peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/groupby
/test_cumulative.py
import numpy as np | |
import pytest | |
from pandas.errors import UnsupportedFunctionCall | |
import pandas.util._test_decorators as td | |
import pandas as pd | |
from pandas import ( | |
DataFrame, | |
Series, | |
) | |
import pandas._testing as tm | |
def dtypes_for_minmax(request): | |
""" | |
Fixture of dtypes with min and max values used for testing | |
cummin and cummax | |
""" | |
dtype = request.param | |
np_type = dtype | |
if dtype == "Int64": | |
np_type = np.int64 | |
elif dtype == "Float64": | |
np_type = np.float64 | |
min_val = ( | |
np.iinfo(np_type).min | |
if np.dtype(np_type).kind == "i" | |
else np.finfo(np_type).min | |
) | |
max_val = ( | |
np.iinfo(np_type).max | |
if np.dtype(np_type).kind == "i" | |
else np.finfo(np_type).max | |
) | |
return (dtype, min_val, max_val) | |
def test_groupby_cumprod(): | |
# GH 4095 | |
df = DataFrame({"key": ["b"] * 10, "value": 2}) | |
actual = df.groupby("key")["value"].cumprod() | |
expected = df.groupby("key", group_keys=False)["value"].apply(lambda x: x.cumprod()) | |
expected.name = "value" | |
tm.assert_series_equal(actual, expected) | |
df = DataFrame({"key": ["b"] * 100, "value": 2}) | |
df["value"] = df["value"].astype(float) | |
actual = df.groupby("key")["value"].cumprod() | |
expected = df.groupby("key", group_keys=False)["value"].apply(lambda x: x.cumprod()) | |
expected.name = "value" | |
tm.assert_series_equal(actual, expected) | |
def test_groupby_cumprod_overflow(): | |
# GH#37493 if we overflow we return garbage consistent with numpy | |
df = DataFrame({"key": ["b"] * 4, "value": 100_000}) | |
actual = df.groupby("key")["value"].cumprod() | |
expected = Series( | |
[100_000, 10_000_000_000, 1_000_000_000_000_000, 7766279631452241920], | |
name="value", | |
) | |
tm.assert_series_equal(actual, expected) | |
numpy_result = df.groupby("key", group_keys=False)["value"].apply( | |
lambda x: x.cumprod() | |
) | |
numpy_result.name = "value" | |
tm.assert_series_equal(actual, numpy_result) | |
def test_groupby_cumprod_nan_influences_other_columns(): | |
# GH#48064 | |
df = DataFrame( | |
{ | |
"a": 1, | |
"b": [1, np.nan, 2], | |
"c": [1, 2, 3.0], | |
} | |
) | |
result = df.groupby("a").cumprod(numeric_only=True, skipna=False) | |
expected = DataFrame({"b": [1, np.nan, np.nan], "c": [1, 2, 6.0]}) | |
tm.assert_frame_equal(result, expected) | |
def test_cummin(dtypes_for_minmax): | |
dtype = dtypes_for_minmax[0] | |
min_val = dtypes_for_minmax[1] | |
# GH 15048 | |
base_df = DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [3, 4, 3, 2, 2, 3, 2, 1]}) | |
expected_mins = [3, 3, 3, 2, 2, 2, 2, 1] | |
df = base_df.astype(dtype) | |
expected = DataFrame({"B": expected_mins}).astype(dtype) | |
result = df.groupby("A").cummin() | |
tm.assert_frame_equal(result, expected) | |
result = df.groupby("A", group_keys=False).B.apply(lambda x: x.cummin()).to_frame() | |
tm.assert_frame_equal(result, expected) | |
# Test w/ min value for dtype | |
df.loc[[2, 6], "B"] = min_val | |
df.loc[[1, 5], "B"] = min_val + 1 | |
expected.loc[[2, 3, 6, 7], "B"] = min_val | |
