peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/groupby
/test_grouping.py
""" | |
test where we are determining what we are grouping, or getting groups | |
""" | |
from datetime import ( | |
date, | |
timedelta, | |
) | |
import numpy as np | |
import pytest | |
import pandas as pd | |
from pandas import ( | |
CategoricalIndex, | |
DataFrame, | |
Grouper, | |
Index, | |
MultiIndex, | |
Series, | |
Timestamp, | |
date_range, | |
period_range, | |
) | |
import pandas._testing as tm | |
from pandas.core.groupby.grouper import Grouping | |
# selection | |
# -------------------------------- | |
class TestSelection: | |
def test_select_bad_cols(self): | |
df = DataFrame([[1, 2]], columns=["A", "B"]) | |
g = df.groupby("A") | |
with pytest.raises(KeyError, match="\"Columns not found: 'C'\""): | |
g[["C"]] | |
with pytest.raises(KeyError, match="^[^A]+$"): | |
# A should not be referenced as a bad column... | |
# will have to rethink regex if you change message! | |
g[["A", "C"]] | |
def test_groupby_duplicated_column_errormsg(self): | |
# GH7511 | |
df = DataFrame( | |
columns=["A", "B", "A", "C"], data=[range(4), range(2, 6), range(0, 8, 2)] | |
) | |
msg = "Grouper for 'A' not 1-dimensional" | |
with pytest.raises(ValueError, match=msg): | |
df.groupby("A") | |
with pytest.raises(ValueError, match=msg): | |
df.groupby(["A", "B"]) | |
grouped = df.groupby("B") | |
c = grouped.count() | |
assert c.columns.nlevels == 1 | |
assert c.columns.size == 3 | |
def test_column_select_via_attr(self, df): | |
result = df.groupby("A").C.sum() | |
expected = df.groupby("A")["C"].sum() | |
tm.assert_series_equal(result, expected) | |
df["mean"] = 1.5 | |
result = df.groupby("A").mean(numeric_only=True) | |
expected = df.groupby("A")[["C", "D", "mean"]].agg("mean") | |
tm.assert_frame_equal(result, expected) | |
def test_getitem_list_of_columns(self): | |
df = DataFrame( | |
{ | |
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], | |
"B": ["one", "one", "two", "three", "two", "two", "one", "three"], | |
"C": np.random.default_rng(2).standard_normal(8), | |
"D": np.random.default_rng(2).standard_normal(8), | |
"E": np.random.default_rng(2).standard_normal(8), | |
} | |
) | |
result = df.groupby("A")[["C", "D"]].mean() | |
result2 = df.groupby("A")[df.columns[2:4]].mean() | |
expected = df.loc[:, ["A", "C", "D"]].groupby("A").mean() | |
tm.assert_frame_equal(result, expected) | |
tm.assert_frame_equal(result2, expected) | |
def test_getitem_numeric_column_names(self): | |
# GH #13731 | |
df = DataFrame( | |
{ | |
0: list("abcd") * 2, | |
2: np.random.default_rng(2).standard_normal(8), | |
4: np.random.default_rng(2).standard_normal(8), | |
6: np.random.default_rng(2).standard_normal(8), | |
} | |
) | |
result = df.groupby(0)[df.columns[1:3]].mean() | |
result2 = df.groupby(0)[[2, 4]].mean() | |
expected = df.loc[:, [0, 2, 4]].groupby(0).mean() | |
tm.assert_frame_equal(result, expected) | |
tm.assert_frame_equal(result2, expected) | |
# per GH 23566 enforced deprecation raises a ValueError | |
with pytest.raises(ValueError, match="Cannot subset columns with a tuple"): | |
df.groupby(0)[2, 4].mean() | |
def test_getitem_single_tuple_of_columns_raises(self, df): | |
# per GH 23566 enforced deprecation raises a ValueError | |
with pytest.raises(ValueError, match="Cannot subset columns with a tuple"): | |
df.groupby("A")["C", "D"].mean() | |
def test_getitem_single_column(self): | |
df = DataFrame( | |
{ | |
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], | |
"B": ["one", "one", "two", "three", "two", "two", "one", "three"], | |
"C": np.random.default_rng(2).standard_normal(8), | |
"D": np.random.default_rng(2).standard_normal(8), | |
"E": np.random.default_rng(2).standard_normal(8), | |
} | |
) | |
result = df.groupby("A")["C"].mean() | |
as_frame = df.loc[:, ["A", "C"]].groupby("A").mean() | |
as_series = as_frame.iloc[:, 0] | |
expected = as_series | |
tm.assert_series_equal(result, expected) | |
def test_getitem_from_grouper(self, func): | |
# GH 50383 | |
df = DataFrame({"a": [1, 1, 2], "b": 3, "c": 4, "d": 5}) | |
gb = df.groupby(["a", "b"])[["a", "c"]] | |
idx = MultiIndex.from_tuples([(1, 3), (2, 3)], names=["a", "b"]) | |
expected = DataFrame({"a": [2, 2], "c": [8, 4]}, index=idx) | |
result = func(gb) | |
tm.assert_frame_equal(result, expected) | |
def test_indices_grouped_by_tuple_with_lambda(self): | |
# GH 36158 | |
df = DataFrame( | |
{ | |
"Tuples": ( | |
(x, y) | |
for x in [0, 1] | |
for y in np.random.default_rng(2).integers(3, 5, 5) | |
) | |
} | |
) | |
gb = df.groupby("Tuples") | |
gb_lambda = df.groupby(lambda x: df.iloc[x, 0]) | |
expected = gb.indices | |
result = gb_lambda.indices | |
tm.assert_dict_equal(result, expected) | |
# grouping | |
# -------------------------------- | |
class TestGrouping: | |
def test_grouper_index_types(self, index): | |
