peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/indexing
/test_coercion.py
from __future__ import annotations | |
from datetime import ( | |
datetime, | |
timedelta, | |
) | |
import itertools | |
import numpy as np | |
import pytest | |
from pandas._config import using_pyarrow_string_dtype | |
from pandas.compat import ( | |
IS64, | |
is_platform_windows, | |
) | |
from pandas.compat.numpy import np_version_gt2 | |
import pandas as pd | |
import pandas._testing as tm | |
############################################################### | |
# Index / Series common tests which may trigger dtype coercions | |
############################################################### | |
def check_comprehensiveness(request): | |
# Iterate over combination of dtype, method and klass | |
# and ensure that each are contained within a collected test | |
cls = request.cls | |
combos = itertools.product(cls.klasses, cls.dtypes, [cls.method]) | |
def has_test(combo): | |
klass, dtype, method = combo | |
cls_funcs = request.node.session.items | |
return any( | |
klass in x.name and dtype in x.name and method in x.name for x in cls_funcs | |
) | |
opts = request.config.option | |
if opts.lf or opts.keyword: | |
# If we are running with "last-failed" or -k foo, we expect to only | |
# run a subset of tests. | |
yield | |
else: | |
for combo in combos: | |
if not has_test(combo): | |
raise AssertionError( | |
f"test method is not defined: {cls.__name__}, {combo}" | |
) | |
yield | |
class CoercionBase: | |
klasses = ["index", "series"] | |
dtypes = [ | |
"object", | |
"int64", | |
"float64", | |
"complex128", | |
"bool", | |
"datetime64", | |
"datetime64tz", | |
"timedelta64", | |
"period", | |
] | |
def method(self): | |
raise NotImplementedError(self) | |
class TestSetitemCoercion(CoercionBase): | |
method = "setitem" | |
# disable comprehensiveness tests, as most of these have been moved to | |
# tests.series.indexing.test_setitem in SetitemCastingEquivalents subclasses. | |
klasses: list[str] = [] | |
def test_setitem_series_no_coercion_from_values_list(self): | |
# GH35865 - int casted to str when internally calling np.array(ser.values) | |
ser = pd.Series(["a", 1]) | |
ser[:] = list(ser.values) | |
expected = pd.Series(["a", 1]) | |
tm.assert_series_equal(ser, expected) | |
def _assert_setitem_index_conversion( | |
self, original_series, loc_key, expected_index, expected_dtype | |
): | |
"""test index's coercion triggered by assign key""" | |
temp = original_series.copy() | |
# GH#33469 pre-2.0 with int loc_key and temp.index.dtype == np.float64 | |
# `temp[loc_key] = 5` treated loc_key as positional | |
temp[loc_key] = 5 | |
exp = pd.Series([1, 2, 3, 4, 5], index=expected_index) | |
tm.assert_series_equal(temp, exp) | |
# check dtype explicitly for sure | |
assert temp.index.dtype == expected_dtype | |
temp = original_series.copy() | |
temp.loc[loc_key] = 5 | |
exp = pd.Series([1, 2, 3, 4, 5], index=expected_index) | |
tm.assert_series_equal(temp, exp) | |
# check dtype explicitly for sure | |
assert temp.index.dtype == expected_dtype | |
def test_setitem_index_object(self, val, exp_dtype): | |
obj = pd.Series([1, 2, 3, 4], index=pd.Index(list("abcd"), dtype=object)) | |
assert obj.index.dtype == object | |
if exp_dtype is IndexError: | |
temp = obj.copy() | |
warn_msg = "Series.__setitem__ treating keys as positions is deprecated" | |
msg = "index 5 is out of bounds for axis 0 with size 4" | |
with pytest.raises(exp_dtype, match=msg): | |
with tm.assert_produces_warning(FutureWarning, match=warn_msg): | |
temp[5] = 5 | |
else: | |
exp_index = pd.Index(list("abcd") + [val], dtype=object) | |
self._assert_setitem_index_conversion(obj, val, exp_index, exp_dtype) | |