expected.loc[[1, 5], "B"] = min_val + 1 # should not be rounded to min_val | |
result = df.groupby("A").cummin() | |
tm.assert_frame_equal(result, expected, check_exact=True) | |
expected = ( | |
df.groupby("A", group_keys=False).B.apply(lambda x: x.cummin()).to_frame() | |
) | |
tm.assert_frame_equal(result, expected, check_exact=True) | |
# Test nan in some values | |
# Explicit cast to float to avoid implicit cast when setting nan | |
base_df = base_df.astype({"B": "float"}) | |
base_df.loc[[0, 2, 4, 6], "B"] = np.nan | |
expected = DataFrame({"B": [np.nan, 4, np.nan, 2, np.nan, 3, np.nan, 1]}) | |
result = base_df.groupby("A").cummin() | |
tm.assert_frame_equal(result, expected) | |
expected = ( | |
base_df.groupby("A", group_keys=False).B.apply(lambda x: x.cummin()).to_frame() | |
) | |
tm.assert_frame_equal(result, expected) | |
# GH 15561 | |
df = DataFrame({"a": [1], "b": pd.to_datetime(["2001"])}) | |
expected = Series(pd.to_datetime("2001"), index=[0], name="b") | |
result = df.groupby("a")["b"].cummin() | |
tm.assert_series_equal(expected, result) | |
# GH 15635 | |
df = DataFrame({"a": [1, 2, 1], "b": [1, 2, 2]}) | |
result = df.groupby("a").b.cummin() | |
expected = Series([1, 2, 1], name="b") | |
tm.assert_series_equal(result, expected) | |
def test_cummin_max_all_nan_column(method, dtype): | |
base_df = DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [np.nan] * 8}) | |
base_df["B"] = base_df["B"].astype(dtype) | |
grouped = base_df.groupby("A") | |
expected = DataFrame({"B": [np.nan] * 8}, dtype=dtype) | |
result = getattr(grouped, method)() | |
tm.assert_frame_equal(expected, result) | |
result = getattr(grouped["B"], method)().to_frame() | |
tm.assert_frame_equal(expected, result) | |
def test_cummax(dtypes_for_minmax): | |
dtype = dtypes_for_minmax[0] | |
max_val = dtypes_for_minmax[2] | |
# GH 15048 | |
base_df = DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [3, 4, 3, 2, 2, 3, 2, 1]}) | |
expected_maxs = [3, 4, 4, 4, 2, 3, 3, 3] | |
df = base_df.astype(dtype) | |
expected = DataFrame({"B": expected_maxs}).astype(dtype) | |
result = df.groupby("A").cummax() | |
tm.assert_frame_equal(result, expected) | |
result = df.groupby("A", group_keys=False).B.apply(lambda x: x.cummax()).to_frame() | |
tm.assert_frame_equal(result, expected) | |
# Test w/ max value for dtype | |
df.loc[[2, 6], "B"] = max_val | |
expected.loc[[2, 3, 6, 7], "B"] = max_val | |
result = df.groupby("A").cummax() | |
tm.assert_frame_equal(result, expected) | |
expected = ( | |
df.groupby("A", group_keys=False).B.apply(lambda x: x.cummax()).to_frame() | |
) | |
tm.assert_frame_equal(result, expected) | |
# Test nan in some values | |
# Explicit cast to float to avoid implicit cast when setting nan | |
base_df = base_df.astype({"B": "float"}) | |
base_df.loc[[0, 2, 4, 6], "B"] = np.nan | |
expected = DataFrame({"B": [np.nan, 4, np.nan, 4, np.nan, 3, np.nan, 3]}) | |
result = base_df.groupby("A").cummax() | |
tm.assert_frame_equal(result, expected) | |
expected = ( | |
base_df.groupby("A", group_keys=False).B.apply(lambda x: x.cummax()).to_frame() | |
) | |
tm.assert_frame_equal(result, expected) | |
# GH 15561 | |
df = DataFrame({"a": [1], "b": pd.to_datetime(["2001"])}) | |
