peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/arrays
/test_timedeltas.py
from datetime import timedelta | |
import numpy as np | |
import pytest | |
import pandas as pd | |
from pandas import Timedelta | |
import pandas._testing as tm | |
from pandas.core.arrays import ( | |
DatetimeArray, | |
TimedeltaArray, | |
) | |
class TestNonNano: | |
def unit(self, request): | |
return request.param | |
def tda(self, unit): | |
arr = np.arange(5, dtype=np.int64).view(f"m8[{unit}]") | |
return TimedeltaArray._simple_new(arr, dtype=arr.dtype) | |
def test_non_nano(self, unit): | |
arr = np.arange(5, dtype=np.int64).view(f"m8[{unit}]") | |
tda = TimedeltaArray._simple_new(arr, dtype=arr.dtype) | |
assert tda.dtype == arr.dtype | |
assert tda[0].unit == unit | |
def test_as_unit_raises(self, tda): | |
# GH#50616 | |
with pytest.raises(ValueError, match="Supported units"): | |
tda.as_unit("D") | |
tdi = pd.Index(tda) | |
with pytest.raises(ValueError, match="Supported units"): | |
tdi.as_unit("D") | |
def test_fields(self, tda, field): | |
as_nano = tda._ndarray.astype("m8[ns]") | |
tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype) | |
result = getattr(tda, field) | |
expected = getattr(tda_nano, field) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_to_pytimedelta(self, tda): | |
as_nano = tda._ndarray.astype("m8[ns]") | |
tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype) | |
result = tda.to_pytimedelta() | |
expected = tda_nano.to_pytimedelta() | |
tm.assert_numpy_array_equal(result, expected) | |
def test_total_seconds(self, unit, tda): | |
as_nano = tda._ndarray.astype("m8[ns]") | |
tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype) | |
result = tda.total_seconds() | |
expected = tda_nano.total_seconds() | |
tm.assert_numpy_array_equal(result, expected) | |
def test_timedelta_array_total_seconds(self): | |
# GH34290 | |
expected = Timedelta("2 min").total_seconds() | |
result = pd.array([Timedelta("2 min")]).total_seconds()[0] | |
assert result == expected | |
def test_total_seconds_nanoseconds(self): | |
# issue #48521 | |
start_time = pd.Series(["2145-11-02 06:00:00"]).astype("datetime64[ns]") | |
end_time = pd.Series(["2145-11-02 07:06:00"]).astype("datetime64[ns]") | |
expected = (end_time - start_time).values / np.timedelta64(1, "s") | |
result = (end_time - start_time).dt.total_seconds().values | |
assert result == expected | |
def test_add_nat_datetimelike_scalar(self, nat, tda): | |
result = tda + nat | |
assert isinstance(result, DatetimeArray) | |
assert result._creso == tda._creso | |
assert result.isna().all() | |
result = nat + tda | |
assert isinstance(result, DatetimeArray) | |
assert result._creso == tda._creso | |
assert result.isna().all() | |
def test_add_pdnat(self, tda): | |
result = tda + pd.NaT | |
assert isinstance(result, TimedeltaArray) | |
assert result._creso == tda._creso | |
assert result.isna().all() | |
result = pd.NaT + tda | |
assert isinstance(result, TimedeltaArray) | |
assert result._creso == tda._creso | |
assert result.isna().all() | |
# TODO: 2022-07-11 this is the only test that gets to DTA.tz_convert | |
# or tz_localize with non-nano; implement tests specific to that. | |
def test_add_datetimelike_scalar(self, tda, tz_naive_fixture): | |
ts = pd.Timestamp("2016-01-01", tz=tz_naive_fixture).as_unit("ns") | |
expected = tda.as_unit("ns") + ts | |
res = tda + ts | |
tm.assert_extension_array_equal(res, expected) | |
res = ts + tda | |
tm.assert_extension_array_equal(res, expected) | |
ts += Timedelta(1) # case where we can't cast losslessly | |
exp_values = tda._ndarray + ts.asm8 | |
expected = ( | |
DatetimeArray._simple_new(exp_values, dtype=exp_values.dtype) | |
.tz_localize("UTC") | |
.tz_convert(ts.tz) | |
) | |
result = tda + ts | |
tm.assert_extension_array_equal(result, expected) | |
result = ts + tda | |
tm.assert_extension_array_equal(result, expected) | |
def test_mul_scalar(self, tda): | |
other = 2 | |
result = tda * other | |
expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype) | |
tm.assert_extension_array_equal(result, expected) | |
assert result._creso == tda._creso | |
def test_mul_listlike(self, tda): | |
other = np.arange(len(tda)) | |
result = tda * other | |
expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype) | |
tm.assert_extension_array_equal(result, expected) | |
assert result._creso == tda._creso | |
def test_mul_listlike_object(self, tda): | |