def test_setitem_index_int64(self, val, exp_dtype): | |
obj = pd.Series([1, 2, 3, 4]) | |
assert obj.index.dtype == np.int64 | |
exp_index = pd.Index([0, 1, 2, 3, val]) | |
self._assert_setitem_index_conversion(obj, val, exp_index, exp_dtype) | |
def test_setitem_index_float64(self, val, exp_dtype, request): | |
obj = pd.Series([1, 2, 3, 4], index=[1.1, 2.1, 3.1, 4.1]) | |
assert obj.index.dtype == np.float64 | |
exp_index = pd.Index([1.1, 2.1, 3.1, 4.1, val]) | |
self._assert_setitem_index_conversion(obj, val, exp_index, exp_dtype) | |
def test_setitem_series_period(self): | |
raise NotImplementedError | |
def test_setitem_index_complex128(self): | |
raise NotImplementedError | |
def test_setitem_index_bool(self): | |
raise NotImplementedError | |
def test_setitem_index_datetime64(self): | |
raise NotImplementedError | |
def test_setitem_index_datetime64tz(self): | |
raise NotImplementedError | |
def test_setitem_index_timedelta64(self): | |
raise NotImplementedError | |
def test_setitem_index_period(self): | |
raise NotImplementedError | |
class TestInsertIndexCoercion(CoercionBase): | |
klasses = ["index"] | |
method = "insert" | |
def _assert_insert_conversion(self, original, value, expected, expected_dtype): | |
"""test coercion triggered by insert""" | |
target = original.copy() | |
res = target.insert(1, value) | |
tm.assert_index_equal(res, expected) | |
assert res.dtype == expected_dtype | |
def test_insert_index_object(self, insert, coerced_val, coerced_dtype): | |
obj = pd.Index(list("abcd"), dtype=object) | |
assert obj.dtype == object | |
exp = pd.Index(["a", coerced_val, "b", "c", "d"], dtype=object) | |
self._assert_insert_conversion(obj, insert, exp, coerced_dtype) | |
def test_insert_int_index( | |
self, any_int_numpy_dtype, insert, coerced_val, coerced_dtype | |
): | |
dtype = any_int_numpy_dtype | |
obj = pd.Index([1, 2, 3, 4], dtype=dtype) | |
coerced_dtype = coerced_dtype if coerced_dtype is not None else dtype | |
exp = pd.Index([1, coerced_val, 2, 3, 4], dtype=coerced_dtype) | |
self._assert_insert_conversion(obj, insert, exp, coerced_dtype) | |
def test_insert_float_index( | |
self, float_numpy_dtype, insert, coerced_val, coerced_dtype | |
): | |
dtype = float_numpy_dtype | |
obj = pd.Index([1.0, 2.0, 3.0, 4.0], dtype=dtype) | |
coerced_dtype = coerced_dtype if coerced_dtype is not None else dtype | |
if np_version_gt2 and dtype == "float32" and coerced_val == 1.1: | |
# Hack, in the 2nd test case, since 1.1 can be losslessly cast to float32 | |
# the expected dtype will be float32 if the original dtype was float32 | |
coerced_dtype = np.float32 | |
exp = pd.Index([1.0, coerced_val, 2.0, 3.0, 4.0], dtype=coerced_dtype) | |
self._assert_insert_conversion(obj, insert, exp, coerced_dtype) | |
def test_insert_index_datetimes(self, fill_val, exp_dtype, insert_value): | |
obj = pd.DatetimeIndex( | |
["2011-01-01", "2011-01-02", "2011-01-03", "2011-01-04"], tz=fill_val.tz | |
).as_unit("ns") | |
assert obj.dtype == exp_dtype | |
exp = pd.DatetimeIndex( | |
["2011-01-01", fill_val.date(), "2011-01-02", "2011-01-03", "2011-01-04"], | |
tz=fill_val.tz, | |
).as_unit("ns") | |
self._assert_insert_conversion(obj, fill_val, exp, exp_dtype) | |
if fill_val.tz: | |
# mismatched tzawareness | |
ts = pd.Timestamp("2012-01-01") | |
result = obj.insert(1, ts) | |
expected = obj.astype(object).insert(1, ts) | |
assert expected.dtype == object | |
tm.assert_index_equal(result, expected) | |
ts = pd.Timestamp("2012-01-01", tz="Asia/Tokyo") | |
result = obj.insert(1, ts) | |
# once deprecation is enforced: | |
expected = obj.insert(1, ts.tz_convert(obj.dtype.tz)) | |
assert expected.dtype == obj.dtype | |
tm.assert_index_equal(result, expected) | |
else: | |