# related GH5375 | |
# groupby misbehaving when using a Floatlike index | |
df = DataFrame(np.arange(10).reshape(5, 2), columns=list("AB"), index=index) | |
df.groupby(list("abcde"), group_keys=False).apply(lambda x: x) | |
df.index = df.index[::-1] | |
df.groupby(list("abcde"), group_keys=False).apply(lambda x: x) | |
def test_grouper_multilevel_freq(self): | |
# GH 7885 | |
# with level and freq specified in a Grouper | |
d0 = date.today() - timedelta(days=14) | |
dates = date_range(d0, date.today()) | |
date_index = MultiIndex.from_product([dates, dates], names=["foo", "bar"]) | |
df = DataFrame(np.random.default_rng(2).integers(0, 100, 225), index=date_index) | |
# Check string level | |
expected = ( | |
df.reset_index() | |
.groupby([Grouper(key="foo", freq="W"), Grouper(key="bar", freq="W")]) | |
.sum() | |
) | |
# reset index changes columns dtype to object | |
expected.columns = Index([0], dtype="int64") | |
result = df.groupby( | |
[Grouper(level="foo", freq="W"), Grouper(level="bar", freq="W")] | |
).sum() | |
tm.assert_frame_equal(result, expected) | |
# Check integer level | |
result = df.groupby( | |
[Grouper(level=0, freq="W"), Grouper(level=1, freq="W")] | |
).sum() | |
tm.assert_frame_equal(result, expected) | |
def test_grouper_creation_bug(self): | |
# GH 8795 | |
df = DataFrame({"A": [0, 0, 1, 1, 2, 2], "B": [1, 2, 3, 4, 5, 6]}) | |
g = df.groupby("A") | |
expected = g.sum() | |
g = df.groupby(Grouper(key="A")) | |
result = g.sum() | |
tm.assert_frame_equal(result, expected) | |
msg = "Grouper axis keyword is deprecated and will be removed" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
gpr = Grouper(key="A", axis=0) | |
g = df.groupby(gpr) | |
result = g.sum() | |
tm.assert_frame_equal(result, expected) | |
msg = "DataFrameGroupBy.apply operated on the grouping columns" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
result = g.apply(lambda x: x.sum()) | |
expected["A"] = [0, 2, 4] | |
expected = expected.loc[:, ["A", "B"]] | |
tm.assert_frame_equal(result, expected) | |
def test_grouper_creation_bug2(self): | |
# GH14334 | |
# Grouper(key=...) may be passed in a list | |
df = DataFrame( | |
{"A": [0, 0, 0, 1, 1, 1], "B": [1, 1, 2, 2, 3, 3], "C": [1, 2, 3, 4, 5, 6]} | |
) | |
# Group by single column | |
expected = df.groupby("A").sum() | |
g = df.groupby([Grouper(key="A")]) | |
result = g.sum() | |
tm.assert_frame_equal(result, expected) | |
# Group by two columns | |
# using a combination of strings and Grouper objects | |
expected = df.groupby(["A", "B"]).sum() | |
# Group with two Grouper objects | |
g = df.groupby([Grouper(key="A"), Grouper(key="B")]) | |
result = g.sum() | |
tm.assert_frame_equal(result, expected) | |
# Group with a string and a Grouper object | |
g = df.groupby(["A", Grouper(key="B")]) | |
result = g.sum() | |
tm.assert_frame_equal(result, expected) | |
# Group with a Grouper object and a string | |
g = df.groupby([Grouper(key="A"), "B"]) | |
result = g.sum() | |
tm.assert_frame_equal(result, expected) | |
def test_grouper_creation_bug3(self, unit): | |
# GH8866 | |
dti = date_range("20130101", periods=2, unit=unit) | |
mi = MultiIndex.from_product( | |
[list("ab"), range(2), dti], | |
names=["one", "two", "three"], | |
) | |
ser = Series( | |
np.arange(8, dtype="int64"), | |
index=mi, | |
) | |
result = ser.groupby(Grouper(level="three", freq="ME")).sum() | |
exp_dti = pd.DatetimeIndex( | |
[Timestamp("2013-01-31")], freq="ME", name="three" | |
).as_unit(unit) | |
expected = Series( | |
[28], | |
index=exp_dti, | |
) | |
tm.assert_series_equal(result, expected) | |
# just specifying a level breaks | |
result = ser.groupby(Grouper(level="one")).sum() | |
expected = ser.groupby(level="one").sum() | |
tm.assert_series_equal(result, expected) | |
def test_grouper_returning_tuples(self, func): | |
# GH 22257 , both with dict and with callable | |
df = DataFrame({"X": ["A", "B", "A", "B"], "Y": [1, 4, 3, 2]}) | |
mapping = dict(zip(range(4), [("C", 5), ("D", 6)] * 2)) | |
if func: | |
gb = df.groupby(by=lambda idx: mapping[idx], sort=False) | |
else: | |
gb = df.groupby(by=mapping, sort=False) | |
name, expected = next(iter(gb)) | |
assert name == ("C", 5) | |
result = gb.get_group(name) | |
tm.assert_frame_equal(result, expected) | |
def test_grouper_column_and_index(self): | |
# GH 14327 | |
# Grouping a multi-index frame by a column and an index level should | |
# be equivalent to resetting the index and grouping by two columns | |
idx = MultiIndex.from_tuples( | |
[("a", 1), ("a", 2), ("a", 3), ("b", 1), ("b", 2), ("b", 3)] | |
) | |
idx.names = ["outer", "inner"] | |
df_multi = DataFrame( | |
{"A": np.arange(6), "B": ["one", "one", "two", "two", "one", "one"]}, | |
index=idx, | |
) | |
result = df_multi.groupby(["B", Grouper(level="inner")]).mean(numeric_only=True) | |
expected = ( | |
df_multi.reset_index().groupby(["B", "inner"]).mean(numeric_only=True) | |
) | |
tm.assert_frame_equal(result, expected) | |
