |
| is_last_row = lambda x: x.get_subplotspec().is_last_row() | |
| for ax in axarr: | |
| if is_last_row(ax): | |
| continue | |
| if sharex or _has_externally_shared_axis(ax, "x"): | |
| _remove_labels_from_axis(ax.xaxis) | |
| if ncols > 1: | |
| for ax in axarr: | |
| # only the first column should get y labels -> set all other to | |
| # off as we only have labels in the first column and we always | |
| # have a subplot there, we can skip the layout test | |
| if is_first_col(ax): | |
| continue | |
| if sharey or _has_externally_shared_axis(ax, "y"): | |
| _remove_labels_from_axis(ax.yaxis) | |
| def flatten_axes(axes: Axes | Sequence[Axes]) -> np.ndarray: | |
| if not is_list_like(axes): | |
| return np.array([axes]) | |
| elif isinstance(axes, (np.ndarray, ABCIndex)): | |
| return np.asarray(axes).ravel() | |
| return np.array(axes) | |
| def set_ticks_props( | |
| axes: Axes | Sequence[Axes], | |
| xlabelsize: int | None = None, | |
| xrot=None, | |
| ylabelsize: int | None = None, | |
| yrot=None, | |
| ): | |
| import matplotlib.pyplot as plt | |
| for ax in flatten_axes(axes): | |
| if xlabelsize is not None: | |
| plt.setp(ax.get_xticklabels(), fontsize=xlabelsize) | |
| if xrot is not None: | |
| plt.setp(ax.get_xticklabels(), rotation=xrot) | |
| if ylabelsize is not None: | |
| plt.setp(ax.get_yticklabels(), fontsize=ylabelsize) | |
| if yrot is not None: | |
| plt.setp(ax.get_yticklabels(), rotation=yrot) | |
| return axes | |
| def get_all_lines(ax: Axes) -> list[Line2D]: | |
| lines = ax.get_lines() | |
| if hasattr(ax, "right_ax"): | |
| lines += ax.right_ax.get_lines() | |
| if hasattr(ax, "left_ax"): | |
| lines += ax.left_ax.get_lines() | |
| return lines | |
| def get_xlim(lines: Iterable[Line2D]) -> tuple[float, float]: | |
| left, right = np.inf, -np.inf | |
| for line in lines: | |
| x = line.get_xdata(orig=False) | |
| left = min(np.nanmin(x), left) | |
| right = max(np.nanmax(x), right) | |
| return left, right | |