# mismatched tzawareness | |
ts = pd.Timestamp("2012-01-01", tz="Asia/Tokyo") | |
result = obj.insert(1, ts) | |
expected = obj.astype(object).insert(1, ts) | |
assert expected.dtype == object | |
tm.assert_index_equal(result, expected) | |
item = 1 | |
result = obj.insert(1, item) | |
expected = obj.astype(object).insert(1, item) | |
assert expected[1] == item | |
assert expected.dtype == object | |
tm.assert_index_equal(result, expected) | |
def test_insert_index_timedelta64(self): | |
obj = pd.TimedeltaIndex(["1 day", "2 day", "3 day", "4 day"]) | |
assert obj.dtype == "timedelta64[ns]" | |
# timedelta64 + timedelta64 => timedelta64 | |
exp = pd.TimedeltaIndex(["1 day", "10 day", "2 day", "3 day", "4 day"]) | |
self._assert_insert_conversion( | |
obj, pd.Timedelta("10 day"), exp, "timedelta64[ns]" | |
) | |
for item in [pd.Timestamp("2012-01-01"), 1]: | |
result = obj.insert(1, item) | |
expected = obj.astype(object).insert(1, item) | |
assert expected.dtype == object | |
tm.assert_index_equal(result, expected) | |
def test_insert_index_period(self, insert, coerced_val, coerced_dtype): | |
obj = pd.PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq="M") | |
assert obj.dtype == "period[M]" | |
data = [ | |
pd.Period("2011-01", freq="M"), | |
coerced_val, | |
pd.Period("2011-02", freq="M"), | |
pd.Period("2011-03", freq="M"), | |
pd.Period("2011-04", freq="M"), | |
] | |
if isinstance(insert, pd.Period): | |
exp = pd.PeriodIndex(data, freq="M") | |
self._assert_insert_conversion(obj, insert, exp, coerced_dtype) | |
# string that can be parsed to appropriate PeriodDtype | |
self._assert_insert_conversion(obj, str(insert), exp, coerced_dtype) | |
else: | |
result = obj.insert(0, insert) | |
expected = obj.astype(object).insert(0, insert) | |
tm.assert_index_equal(result, expected) | |
# TODO: ATM inserting '2012-01-01 00:00:00' when we have obj.freq=="M" | |
# casts that string to Period[M], not clear that is desirable | |
if not isinstance(insert, pd.Timestamp): | |
# non-castable string | |
result = obj.insert(0, str(insert)) | |
expected = obj.astype(object).insert(0, str(insert)) | |
tm.assert_index_equal(result, expected) | |
def test_insert_index_complex128(self): | |
raise NotImplementedError | |
def test_insert_index_bool(self): | |
raise NotImplementedError | |
class TestWhereCoercion(CoercionBase): | |
method = "where" | |
_cond = np.array([True, False, True, False]) | |
def _assert_where_conversion( | |
self, original, cond, values, expected, expected_dtype | |
): | |
"""test coercion triggered by where""" | |
target = original.copy() | |
res = target.where(cond, values) | |
tm.assert_equal(res, expected) | |
assert res.dtype == expected_dtype | |
def _construct_exp(self, obj, klass, fill_val, exp_dtype): | |
if fill_val is True: | |
values = klass([True, False, True, True]) | |
elif isinstance(fill_val, (datetime, np.datetime64)): | |
values = pd.date_range(fill_val, periods=4) | |
else: | |
values = klass(x * fill_val for x in [5, 6, 7, 8]) | |
exp = klass([obj[0], values[1], obj[2], values[3]], dtype=exp_dtype) | |
return values, exp | |
def _run_test(self, obj, fill_val, klass, exp_dtype): | |
cond = klass(self._cond) | |
exp = klass([obj[0], fill_val, obj[2], fill_val], dtype=exp_dtype) | |
self._assert_where_conversion(obj, cond, fill_val, exp, exp_dtype) | |
values, exp = self._construct_exp(obj, klass, fill_val, exp_dtype) | |
self._assert_where_conversion(obj, cond, values, exp, exp_dtype) | |
def test_where_object(self, index_or_series, fill_val, exp_dtype): | |
klass = index_or_series | |
obj = klass(list("abcd"), dtype=object) | |
assert obj.dtype == object | |
self._run_test(obj, fill_val, klass, exp_dtype) | |