# Test the reverse grouping order | |
result = df_multi.groupby([Grouper(level="inner"), "B"]).mean(numeric_only=True) | |
expected = ( | |
df_multi.reset_index().groupby(["inner", "B"]).mean(numeric_only=True) | |
) | |
tm.assert_frame_equal(result, expected) | |
# Grouping a single-index frame by a column and the index should | |
# be equivalent to resetting the index and grouping by two columns | |
df_single = df_multi.reset_index("outer") | |
result = df_single.groupby(["B", Grouper(level="inner")]).mean( | |
numeric_only=True | |
) | |
expected = ( | |
df_single.reset_index().groupby(["B", "inner"]).mean(numeric_only=True) | |
) | |
tm.assert_frame_equal(result, expected) | |
# Test the reverse grouping order | |
result = df_single.groupby([Grouper(level="inner"), "B"]).mean( | |
numeric_only=True | |
) | |
expected = ( | |
df_single.reset_index().groupby(["inner", "B"]).mean(numeric_only=True) | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_levels_and_columns(self): | |
# GH9344, GH9049 | |
idx_names = ["x", "y"] | |
idx = MultiIndex.from_tuples([(1, 1), (1, 2), (3, 4), (5, 6)], names=idx_names) | |
df = DataFrame(np.arange(12).reshape(-1, 3), index=idx) | |
by_levels = df.groupby(level=idx_names).mean() | |
# reset_index changes columns dtype to object | |
by_columns = df.reset_index().groupby(idx_names).mean() | |
# without casting, by_columns.columns is object-dtype | |
by_columns.columns = by_columns.columns.astype(np.int64) | |
tm.assert_frame_equal(by_levels, by_columns) | |
def test_groupby_categorical_index_and_columns(self, observed): | |
# GH18432, adapted for GH25871 | |
columns = ["A", "B", "A", "B"] | |
categories = ["B", "A"] | |
data = np.array( | |
[[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 1, 2]], int | |
) | |
cat_columns = CategoricalIndex(columns, categories=categories, ordered=True) | |
df = DataFrame(data=data, columns=cat_columns) | |
depr_msg = "DataFrame.groupby with axis=1 is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
result = df.groupby(axis=1, level=0, observed=observed).sum() | |
expected_data = np.array([[4, 2], [4, 2], [4, 2], [4, 2], [4, 2]], int) | |
expected_columns = CategoricalIndex( | |
categories, categories=categories, ordered=True | |
) | |
expected = DataFrame(data=expected_data, columns=expected_columns) | |
tm.assert_frame_equal(result, expected) | |
# test transposed version | |
df = DataFrame(data.T, index=cat_columns) | |
msg = "The 'axis' keyword in DataFrame.groupby is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.groupby(axis=0, level=0, observed=observed).sum() | |
expected = DataFrame(data=expected_data.T, index=expected_columns) | |
tm.assert_frame_equal(result, expected) | |
def test_grouper_getting_correct_binner(self): | |
# GH 10063 | |
# using a non-time-based grouper and a time-based grouper | |
# and specifying levels | |
df = DataFrame( | |
{"A": 1}, | |
index=MultiIndex.from_product( | |
[list("ab"), date_range("20130101", periods=80)], names=["one", "two"] | |
), | |
) | |
result = df.groupby( | |
[Grouper(level="one"), Grouper(level="two", freq="ME")] | |
).sum() | |
expected = DataFrame( | |
{"A": [31, 28, 21, 31, 28, 21]}, | |
index=MultiIndex.from_product( | |
[list("ab"), date_range("20130101", freq="ME", periods=3)], | |
names=["one", "two"], | |
), | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_grouper_iter(self, df): | |
gb = df.groupby("A") | |
msg = "DataFrameGroupBy.grouper is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
grouper = gb.grouper | |
result = sorted(grouper) | |
expected = ["bar", "foo"] | |
assert result == expected | |
def test_empty_groups(self, df): | |
# see gh-1048 | |
with pytest.raises(ValueError, match="No group keys passed!"): | |
df.groupby([]) | |
def test_groupby_grouper(self, df): | |
grouped = df.groupby("A") | |
msg = "DataFrameGroupBy.grouper is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
grouper = grouped.grouper | |
result = df.groupby(grouper).mean(numeric_only=True) | |
expected = grouped.mean(numeric_only=True) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_dict_mapping(self): | |
# GH #679 | |
s = Series({"T1": 5}) | |
result = s.groupby({"T1": "T2"}).agg("sum") | |
expected = s.groupby(["T2"]).agg("sum") | |
tm.assert_series_equal(result, expected) | |
s = Series([1.0, 2.0, 3.0, 4.0], index=list("abcd")) | |
mapping = {"a": 0, "b": 0, "c": 1, "d": 1} | |
result = s.groupby(mapping).mean() | |
result2 = s.groupby(mapping).agg("mean") | |
exp_key = np.array([0, 0, 1, 1], dtype=np.int64) | |
expected = s.groupby(exp_key).mean() | |
expected2 = s.groupby(exp_key).mean() | |
tm.assert_series_equal(result, expected) | |
tm.assert_series_equal(result, result2) | |
tm.assert_series_equal(result, expected2) | |
def test_groupby_series_named_with_tuple(self, frame_or_series, index): | |
# GH 42731 | |
obj = frame_or_series([1, 2, 3, 4], index=index) | |