expected = Series(pd.to_datetime("2001"), index=[0], name="b") | |
result = df.groupby("a")["b"].cummax() | |
tm.assert_series_equal(expected, result) | |
# GH 15635 | |
df = DataFrame({"a": [1, 2, 1], "b": [2, 1, 1]}) | |
result = df.groupby("a").b.cummax() | |
expected = Series([2, 1, 2], name="b") | |
tm.assert_series_equal(result, expected) | |
def test_cummax_i8_at_implementation_bound(): | |
# the minimum value used to be treated as NPY_NAT+1 instead of NPY_NAT | |
# for int64 dtype GH#46382 | |
ser = Series([pd.NaT._value + n for n in range(5)]) | |
df = DataFrame({"A": 1, "B": ser, "C": ser._values.view("M8[ns]")}) | |
gb = df.groupby("A") | |
res = gb.cummax() | |
exp = df[["B", "C"]] | |
tm.assert_frame_equal(res, exp) | |
def test_cummin_max_skipna(method, dtype, groups, expected_data): | |
# GH-34047 | |
df = DataFrame({"a": Series([1, None, 2], dtype=dtype)}) | |
orig = df.copy() | |
gb = df.groupby(groups)["a"] | |
result = getattr(gb, method)(skipna=False) | |
expected = Series(expected_data, dtype=dtype, name="a") | |
# check we didn't accidentally alter df | |
tm.assert_frame_equal(df, orig) | |
tm.assert_series_equal(result, expected) | |
def test_cummin_max_skipna_multiple_cols(method): | |
# Ensure missing value in "a" doesn't cause "b" to be nan-filled | |
df = DataFrame({"a": [np.nan, 2.0, 2.0], "b": [2.0, 2.0, 2.0]}) | |
gb = df.groupby([1, 1, 1])[["a", "b"]] | |
result = getattr(gb, method)(skipna=False) | |
expected = DataFrame({"a": [np.nan, np.nan, np.nan], "b": [2.0, 2.0, 2.0]}) | |
tm.assert_frame_equal(result, expected) | |
def test_numpy_compat(func): | |
# see gh-12811 | |
df = DataFrame({"A": [1, 2, 1], "B": [1, 2, 3]}) | |
g = df.groupby("A") | |
msg = "numpy operations are not valid with groupby" | |
with pytest.raises(UnsupportedFunctionCall, match=msg): | |
getattr(g, func)(1, 2, 3) | |
with pytest.raises(UnsupportedFunctionCall, match=msg): | |
getattr(g, func)(foo=1) | |
def test_nullable_int_not_cast_as_float(method, dtype, val): | |
data = [val, pd.NA] | |
df = DataFrame({"grp": [1, 1], "b": data}, dtype=dtype) | |
grouped = df.groupby("grp") | |
result = grouped.transform(method) | |
expected = DataFrame({"b": data}, dtype=dtype) | |
tm.assert_frame_equal(result, expected) | |
def test_cython_api2(): | |
# this takes the fast apply path | |
# cumsum (GH5614) | |
df = DataFrame([[1, 2, np.nan], [1, np.nan, 9], [3, 4, 9]], columns=["A", "B", "C"]) | |
expected = DataFrame([[2, np.nan], [np.nan, 9], [4, 9]], columns=["B", "C"]) | |
result = df.groupby("A").cumsum() | |
tm.assert_frame_equal(result, expected) | |
# GH 5755 - cumsum is a transformer and should ignore as_index | |
result = df.groupby("A", as_index=False).cumsum() | |
tm.assert_frame_equal(result, expected) | |
# GH 13994 | |
msg = "DataFrameGroupBy.cumsum with axis=1 is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.groupby("A").cumsum(axis=1) | |
expected = df.cumsum(axis=1) | |
tm.assert_frame_equal(result, expected) | |
msg = "DataFrameGroupBy.cumprod with axis=1 is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.groupby("A").cumprod(axis=1) | |
expected = df.cumprod(axis=1) | |
tm.assert_frame_equal(result, expected) | |