def test_where_int64(self, index_or_series, fill_val, exp_dtype, request): | |
klass = index_or_series | |
obj = klass([1, 2, 3, 4]) | |
assert obj.dtype == np.int64 | |
self._run_test(obj, fill_val, klass, exp_dtype) | |
def test_where_float64(self, index_or_series, fill_val, exp_dtype, request): | |
klass = index_or_series | |
obj = klass([1.1, 2.2, 3.3, 4.4]) | |
assert obj.dtype == np.float64 | |
self._run_test(obj, fill_val, klass, exp_dtype) | |
def test_where_complex128(self, index_or_series, fill_val, exp_dtype): | |
klass = index_or_series | |
obj = klass([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j], dtype=np.complex128) | |
assert obj.dtype == np.complex128 | |
self._run_test(obj, fill_val, klass, exp_dtype) | |
def test_where_series_bool(self, index_or_series, fill_val, exp_dtype): | |
klass = index_or_series | |
obj = klass([True, False, True, False]) | |
assert obj.dtype == np.bool_ | |
self._run_test(obj, fill_val, klass, exp_dtype) | |
def test_where_datetime64(self, index_or_series, fill_val, exp_dtype): | |
klass = index_or_series | |
obj = klass(pd.date_range("2011-01-01", periods=4, freq="D")._with_freq(None)) | |
assert obj.dtype == "datetime64[ns]" | |
fv = fill_val | |
# do the check with each of the available datetime scalars | |
if exp_dtype == "datetime64[ns]": | |
for scalar in [fv, fv.to_pydatetime(), fv.to_datetime64()]: | |
self._run_test(obj, scalar, klass, exp_dtype) | |
else: | |
for scalar in [fv, fv.to_pydatetime()]: | |
self._run_test(obj, fill_val, klass, exp_dtype) | |
def test_where_index_complex128(self): | |
raise NotImplementedError | |
def test_where_index_bool(self): | |
raise NotImplementedError | |
def test_where_series_timedelta64(self): | |
raise NotImplementedError | |
def test_where_series_period(self): | |
raise NotImplementedError | |
def test_where_index_timedelta64(self, value): | |
tdi = pd.timedelta_range("1 Day", periods=4) | |
cond = np.array([True, False, False, True]) | |
expected = pd.TimedeltaIndex(["1 Day", value, value, "4 Days"]) | |
result = tdi.where(cond, value) | |
tm.assert_index_equal(result, expected) | |
# wrong-dtyped NaT | |
dtnat = np.datetime64("NaT", "ns") | |
expected = pd.Index([tdi[0], dtnat, dtnat, tdi[3]], dtype=object) | |
assert expected[1] is dtnat | |
result = tdi.where(cond, dtnat) | |
tm.assert_index_equal(result, expected) | |
def test_where_index_period(self): | |
dti = pd.date_range("2016-01-01", periods=3, freq="QS") | |
pi = dti.to_period("Q") | |
cond = np.array([False, True, False]) | |
# Passing a valid scalar | |
value = pi[-1] + pi.freq * 10 | |
expected = pd.PeriodIndex([value, pi[1], value]) | |
result = pi.where(cond, value) | |
tm.assert_index_equal(result, expected) | |
# Case passing ndarray[object] of Periods | |
other = np.asarray(pi + pi.freq * 10, dtype=object) | |
result = pi.where(cond, other) | |
expected = pd.PeriodIndex([other[0], pi[1], other[2]]) | |
tm.assert_index_equal(result, expected) | |
# Passing a mismatched scalar -> casts to object | |
td = pd.Timedelta(days=4) | |
expected = pd.Index([td, pi[1], td], dtype=object) | |
result = pi.where(cond, td) | |
tm.assert_index_equal(result, expected) | |
per = pd.Period("2020-04-21", "D") | |
expected = pd.Index([per, pi[1], per], dtype=object) | |
result = pi.where(cond, per) | |
tm.assert_index_equal(result, expected) | |
class TestFillnaSeriesCoercion(CoercionBase): | |
# not indexing, but place here for consistency | |
method = "fillna" | |
def test_has_comprehensive_tests(self): | |
raise NotImplementedError | |
def _assert_fillna_conversion(self, original, value, expected, expected_dtype): | |
"""test coercion triggered by fillna""" | |
target = original.copy() | |
res = target.fillna(value) | |
tm.assert_equal(res, expected) | |