groups = Series([1, 0, 1, 0], index=index, name=("a", "a")) | |
result = obj.groupby(groups).last() | |
expected = frame_or_series([4, 3]) | |
expected.index.name = ("a", "a") | |
tm.assert_equal(result, expected) | |
def test_groupby_grouper_f_sanity_checked(self): | |
dates = date_range("01-Jan-2013", periods=12, freq="MS") | |
ts = Series(np.random.default_rng(2).standard_normal(12), index=dates) | |
# GH51979 | |
# simple check that the passed function doesn't operates on the whole index | |
msg = "'Timestamp' object is not subscriptable" | |
with pytest.raises(TypeError, match=msg): | |
ts.groupby(lambda key: key[0:6]) | |
result = ts.groupby(lambda x: x).sum() | |
expected = ts.groupby(ts.index).sum() | |
expected.index.freq = None | |
tm.assert_series_equal(result, expected) | |
def test_groupby_with_datetime_key(self): | |
# GH 51158 | |
df = DataFrame( | |
{ | |
"id": ["a", "b"] * 3, | |
"b": date_range("2000-01-01", "2000-01-03", freq="9h"), | |
} | |
) | |
grouper = Grouper(key="b", freq="D") | |
gb = df.groupby([grouper, "id"]) | |
# test number of groups | |
expected = { | |
(Timestamp("2000-01-01"), "a"): [0, 2], | |
(Timestamp("2000-01-01"), "b"): [1], | |
(Timestamp("2000-01-02"), "a"): [4], | |
(Timestamp("2000-01-02"), "b"): [3, 5], | |
} | |
tm.assert_dict_equal(gb.groups, expected) | |
# test number of group keys | |
assert len(gb.groups.keys()) == 4 | |
def test_grouping_error_on_multidim_input(self, df): | |
msg = "Grouper for '<class 'pandas.core.frame.DataFrame'>' not 1-dimensional" | |
with pytest.raises(ValueError, match=msg): | |
Grouping(df.index, df[["A", "A"]]) | |
def test_multiindex_passthru(self): | |
# GH 7997 | |
# regression from 0.14.1 | |
df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) | |
df.columns = MultiIndex.from_tuples([(0, 1), (1, 1), (2, 1)]) | |
depr_msg = "DataFrame.groupby with axis=1 is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
gb = df.groupby(axis=1, level=[0, 1]) | |
result = gb.first() | |
tm.assert_frame_equal(result, df) | |
def test_multiindex_negative_level(self, multiindex_dataframe_random_data): | |
# GH 13901 | |
result = multiindex_dataframe_random_data.groupby(level=-1).sum() | |
expected = multiindex_dataframe_random_data.groupby(level="second").sum() | |
tm.assert_frame_equal(result, expected) | |
result = multiindex_dataframe_random_data.groupby(level=-2).sum() | |
expected = multiindex_dataframe_random_data.groupby(level="first").sum() | |
tm.assert_frame_equal(result, expected) | |
result = multiindex_dataframe_random_data.groupby(level=[-2, -1]).sum() | |
expected = multiindex_dataframe_random_data.sort_index() | |
tm.assert_frame_equal(result, expected) | |
result = multiindex_dataframe_random_data.groupby(level=[-1, "first"]).sum() | |
expected = multiindex_dataframe_random_data.groupby( | |
level=["second", "first"] | |
).sum() | |
tm.assert_frame_equal(result, expected) | |
def test_multifunc_select_col_integer_cols(self, df): | |
df.columns = np.arange(len(df.columns)) | |
# it works! | |
msg = "Passing a dictionary to SeriesGroupBy.agg is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
df.groupby(1, as_index=False)[2].agg({"Q": np.mean}) | |
def test_multiindex_columns_empty_level(self): | |
lst = [["count", "values"], ["to filter", ""]] | |
midx = MultiIndex.from_tuples(lst) | |
df = DataFrame([[1, "A"]], columns=midx) | |
grouped = df.groupby("to filter").groups | |
assert grouped["A"] == [0] | |
grouped = df.groupby([("to filter", "")]).groups | |
assert grouped["A"] == [0] | |
df = DataFrame([[1, "A"], [2, "B"]], columns=midx) | |
expected = df.groupby("to filter").groups | |
result = df.groupby([("to filter", "")]).groups | |
assert result == expected | |
df = DataFrame([[1, "A"], [2, "A"]], columns=midx) | |
expected = df.groupby("to filter").groups | |
result = df.groupby([("to filter", "")]).groups | |
tm.assert_dict_equal(result, expected) | |
def test_groupby_multiindex_tuple(self): | |
# GH 17979 | |
df = DataFrame( | |
[[1, 2, 3, 4], [3, 4, 5, 6], [1, 4, 2, 3]], | |
columns=MultiIndex.from_arrays([["a", "b", "b", "c"], [1, 1, 2, 2]]), | |
) | |
expected = df.groupby([("b", 1)]).groups | |
result = df.groupby(("b", 1)).groups | |
tm.assert_dict_equal(expected, result) | |
df2 = DataFrame( | |
df.values, | |
columns=MultiIndex.from_arrays( | |
[["a", "b", "b", "c"], ["d", "d", "e", "e"]] | |
), | |
) | |
expected = df2.groupby([("b", "d")]).groups | |
result = df.groupby(("b", 1)).groups | |
tm.assert_dict_equal(expected, result) | |
df3 = DataFrame(df.values, columns=[("a", "d"), ("b", "d"), ("b", "e"), "c"]) | |
expected = df3.groupby([("b", "d")]).groups | |
result = df.groupby(("b", 1)).groups | |
tm.assert_dict_equal(expected, result) | |
def test_groupby_multiindex_partial_indexing_equivalence(self): | |
# GH 17977 | |
df = DataFrame( | |
[[1, 2, 3, 4], [3, 4, 5, 6], [1, 4, 2, 3]], | |
columns=MultiIndex.from_arrays([["a", "b", "b", "c"], [1, 1, 2, 2]]), | |
