peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/indexing
/test_datetime.py
import re | |
import pytest | |
import pandas as pd | |
from pandas import ( | |
DataFrame, | |
Index, | |
Series, | |
Timestamp, | |
date_range, | |
) | |
import pandas._testing as tm | |
class TestDatetimeIndex: | |
def test_get_loc_naive_dti_aware_str_deprecated(self): | |
# GH#46903 | |
ts = Timestamp("20130101")._value | |
dti = pd.DatetimeIndex([ts + 50 + i for i in range(100)]) | |
ser = Series(range(100), index=dti) | |
key = "2013-01-01 00:00:00.000000050+0000" | |
msg = re.escape(repr(key)) | |
with pytest.raises(KeyError, match=msg): | |
ser[key] | |
with pytest.raises(KeyError, match=msg): | |
dti.get_loc(key) | |
def test_indexing_with_datetime_tz(self): | |
# GH#8260 | |
# support datetime64 with tz | |
idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo") | |
dr = date_range("20130110", periods=3) | |
df = DataFrame({"A": idx, "B": dr}) | |
df["C"] = idx | |
df.iloc[1, 1] = pd.NaT | |
df.iloc[1, 2] = pd.NaT | |
expected = Series( | |
[Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT], | |
index=list("ABC"), | |
dtype="object", | |
name=1, | |
) | |
# indexing | |
result = df.iloc[1] | |
tm.assert_series_equal(result, expected) | |
result = df.loc[1] | |
tm.assert_series_equal(result, expected) | |
def test_indexing_fast_xs(self): | |
# indexing - fast_xs | |
df = DataFrame({"a": date_range("2014-01-01", periods=10, tz="UTC")}) | |
result = df.iloc[5] | |
expected = Series( | |
[Timestamp("2014-01-06 00:00:00+0000", tz="UTC")], | |
index=["a"], | |
name=5, | |
dtype="M8[ns, UTC]", | |
) | |
tm.assert_series_equal(result, expected) | |
result = df.loc[5] | |
tm.assert_series_equal(result, expected) | |
# indexing - boolean | |
result = df[df.a > df.a[3]] | |
expected = df.iloc[4:] | |
tm.assert_frame_equal(result, expected) | |
def test_consistency_with_tz_aware_scalar(self): | |
# xef gh-12938 | |
# various ways of indexing the same tz-aware scalar | |
df = Series([Timestamp("2016-03-30 14:35:25", tz="Europe/Brussels")]).to_frame() | |
df = pd.concat([df, df]).reset_index(drop=True) | |
expected = Timestamp("2016-03-30 14:35:25+0200", tz="Europe/Brussels") | |
result = df[0][0] | |
assert result == expected | |
result = df.iloc[0, 0] | |
assert result == expected | |
result = df.loc[0, 0] | |
assert result == expected | |
result = df.iat[0, 0] | |
assert result == expected | |
result = df.at[0, 0] | |
assert result == expected | |
result = df[0].loc[0] | |
assert result == expected | |
result = df[0].at[0] | |
assert result == expected | |
def test_indexing_with_datetimeindex_tz(self, indexer_sl): | |
# GH 12050 | |
# indexing on a series with a datetimeindex with tz | |
index = date_range("2015-01-01", periods=2, tz="utc") | |
ser = Series(range(2), index=index, dtype="int64") | |
# list-like indexing | |
for sel in (index, list(index)): | |
# getitem | |
result = indexer_sl(ser)[sel] | |
expected = ser.copy() | |
if sel is not index: | |
expected.index = expected.index._with_freq(None) | |
tm.assert_series_equal(result, expected) | |
# setitem | |
result = ser.copy() | |
indexer_sl(result)[sel] = 1 | |
expected = Series(1, index=index) | |
tm.assert_series_equal(result, expected) | |
# single element indexing | |
# getitem | |
assert indexer_sl(ser)[index[1]] == 1 | |
# setitem | |
result = ser.copy() | |
indexer_sl(result)[index[1]] = 5 | |
expected = Series([0, 5], index=index) | |
tm.assert_series_equal(result, expected) | |
def test_nanosecond_getitem_setitem_with_tz(self): | |
# GH 11679 | |
data = ["2016-06-28 08:30:00.123456789"] | |
index = pd.DatetimeIndex(data, dtype="datetime64[ns, America/Chicago]") | |
df = DataFrame({"a": [10]}, index=index) | |
result = df.loc[df.index[0]] | |
expected = Series(10, index=["a"], name=df.index[0]) | |
tm.assert_series_equal(result, expected) | |
result = df.copy() | |
result.loc[df.index[0], "a"] = -1 | |
expected = DataFrame(-1, index=index, columns=["a"]) | |
tm.assert_frame_equal(result, expected) | |
def test_getitem_str_slice_millisecond_resolution(self, frame_or_series): | |
# GH#33589 | |
keys = [ | |
"2017-10-25T16:25:04.151", | |
"2017-10-25T16:25:04.252", | |
"2017-10-25T16:50:05.237", | |
"2017-10-25T16:50:05.238", | |
] | |
obj = frame_or_series( | |
[1, 2, 3, 4], | |
index=[Timestamp(x) for x in keys], | |
) | |
result = obj[keys[1] : keys[2]] | |
expected = frame_or_series( | |
[2, 3], | |
index=[ | |
Timestamp(keys[1]), | |
Timestamp(keys[2]), | |
], | |
) | |
tm.assert_equal(result, expected) | |
def test_getitem_pyarrow_index(self, frame_or_series): | |
# GH 53644 | |
pytest.importorskip("pyarrow") | |
obj = frame_or_series( | |
range(5), | |
index=date_range("2020", freq="D", periods=5).astype( | |
"timestamp[us][pyarrow]" | |
), | |
) | |
result = obj.loc[obj.index[:-3]] | |
expected = frame_or_series( | |
range(2), | |
index=date_range("2020", freq="D", periods=2).astype( | |
"timestamp[us][pyarrow]" | |
), | |
) | |
tm.assert_equal(result, expected) | |