assert res.dtype == expected_dtype | |
def test_fillna_object(self, index_or_series, fill_val, fill_dtype): | |
klass = index_or_series | |
obj = klass(["a", np.nan, "c", "d"], dtype=object) | |
assert obj.dtype == object | |
exp = klass(["a", fill_val, "c", "d"], dtype=object) | |
self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype) | |
def test_fillna_float64(self, index_or_series, fill_val, fill_dtype): | |
klass = index_or_series | |
obj = klass([1.1, np.nan, 3.3, 4.4]) | |
assert obj.dtype == np.float64 | |
exp = klass([1.1, fill_val, 3.3, 4.4]) | |
self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype) | |
def test_fillna_complex128(self, index_or_series, fill_val, fill_dtype): | |
klass = index_or_series | |
obj = klass([1 + 1j, np.nan, 3 + 3j, 4 + 4j], dtype=np.complex128) | |
assert obj.dtype == np.complex128 | |
exp = klass([1 + 1j, fill_val, 3 + 3j, 4 + 4j]) | |
self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype) | |
def test_fillna_datetime(self, index_or_series, fill_val, fill_dtype): | |
klass = index_or_series | |
obj = klass( | |
[ | |
pd.Timestamp("2011-01-01"), | |
pd.NaT, | |
pd.Timestamp("2011-01-03"), | |
pd.Timestamp("2011-01-04"), | |
] | |
) | |
assert obj.dtype == "datetime64[ns]" | |
exp = klass( | |
[ | |
pd.Timestamp("2011-01-01"), | |
fill_val, | |
pd.Timestamp("2011-01-03"), | |
pd.Timestamp("2011-01-04"), | |
] | |
) | |
self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype) | |
def test_fillna_datetime64tz(self, index_or_series, fill_val, fill_dtype): | |
klass = index_or_series | |
tz = "US/Eastern" | |
obj = klass( | |
[ | |
pd.Timestamp("2011-01-01", tz=tz), | |
pd.NaT, | |
pd.Timestamp("2011-01-03", tz=tz), | |
pd.Timestamp("2011-01-04", tz=tz), | |
] | |
) | |
assert obj.dtype == "datetime64[ns, US/Eastern]" | |
if getattr(fill_val, "tz", None) is None: | |
fv = fill_val | |
else: | |
fv = fill_val.tz_convert(tz) | |
exp = klass( | |
[ | |
pd.Timestamp("2011-01-01", tz=tz), | |
fv, | |
pd.Timestamp("2011-01-03", tz=tz), | |
pd.Timestamp("2011-01-04", tz=tz), | |
] | |
) | |
self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype) | |
def test_fillna_interval(self, index_or_series, fill_val): | |
ii = pd.interval_range(1.0, 5.0, closed="right").insert(1, np.nan) | |
assert isinstance(ii.dtype, pd.IntervalDtype) | |
obj = index_or_series(ii) | |
exp = index_or_series([ii[0], fill_val, ii[2], ii[3], ii[4]], dtype=object) | |
fill_dtype = object | |
self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype) | |
def test_fillna_series_int64(self): | |
raise NotImplementedError | |
def test_fillna_index_int64(self): | |
raise NotImplementedError | |
def test_fillna_series_bool(self): | |
raise NotImplementedError | |
def test_fillna_index_bool(self): | |
raise NotImplementedError | |
def test_fillna_series_timedelta64(self): | |
raise NotImplementedError | |
def test_fillna_series_period(self, index_or_series, fill_val): | |
pi = pd.period_range("2016-01-01", periods=4, freq="D").insert(1, pd.NaT) | |
assert isinstance(pi.dtype, pd.PeriodDtype) | |
obj = index_or_series(pi) | |
exp = index_or_series([pi[0], fill_val, pi[2], pi[3], pi[4]], dtype=object) | |
fill_dtype = object | |
self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype) | |
def test_fillna_index_timedelta64(self): | |
raise NotImplementedError | |
def test_fillna_index_period(self): | |
raise NotImplementedError | |
class TestReplaceSeriesCoercion(CoercionBase): | |
klasses = ["series"] | |
method = "replace" | |
rep: dict[str, list] = {} | |
rep["object"] = ["a", "b"] | |
rep["int64"] = [4, 5] | |
rep["float64"] = [1.1, 2.2] | |
rep["complex128"] = [1 + 1j, 2 + 2j] | |
rep["bool"] = [True, False] | |