) | |
expected_mean = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].mean() | |
result_mean = df.groupby([("a", 1)])["b"].mean() | |
tm.assert_frame_equal(expected_mean, result_mean) | |
expected_sum = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].sum() | |
result_sum = df.groupby([("a", 1)])["b"].sum() | |
tm.assert_frame_equal(expected_sum, result_sum) | |
expected_count = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].count() | |
result_count = df.groupby([("a", 1)])["b"].count() | |
tm.assert_frame_equal(expected_count, result_count) | |
expected_min = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].min() | |
result_min = df.groupby([("a", 1)])["b"].min() | |
tm.assert_frame_equal(expected_min, result_min) | |
expected_max = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].max() | |
result_max = df.groupby([("a", 1)])["b"].max() | |
tm.assert_frame_equal(expected_max, result_max) | |
expected_groups = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].groups | |
result_groups = df.groupby([("a", 1)])["b"].groups | |
tm.assert_dict_equal(expected_groups, result_groups) | |
def test_groupby_level(self, sort, multiindex_dataframe_random_data, df): | |
# GH 17537 | |
frame = multiindex_dataframe_random_data | |
deleveled = frame.reset_index() | |
result0 = frame.groupby(level=0, sort=sort).sum() | |
result1 = frame.groupby(level=1, sort=sort).sum() | |
expected0 = frame.groupby(deleveled["first"].values, sort=sort).sum() | |
expected1 = frame.groupby(deleveled["second"].values, sort=sort).sum() | |
expected0.index.name = "first" | |
expected1.index.name = "second" | |
assert result0.index.name == "first" | |
assert result1.index.name == "second" | |
tm.assert_frame_equal(result0, expected0) | |
tm.assert_frame_equal(result1, expected1) | |
assert result0.index.name == frame.index.names[0] | |
assert result1.index.name == frame.index.names[1] | |
# groupby level name | |
result0 = frame.groupby(level="first", sort=sort).sum() | |
result1 = frame.groupby(level="second", sort=sort).sum() | |
tm.assert_frame_equal(result0, expected0) | |
tm.assert_frame_equal(result1, expected1) | |
# axis=1 | |
msg = "DataFrame.groupby with axis=1 is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result0 = frame.T.groupby(level=0, axis=1, sort=sort).sum() | |
result1 = frame.T.groupby(level=1, axis=1, sort=sort).sum() | |
tm.assert_frame_equal(result0, expected0.T) | |
tm.assert_frame_equal(result1, expected1.T) | |
# raise exception for non-MultiIndex | |
msg = "level > 0 or level < -1 only valid with MultiIndex" | |
with pytest.raises(ValueError, match=msg): | |
df.groupby(level=1) | |
def test_groupby_level_index_names(self, axis): | |
# GH4014 this used to raise ValueError since 'exp'>1 (in py2) | |
df = DataFrame({"exp": ["A"] * 3 + ["B"] * 3, "var1": range(6)}).set_index( | |
"exp" | |
) | |
if axis in (1, "columns"): | |
df = df.T | |
depr_msg = "DataFrame.groupby with axis=1 is deprecated" | |
else: | |
depr_msg = "The 'axis' keyword in DataFrame.groupby is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
df.groupby(level="exp", axis=axis) | |
msg = f"level name foo is not the name of the {df._get_axis_name(axis)}" | |
with pytest.raises(ValueError, match=msg): | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
df.groupby(level="foo", axis=axis) | |
def test_groupby_level_with_nas(self, sort): | |
# GH 17537 | |
index = MultiIndex( | |
levels=[[1, 0], [0, 1, 2, 3]], | |
codes=[[1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 2, 3, 0, 1, 2, 3]], | |
) | |
# factorizing doesn't confuse things | |
s = Series(np.arange(8.0), index=index) | |
result = s.groupby(level=0, sort=sort).sum() | |
expected = Series([6.0, 22.0], index=[0, 1]) | |
tm.assert_series_equal(result, expected) | |
index = MultiIndex( | |
levels=[[1, 0], [0, 1, 2, 3]], | |
codes=[[1, 1, 1, 1, -1, 0, 0, 0], [0, 1, 2, 3, 0, 1, 2, 3]], | |
) | |
# factorizing doesn't confuse things | |
s = Series(np.arange(8.0), index=index) | |
result = s.groupby(level=0, sort=sort).sum() | |
expected = Series([6.0, 18.0], index=[0.0, 1.0]) | |
tm.assert_series_equal(result, expected) | |
def test_groupby_args(self, multiindex_dataframe_random_data): | |
# PR8618 and issue 8015 | |
frame = multiindex_dataframe_random_data | |
msg = "You have to supply one of 'by' and 'level'" | |
with pytest.raises(TypeError, match=msg): | |
frame.groupby() | |
msg = "You have to supply one of 'by' and 'level'" | |
with pytest.raises(TypeError, match=msg): | |
frame.groupby(by=None, level=None) | |
def test_level_preserve_order(self, sort, labels, multiindex_dataframe_random_data): | |
# GH 17537 | |
grouped = multiindex_dataframe_random_data.groupby(level=0, sort=sort) | |
exp_labels = np.array(labels, np.intp) | |
tm.assert_almost_equal(grouped._grouper.codes[0], exp_labels) | |
def test_grouping_labels(self, multiindex_dataframe_random_data): | |