other = np.arange(len(tda)) | |
result = tda * other.astype(object) | |
expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype) | |
tm.assert_extension_array_equal(result, expected) | |
assert result._creso == tda._creso | |
def test_div_numeric_scalar(self, tda): | |
other = 2 | |
result = tda / other | |
expected = TimedeltaArray._simple_new(tda._ndarray / other, dtype=tda.dtype) | |
tm.assert_extension_array_equal(result, expected) | |
assert result._creso == tda._creso | |
def test_div_td_scalar(self, tda): | |
other = timedelta(seconds=1) | |
result = tda / other | |
expected = tda._ndarray / np.timedelta64(1, "s") | |
tm.assert_numpy_array_equal(result, expected) | |
def test_div_numeric_array(self, tda): | |
other = np.arange(len(tda)) | |
result = tda / other | |
expected = TimedeltaArray._simple_new(tda._ndarray / other, dtype=tda.dtype) | |
tm.assert_extension_array_equal(result, expected) | |
assert result._creso == tda._creso | |
def test_div_td_array(self, tda): | |
other = tda._ndarray + tda._ndarray[-1] | |
result = tda / other | |
expected = tda._ndarray / other | |
tm.assert_numpy_array_equal(result, expected) | |
def test_add_timedeltaarraylike(self, tda): | |
tda_nano = tda.astype("m8[ns]") | |
expected = tda_nano * 2 | |
res = tda_nano + tda | |
tm.assert_extension_array_equal(res, expected) | |
res = tda + tda_nano | |
tm.assert_extension_array_equal(res, expected) | |
expected = tda_nano * 0 | |
res = tda - tda_nano | |
tm.assert_extension_array_equal(res, expected) | |
res = tda_nano - tda | |
tm.assert_extension_array_equal(res, expected) | |
class TestTimedeltaArray: | |
def test_astype_int(self, dtype): | |
arr = TimedeltaArray._from_sequence( | |
[Timedelta("1h"), Timedelta("2h")], dtype="m8[ns]" | |
) | |
if np.dtype(dtype) != np.int64: | |
with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"): | |
arr.astype(dtype) | |
return | |
result = arr.astype(dtype) | |
expected = arr._ndarray.view("i8") | |
tm.assert_numpy_array_equal(result, expected) | |
def test_setitem_clears_freq(self): | |
a = pd.timedelta_range("1h", periods=2, freq="h")._data | |
a[0] = Timedelta("1h") | |
assert a.freq is None | |
def test_setitem_objects(self, obj): | |
# make sure we accept timedelta64 and timedelta in addition to Timedelta | |
tdi = pd.timedelta_range("2 Days", periods=4, freq="h") | |
arr = tdi._data | |
arr[0] = obj | |
assert arr[0] == Timedelta(seconds=1) | |
def test_searchsorted_invalid_types(self, other, index): | |
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 | |
arr = pd.TimedeltaIndex(data, freq="D")._data | |
if index: | |
arr = pd.Index(arr) | |
msg = "|".join( | |
[ | |
"searchsorted requires compatible dtype or scalar", | |
"value should be a 'Timedelta', 'NaT', or array of those. Got", | |
] | |
) | |
with pytest.raises(TypeError, match=msg): | |
arr.searchsorted(other) | |
class TestUnaryOps: | |
def test_abs(self): | |
vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]") | |
arr = TimedeltaArray._from_sequence(vals) | |
evals = np.array([3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]") | |
expected = TimedeltaArray._from_sequence(evals) | |
result = abs(arr) | |
tm.assert_timedelta_array_equal(result, expected) | |
result2 = np.abs(arr) | |
tm.assert_timedelta_array_equal(result2, expected) | |
def test_pos(self): | |
vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]") | |
arr = TimedeltaArray._from_sequence(vals) | |
result = +arr | |
tm.assert_timedelta_array_equal(result, arr) | |
assert not tm.shares_memory(result, arr) | |
result2 = np.positive(arr) | |
tm.assert_timedelta_array_equal(result2, arr) | |
assert not tm.shares_memory(result2, arr) | |
def test_neg(self): | |
vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]") | |
arr = TimedeltaArray._from_sequence(vals) | |
evals = np.array([3600 * 10**9, "NaT", -7200 * 10**9], dtype="m8[ns]") | |
expected = TimedeltaArray._from_sequence(evals) | |
result = -arr | |
tm.assert_timedelta_array_equal(result, expected) | |
result2 = np.negative(arr) | |
tm.assert_timedelta_array_equal(result2, expected) | |
def test_neg_freq(self): | |
tdi = pd.timedelta_range("2 Days", periods=4, freq="h") | |
arr = tdi._data | |
expected = -tdi._data | |
result = -arr | |
tm.assert_timedelta_array_equal(result, expected) | |
result2 = np.negative(arr) | |
tm.assert_timedelta_array_equal(result2, expected) | |