rep["datetime64[ns]"] = [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-03")] | |
for tz in ["UTC", "US/Eastern"]: | |
# to test tz => different tz replacement | |
key = f"datetime64[ns, {tz}]" | |
rep[key] = [ | |
pd.Timestamp("2011-01-01", tz=tz), | |
pd.Timestamp("2011-01-03", tz=tz), | |
] | |
rep["timedelta64[ns]"] = [pd.Timedelta("1 day"), pd.Timedelta("2 day")] | |
def how(self, request): | |
return request.param | |
def from_key(self, request): | |
return request.param | |
def to_key(self, request): | |
return request.param | |
def replacer(self, how, from_key, to_key): | |
""" | |
Object we will pass to `Series.replace` | |
""" | |
if how == "dict": | |
replacer = dict(zip(self.rep[from_key], self.rep[to_key])) | |
elif how == "series": | |
replacer = pd.Series(self.rep[to_key], index=self.rep[from_key]) | |
else: | |
raise ValueError | |
return replacer | |
# Expected needs adjustment for the infer string option, seems to work as expecetd | |
def test_replace_series(self, how, to_key, from_key, replacer): | |
index = pd.Index([3, 4], name="xxx") | |
obj = pd.Series(self.rep[from_key], index=index, name="yyy") | |
assert obj.dtype == from_key | |
if from_key.startswith("datetime") and to_key.startswith("datetime"): | |
# tested below | |
return | |
elif from_key in ["datetime64[ns, US/Eastern]", "datetime64[ns, UTC]"]: | |
# tested below | |
return | |
if (from_key == "float64" and to_key in ("int64")) or ( | |
from_key == "complex128" and to_key in ("int64", "float64") | |
): | |
if not IS64 or is_platform_windows(): | |
pytest.skip(f"32-bit platform buggy: {from_key} -> {to_key}") | |
# Expected: do not downcast by replacement | |
exp = pd.Series(self.rep[to_key], index=index, name="yyy", dtype=from_key) | |
else: | |
exp = pd.Series(self.rep[to_key], index=index, name="yyy") | |
assert exp.dtype == to_key | |
msg = "Downcasting behavior in `replace`" | |
warn = FutureWarning | |
if ( | |
exp.dtype == obj.dtype | |
or exp.dtype == object | |
or (exp.dtype.kind in "iufc" and obj.dtype.kind in "iufc") | |
): | |
warn = None | |
with tm.assert_produces_warning(warn, match=msg): | |
result = obj.replace(replacer) | |
tm.assert_series_equal(result, exp) | |
def test_replace_series_datetime_tz( | |
self, how, to_key, from_key, replacer, using_infer_string | |
): | |
index = pd.Index([3, 4], name="xyz") | |
obj = pd.Series(self.rep[from_key], index=index, name="yyy") | |
assert obj.dtype == from_key | |
exp = pd.Series(self.rep[to_key], index=index, name="yyy") | |
if using_infer_string and to_key == "object": | |
assert exp.dtype == "string" | |
else: | |
assert exp.dtype == to_key | |
msg = "Downcasting behavior in `replace`" | |
warn = FutureWarning if exp.dtype != object else None | |
with tm.assert_produces_warning(warn, match=msg): | |
result = obj.replace(replacer) | |
tm.assert_series_equal(result, exp) | |
def test_replace_series_datetime_datetime(self, how, to_key, from_key, replacer): | |
index = pd.Index([3, 4], name="xyz") | |
obj = pd.Series(self.rep[from_key], index=index, name="yyy") | |
assert obj.dtype == from_key | |
exp = pd.Series(self.rep[to_key], index=index, name="yyy") | |
warn = FutureWarning | |
if isinstance(obj.dtype, pd.DatetimeTZDtype) and isinstance( | |
exp.dtype, pd.DatetimeTZDtype | |
): | |
# with mismatched tzs, we retain the original dtype as of 2.0 | |
exp = exp.astype(obj.dtype) | |
warn = None | |
else: | |
assert exp.dtype == to_key | |
if to_key == from_key: | |
warn = None | |
msg = "Downcasting behavior in `replace`" | |
with tm.assert_produces_warning(warn, match=msg): | |
result = obj.replace(replacer) | |
tm.assert_series_equal(result, exp) | |
def test_replace_series_period(self): | |
raise NotImplementedError | |