grouped = multiindex_dataframe_random_data.groupby( | |
multiindex_dataframe_random_data.index.get_level_values(0) | |
) | |
exp_labels = np.array([2, 2, 2, 0, 0, 1, 1, 3, 3, 3], dtype=np.intp) | |
tm.assert_almost_equal(grouped._grouper.codes[0], exp_labels) | |
def test_list_grouper_with_nat(self): | |
# GH 14715 | |
df = DataFrame({"date": date_range("1/1/2011", periods=365, freq="D")}) | |
df.iloc[-1] = pd.NaT | |
grouper = Grouper(key="date", freq="YS") | |
# Grouper in a list grouping | |
result = df.groupby([grouper]) | |
expected = {Timestamp("2011-01-01"): Index(list(range(364)))} | |
tm.assert_dict_equal(result.groups, expected) | |
# Test case without a list | |
result = df.groupby(grouper) | |
expected = {Timestamp("2011-01-01"): 365} | |
tm.assert_dict_equal(result.groups, expected) | |
def test_evaluate_with_empty_groups(self, func, expected): | |
# 26208 | |
# test transform'ing empty groups | |
# (not testing other agg fns, because they return | |
# different index objects. | |
df = DataFrame({1: [], 2: []}) | |
g = df.groupby(1, group_keys=False) | |
result = getattr(g[2], func)(lambda x: x) | |
tm.assert_series_equal(result, expected) | |
def test_groupby_empty(self): | |
# https://github.com/pandas-dev/pandas/issues/27190 | |
s = Series([], name="name", dtype="float64") | |
gr = s.groupby([]) | |
result = gr.mean() | |
expected = s.set_axis(Index([], dtype=np.intp)) | |
tm.assert_series_equal(result, expected) | |
# check group properties | |
assert len(gr._grouper.groupings) == 1 | |
tm.assert_numpy_array_equal( | |
gr._grouper.group_info[0], np.array([], dtype=np.dtype(np.intp)) | |
) | |
tm.assert_numpy_array_equal( | |
gr._grouper.group_info[1], np.array([], dtype=np.dtype(np.intp)) | |
) | |
assert gr._grouper.group_info[2] == 0 | |
# check name | |
gb = s.groupby(s) | |
msg = "SeriesGroupBy.grouper is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
grouper = gb.grouper | |
result = grouper.names | |
expected = ["name"] | |
assert result == expected | |
def test_groupby_level_index_value_all_na(self): | |
# issue 20519 | |
df = DataFrame( | |
[["x", np.nan, 10], [None, np.nan, 20]], columns=["A", "B", "C"] | |
).set_index(["A", "B"]) | |
result = df.groupby(level=["A", "B"]).sum() | |
expected = DataFrame( | |
data=[], | |
index=MultiIndex( | |
levels=[Index(["x"], dtype="object"), Index([], dtype="float64")], | |
codes=[[], []], | |
names=["A", "B"], | |
), | |
columns=["C"], | |
dtype="int64", | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_multiindex_level_empty(self): | |
# https://github.com/pandas-dev/pandas/issues/31670 | |
df = DataFrame( | |
[[123, "a", 1.0], [123, "b", 2.0]], columns=["id", "category", "value"] | |
) | |
df = df.set_index(["id", "category"]) | |
empty = df[df.value < 0] | |
result = empty.groupby("id").sum() | |
expected = DataFrame( | |
dtype="float64", | |
columns=["value"], | |
index=Index([], dtype=np.int64, name="id"), | |
) | |
tm.assert_frame_equal(result, expected) | |
# get_group | |
# -------------------------------- | |
class TestGetGroup: | |
def test_get_group(self): | |
# GH 5267 | |
# be datelike friendly | |
df = DataFrame( | |
{ | |
"DATE": pd.to_datetime( | |
[ | |
"10-Oct-2013", | |
"10-Oct-2013", | |
"10-Oct-2013", | |
"11-Oct-2013", | |
"11-Oct-2013", | |
"11-Oct-2013", | |
] | |
), | |
"label": ["foo", "foo", "bar", "foo", "foo", "bar"], | |
"VAL": [1, 2, 3, 4, 5, 6], | |
} | |
) | |
g = df.groupby("DATE") | |
key = next(iter(g.groups)) | |
result1 = g.get_group(key) | |
result2 = g.get_group(Timestamp(key).to_pydatetime()) | |
result3 = g.get_group(str(Timestamp(key))) | |
tm.assert_frame_equal(result1, result2) | |
tm.assert_frame_equal(result1, result3) | |
g = df.groupby(["DATE", "label"]) | |
key = next(iter(g.groups)) | |
result1 = g.get_group(key) | |
result2 = g.get_group((Timestamp(key[0]).to_pydatetime(), key[1])) | |
result3 = g.get_group((str(Timestamp(key[0])), key[1])) | |
tm.assert_frame_equal(result1, result2) | |
tm.assert_frame_equal(result1, result3) | |
# must pass a same-length tuple with multiple keys | |
msg = "must supply a tuple to get_group with multiple grouping keys" | |
with pytest.raises(ValueError, match=msg): | |
g.get_group("foo") | |
with pytest.raises(ValueError, match=msg): | |
g.get_group("foo") | |
msg = "must supply a same-length tuple to get_group with multiple grouping keys" | |
with pytest.raises(ValueError, match=msg): | |
g.get_group(("foo", "bar", "baz")) | |
def test_get_group_empty_bins(self, observed): | |
d = DataFrame([3, 1, 7, 6]) | |
bins = [0, 5, 10, 15] | |
g = d.groupby(pd.cut(d[0], bins), observed=observed) | |
# TODO: should prob allow a str of Interval work as well | |
# IOW '(0, 5]' | |
result = g.get_group(pd.Interval(0, 5)) | |
expected = DataFrame([3, 1], index=[0, 1]) | |
tm.assert_frame_equal(result, expected) | |
msg = r"Interval\(10, 15, closed='right'\)" | |
