peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/groupby
/test_missing.py
import numpy as np | |
import pytest | |
import pandas as pd | |
from pandas import ( | |
DataFrame, | |
Index, | |
date_range, | |
) | |
import pandas._testing as tm | |
def test_groupby_column_index_name_lost_fill_funcs(func): | |
# GH: 29764 groupby loses index sometimes | |
df = DataFrame( | |
[[1, 1.0, -1.0], [1, np.nan, np.nan], [1, 2.0, -2.0]], | |
columns=Index(["type", "a", "b"], name="idx"), | |
) | |
df_grouped = df.groupby(["type"])[["a", "b"]] | |
result = getattr(df_grouped, func)().columns | |
expected = Index(["a", "b"], name="idx") | |
tm.assert_index_equal(result, expected) | |
def test_groupby_fill_duplicate_column_names(func): | |
# GH: 25610 ValueError with duplicate column names | |
df1 = DataFrame({"field1": [1, 3, 4], "field2": [1, 3, 4]}) | |
df2 = DataFrame({"field1": [1, np.nan, 4]}) | |
df_grouped = pd.concat([df1, df2], axis=1).groupby(by=["field2"]) | |
expected = DataFrame( | |
[[1, 1.0], [3, np.nan], [4, 4.0]], columns=["field1", "field1"] | |
) | |
result = getattr(df_grouped, func)() | |
tm.assert_frame_equal(result, expected) | |
def test_ffill_missing_arguments(): | |
# GH 14955 | |
df = DataFrame({"a": [1, 2], "b": [1, 1]}) | |
msg = "DataFrameGroupBy.fillna is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
with pytest.raises(ValueError, match="Must specify a fill"): | |
df.groupby("b").fillna() | |
def test_fillna_with_string_dtype(method, expected): | |
# GH 40250 | |
df = DataFrame({"a": pd.array([None, "a", None], dtype="string"), "b": [0, 0, 0]}) | |
grp = df.groupby("b") | |
msg = "DataFrameGroupBy.fillna is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = grp.fillna(method=method) | |
expected = DataFrame({"a": pd.array(expected, dtype="string")}) | |
tm.assert_frame_equal(result, expected) | |
def test_fill_consistency(): | |
# GH9221 | |
# pass thru keyword arguments to the generated wrapper | |
# are set if the passed kw is None (only) | |
df = DataFrame( | |
index=pd.MultiIndex.from_product( | |
[["value1", "value2"], date_range("2014-01-01", "2014-01-06")] | |
), | |
columns=Index(["1", "2"], name="id"), | |
) | |
df["1"] = [ | |
np.nan, | |
1, | |
np.nan, | |
np.nan, | |
11, | |
np.nan, | |
np.nan, | |
2, | |
np.nan, | |
np.nan, | |
22, | |
np.nan, | |
] | |
df["2"] = [ | |
np.nan, | |
3, | |
np.nan, | |
np.nan, | |
33, | |
np.nan, | |
np.nan, | |
4, | |
np.nan, | |
np.nan, | |
44, | |
np.nan, | |
] | |
msg = "The 'axis' keyword in DataFrame.groupby is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
expected = df.groupby(level=0, axis=0).fillna(method="ffill") | |
msg = "DataFrame.groupby with axis=1 is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.T.groupby(level=0, axis=1).fillna(method="ffill").T | |
tm.assert_frame_equal(result, expected) | |
def test_ffill_handles_nan_groups(dropna, method, has_nan_group): | |
# GH 34725 | |
df_without_nan_rows = DataFrame([(1, 0.1), (2, 0.2)]) | |
ridx = [-1, 0, -1, -1, 1, -1] | |
df = df_without_nan_rows.reindex(ridx).reset_index(drop=True) | |
group_b = np.nan if has_nan_group else "b" | |
df["group_col"] = pd.Series(["a"] * 3 + [group_b] * 3) | |
grouped = df.groupby(by="group_col", dropna=dropna) | |
result = getattr(grouped, method)(limit=None) | |
expected_rows = { | |
("ffill", True, True): [-1, 0, 0, -1, -1, -1], | |
("ffill", True, False): [-1, 0, 0, -1, 1, 1], | |
("ffill", False, True): [-1, 0, 0, -1, 1, 1], | |
("ffill", False, False): [-1, 0, 0, -1, 1, 1], | |
("bfill", True, True): [0, 0, -1, -1, -1, -1], | |
("bfill", True, False): [0, 0, -1, 1, 1, -1], | |
("bfill", False, True): [0, 0, -1, 1, 1, -1], | |
("bfill", False, False): [0, 0, -1, 1, 1, -1], | |
} | |
ridx = expected_rows.get((method, dropna, has_nan_group)) | |
expected = df_without_nan_rows.reindex(ridx).reset_index(drop=True) | |
# columns are a 'take' on df.columns, which are object dtype | |
expected.columns = expected.columns.astype(object) | |
tm.assert_frame_equal(result, expected) | |
def test_min_count(func, min_count, value): | |
# GH#37821 | |
df = DataFrame({"a": [1] * 3, "b": [1, np.nan, np.nan], "c": [np.nan] * 3}) | |
result = getattr(df.groupby("a"), func)(min_count=min_count) | |
expected = DataFrame({"b": [value], "c": [np.nan]}, index=Index([1], name="a")) | |
tm.assert_frame_equal(result, expected) | |
def test_indices_with_missing(): | |
# GH 9304 | |
df = DataFrame({"a": [1, 1, np.nan], "b": [2, 3, 4], "c": [5, 6, 7]}) | |
g = df.groupby(["a", "b"]) | |
result = g.indices | |
expected = {(1.0, 2): np.array([0]), (1.0, 3): np.array([1])} | |
assert result == expected | |