with pytest.raises(KeyError, match=msg): | |
g.get_group(pd.Interval(10, 15)) | |
def test_get_group_grouped_by_tuple(self): | |
# GH 8121 | |
df = DataFrame([[(1,), (1, 2), (1,), (1, 2)]], index=["ids"]).T | |
gr = df.groupby("ids") | |
expected = DataFrame({"ids": [(1,), (1,)]}, index=[0, 2]) | |
result = gr.get_group((1,)) | |
tm.assert_frame_equal(result, expected) | |
dt = pd.to_datetime(["2010-01-01", "2010-01-02", "2010-01-01", "2010-01-02"]) | |
df = DataFrame({"ids": [(x,) for x in dt]}) | |
gr = df.groupby("ids") | |
result = gr.get_group(("2010-01-01",)) | |
expected = DataFrame({"ids": [(dt[0],), (dt[0],)]}, index=[0, 2]) | |
tm.assert_frame_equal(result, expected) | |
def test_get_group_grouped_by_tuple_with_lambda(self): | |
# GH 36158 | |
df = DataFrame( | |
{ | |
"Tuples": ( | |
(x, y) | |
for x in [0, 1] | |
for y in np.random.default_rng(2).integers(3, 5, 5) | |
) | |
} | |
) | |
gb = df.groupby("Tuples") | |
gb_lambda = df.groupby(lambda x: df.iloc[x, 0]) | |
expected = gb.get_group(next(iter(gb.groups.keys()))) | |
result = gb_lambda.get_group(next(iter(gb_lambda.groups.keys()))) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_with_empty(self): | |
index = pd.DatetimeIndex(()) | |
data = () | |
series = Series(data, index, dtype=object) | |
grouper = Grouper(freq="D") | |
grouped = series.groupby(grouper) | |
assert next(iter(grouped), None) is None | |
def test_groupby_with_single_column(self): | |
df = DataFrame({"a": list("abssbab")}) | |
tm.assert_frame_equal(df.groupby("a").get_group("a"), df.iloc[[0, 5]]) | |
# GH 13530 | |
exp = DataFrame(index=Index(["a", "b", "s"], name="a"), columns=[]) | |
tm.assert_frame_equal(df.groupby("a").count(), exp) | |
tm.assert_frame_equal(df.groupby("a").sum(), exp) | |
exp = df.iloc[[3, 4, 5]] | |
tm.assert_frame_equal(df.groupby("a").nth(1), exp) | |
def test_gb_key_len_equal_axis_len(self): | |
# GH16843 | |
# test ensures that index and column keys are recognized correctly | |
# when number of keys equals axis length of groupby | |
df = DataFrame( | |
[["foo", "bar", "B", 1], ["foo", "bar", "B", 2], ["foo", "baz", "C", 3]], | |
columns=["first", "second", "third", "one"], | |
) | |
df = df.set_index(["first", "second"]) | |
df = df.groupby(["first", "second", "third"]).size() | |
assert df.loc[("foo", "bar", "B")] == 2 | |
assert df.loc[("foo", "baz", "C")] == 1 | |
# groups & iteration | |
# -------------------------------- | |
class TestIteration: | |
def test_groups(self, df): | |
grouped = df.groupby(["A"]) | |
groups = grouped.groups | |
assert groups is grouped.groups # caching works | |
for k, v in grouped.groups.items(): | |
assert (df.loc[v]["A"] == k).all() | |
grouped = df.groupby(["A", "B"]) | |
groups = grouped.groups | |
assert groups is grouped.groups # caching works | |
for k, v in grouped.groups.items(): | |
assert (df.loc[v]["A"] == k[0]).all() | |
assert (df.loc[v]["B"] == k[1]).all() | |
def test_grouping_is_iterable(self, tsframe): | |
# this code path isn't used anywhere else | |
# not sure it's useful | |
grouped = tsframe.groupby([lambda x: x.weekday(), lambda x: x.year]) | |
# test it works | |
for g in grouped._grouper.groupings[0]: | |
pass | |
def test_multi_iter(self): | |
s = Series(np.arange(6)) | |
k1 = np.array(["a", "a", "a", "b", "b", "b"]) | |
k2 = np.array(["1", "2", "1", "2", "1", "2"]) | |
grouped = s.groupby([k1, k2]) | |
iterated = list(grouped) | |
expected = [ | |
("a", "1", s[[0, 2]]), | |
("a", "2", s[[1]]), | |
("b", "1", s[[4]]), | |
("b", "2", s[[3, 5]]), | |
] | |
for i, ((one, two), three) in enumerate(iterated): | |
e1, e2, e3 = expected[i] | |
assert e1 == one | |
assert e2 == two | |
tm.assert_series_equal(three, e3) | |
def test_multi_iter_frame(self, three_group): | |
k1 = np.array(["b", "b", "b", "a", "a", "a"]) | |
k2 = np.array(["1", "2", "1", "2", "1", "2"]) | |
df = DataFrame( | |
{ | |
"v1": np.random.default_rng(2).standard_normal(6), | |
"v2": np.random.default_rng(2).standard_normal(6), | |
"k1": k1, | |
"k2": k2, | |
}, | |
index=["one", "two", "three", "four", "five", "six"], | |
) | |
grouped = df.groupby(["k1", "k2"]) | |
# things get sorted! | |
iterated = list(grouped) | |
idx = df.index | |
expected = [ | |
("a", "1", df.loc[idx[[4]]]), | |
("a", "2", df.loc[idx[[3, 5]]]), | |
("b", "1", df.loc[idx[[0, 2]]]), | |
("b", "2", df.loc[idx[[1]]]), | |
] | |
for i, ((one, two), three) in enumerate(iterated): | |
e1, e2, e3 = expected[i] | |
assert e1 == one | |
assert e2 == two | |
tm.assert_frame_equal(three, e3) | |
# don't iterate through groups with no data | |
df["k1"] = np.array(["b", "b", "b", "a", "a", "a"]) | |
df["k2"] = np.array(["1", "1", "1", "2", "2", "2"]) | |
grouped = df.groupby(["k1", "k2"]) | |
# calling `dict` on a DataFrameGroupBy leads to a TypeError, | |
# we need to use a dictionary comprehension here | |
# pylint: disable-next=unnecessary-comprehension | |
groups = {key: gp for key, gp in grouped} # noqa: C416 | |
assert len(groups) == 2 | |
# axis = 1 | |
three_levels = three_group.groupby(["A", "B", "C"]).mean() | |
depr_msg = "DataFrame.groupby with axis=1 is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
grouped = three_levels.T.groupby(axis=1, level=(1, 2)) | |
for key, group in grouped: | |
pass | |
def test_dictify(self, df): | |
dict(iter(df.groupby("A"))) | |
dict(iter(df.groupby(["A", "B"]))) | |
dict(iter(df["C"].groupby(df["A"]))) | |
dict(iter(df["C"].groupby([df["A"], df["B"]]))) | |
dict(iter(df.groupby("A")["C"])) | |
dict(iter(df.groupby(["A", "B"])["C"])) | |
def test_groupby_with_small_elem(self): | |
# GH 8542 | |
# length=2 | |
df = DataFrame( | |
{"event": ["start", "start"], "change": [1234, 5678]}, | |
index=pd.DatetimeIndex(["2014-09-10", "2013-10-10"]), | |
) | |
grouped = df.groupby([Grouper(freq="ME"), "event"]) | |
assert len(grouped.groups) == 2 | |
assert grouped.ngroups == 2 | |
assert (Timestamp("2014-09-30"), "start") in grouped.groups | |
assert (Timestamp("2013-10-31"), "start") in grouped.groups | |
res = grouped.get_group((Timestamp("2014-09-30"), "start")) | |
tm.assert_frame_equal(res, df.iloc[[0], :]) | |
res = grouped.get_group((Timestamp("2013-10-31"), "start")) | |
tm.assert_frame_equal(res, df.iloc[[1], :]) | |
df = DataFrame( | |
{"event": ["start", "start", "start"], "change": [1234, 5678, 9123]}, | |
index=pd.DatetimeIndex(["2014-09-10", "2013-10-10", "2014-09-15"]), | |
) | |
grouped = df.groupby([Grouper(freq="ME"), "event"]) | |
assert len(grouped.groups) == 2 | |
assert grouped.ngroups == 2 | |
assert (Timestamp("2014-09-30"), "start") in grouped.groups | |
assert (Timestamp("2013-10-31"), "start") in grouped.groups | |
res = grouped.get_group((Timestamp("2014-09-30"), "start")) | |
tm.assert_frame_equal(res, df.iloc[[0, 2], :]) | |
res = grouped.get_group((Timestamp("2013-10-31"), "start")) | |
tm.assert_frame_equal(res, df.iloc[[1], :]) | |
# length=3 | |
df = DataFrame( | |
{"event": ["start", "start", "start"], "change": [1234, 5678, 9123]}, | |
index=pd.DatetimeIndex(["2014-09-10", "2013-10-10", "2014-08-05"]), | |
) | |
grouped = df.groupby([Grouper(freq="ME"), "event"]) | |
assert len(grouped.groups) == 3 | |
assert grouped.ngroups == 3 | |
assert (Timestamp("2014-09-30"), "start") in grouped.groups | |
assert (Timestamp("2013-10-31"), "start") in grouped.groups | |
assert (Timestamp("2014-08-31"), "start") in grouped.groups | |
res = grouped.get_group((Timestamp("2014-09-30"), "start")) | |
tm.assert_frame_equal(res, df.iloc[[0], :]) | |
res = grouped.get_group((Timestamp("2013-10-31"), "start")) | |
tm.assert_frame_equal(res, df.iloc[[1], :]) | |
res = grouped.get_group((Timestamp("2014-08-31"), "start")) | |
tm.assert_frame_equal(res, df.iloc[[2], :]) | |
def test_grouping_string_repr(self): | |
# GH 13394 | |
mi = MultiIndex.from_arrays([list("AAB"), list("aba")]) | |
df = DataFrame([[1, 2, 3]], columns=mi) | |
gr = df.groupby(df[("A", "a")]) | |
result = gr._grouper.groupings[0].__repr__() | |
expected = "Grouping(('A', 'a'))" | |
assert result == expected | |
def test_grouping_by_key_is_in_axis(): | |
# GH#50413 - Groupers specified by key are in-axis | |
df = DataFrame({"a": [1, 1, 2], "b": [1, 1, 2], "c": [3, 4, 5]}).set_index("a") | |
gb = df.groupby([Grouper(level="a"), Grouper(key="b")], as_index=False) | |
assert not gb._grouper.groupings[0].in_axis | |
assert gb._grouper.groupings[1].in_axis | |
# Currently only in-axis groupings are including in the result when as_index=False; | |
# This is likely to change in the future. | |
msg = "A grouping .* was excluded from the result" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = gb.sum() | |
expected = DataFrame({"b": [1, 2], "c": [7, 5]}) | |
tm.assert_frame_equal(result, expected) | |
def test_grouper_groups(): | |
# GH#51182 check Grouper.groups does not raise AttributeError | |
df = DataFrame({"a": [1, 2, 3], "b": 1}) | |
grper = Grouper(key="a") | |
gb = df.groupby(grper) | |
msg = "Use GroupBy.groups instead" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
res = grper.groups | |
assert res is gb.groups | |
msg = "Use GroupBy.grouper instead" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
res = grper.grouper | |
assert res is gb._grouper | |
msg = "Grouper.obj is deprecated and will be removed" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
res = grper.obj | |
assert res is gb.obj | |
msg = "Use Resampler.ax instead" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
grper.ax | |
msg = "Grouper.indexer is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
grper.indexer | |
def test_depr_grouping_attrs(attr): | |
# GH#56148 | |
df = DataFrame({"a": [1, 1, 2], "b": [3, 4, 5]}) | |
gb = df.groupby("a") | |
msg = f"{attr} is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
getattr(gb._grouper.groupings[0], attr) | |