peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/indexing
/test_floats.py
import numpy as np | |
import pytest | |
from pandas import ( | |
DataFrame, | |
Index, | |
RangeIndex, | |
Series, | |
date_range, | |
period_range, | |
timedelta_range, | |
) | |
import pandas._testing as tm | |
def gen_obj(klass, index): | |
if klass is Series: | |
obj = Series(np.arange(len(index)), index=index) | |
else: | |
obj = DataFrame( | |
np.random.default_rng(2).standard_normal((len(index), len(index))), | |
index=index, | |
columns=index, | |
) | |
return obj | |
class TestFloatIndexers: | |
def check(self, result, original, indexer, getitem): | |
""" | |
comparator for results | |
we need to take care if we are indexing on a | |
Series or a frame | |
""" | |
if isinstance(original, Series): | |
expected = original.iloc[indexer] | |
elif getitem: | |
expected = original.iloc[:, indexer] | |
else: | |
expected = original.iloc[indexer] | |
tm.assert_almost_equal(result, expected) | |
def test_scalar_non_numeric(self, index, frame_or_series, indexer_sl): | |
# GH 4892 | |
# float_indexers should raise exceptions | |
# on appropriate Index types & accessors | |
s = gen_obj(frame_or_series, index) | |
# getting | |
with pytest.raises(KeyError, match="^3.0$"): | |
indexer_sl(s)[3.0] | |
# contains | |
assert 3.0 not in s | |
s2 = s.copy() | |
indexer_sl(s2)[3.0] = 10 | |
if indexer_sl is tm.setitem: | |
assert 3.0 in s2.axes[-1] | |
elif indexer_sl is tm.loc: | |
assert 3.0 in s2.axes[0] | |
else: | |
assert 3.0 not in s2.axes[0] | |
assert 3.0 not in s2.axes[-1] | |
def test_scalar_non_numeric_series_fallback(self, index): | |
# fallsback to position selection, series only | |
s = Series(np.arange(len(index)), index=index) | |
msg = "Series.__getitem__ treating keys as positions is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
s[3] | |
with pytest.raises(KeyError, match="^3.0$"): | |
s[3.0] | |
def test_scalar_with_mixed(self, indexer_sl): | |
s2 = Series([1, 2, 3], index=["a", "b", "c"]) | |
s3 = Series([1, 2, 3], index=["a", "b", 1.5]) | |
# lookup in a pure string index with an invalid indexer | |
with pytest.raises(KeyError, match="^1.0$"): | |
indexer_sl(s2)[1.0] | |
with pytest.raises(KeyError, match=r"^1\.0$"): | |
indexer_sl(s2)[1.0] | |
result = indexer_sl(s2)["b"] | |
expected = 2 | |
assert result == expected | |
# mixed index so we have label | |
# indexing | |
with pytest.raises(KeyError, match="^1.0$"): | |
indexer_sl(s3)[1.0] | |
if indexer_sl is not tm.loc: | |
# __getitem__ falls back to positional | |
msg = "Series.__getitem__ treating keys as positions is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = s3[1] | |
expected = 2 | |
assert result == expected | |
with pytest.raises(KeyError, match=r"^1\.0$"): | |
indexer_sl(s3)[1.0] | |
result = indexer_sl(s3)[1.5] | |
expected = 3 | |
assert result == expected | |
def test_scalar_integer(self, index, frame_or_series, indexer_sl): | |
getitem = indexer_sl is not tm.loc | |
# test how scalar float indexers work on int indexes | |
# integer index | |
i = index | |
obj = gen_obj(frame_or_series, i) | |
# coerce to equal int | |
result = indexer_sl(obj)[3.0] | |
self.check(result, obj, 3, getitem) | |
if isinstance(obj, Series): | |
def compare(x, y): | |
assert x == y | |
expected = 100 | |
else: | |
compare = tm.assert_series_equal | |
if getitem: | |
expected = Series(100, index=range(len(obj)), name=3) | |
else: | |
expected = Series(100.0, index=range(len(obj)), name=3) | |
s2 = obj.copy() | |
indexer_sl(s2)[3.0] = 100 | |
result = indexer_sl(s2)[3.0] | |
compare(result, expected) | |
result = indexer_sl(s2)[3] | |
compare(result, expected) | |
def test_scalar_integer_contains_float(self, index, frame_or_series): | |
# contains | |
# integer index | |
obj = gen_obj(frame_or_series, index) | |
# coerce to equal int | |
assert 3.0 in obj | |
def test_scalar_float(self, frame_or_series): | |
# scalar float indexers work on a float index | |
index = Index(np.arange(5.0)) | |
s = gen_obj(frame_or_series, index) | |
# assert all operations except for iloc are ok | |
indexer = index[3] | |
for idxr in [tm.loc, tm.setitem]: | |
getitem = idxr is not tm.loc | |
# getting | |
result = idxr(s)[indexer] | |
self.check(result, s, 3, getitem) | |
# setting | |
s2 = s.copy() | |
result = idxr(s2)[indexer] | |
self.check(result, s, 3, getitem) | |
# random float is a KeyError | |
with pytest.raises(KeyError, match=r"^3\.5$"): | |
idxr(s)[3.5] | |
# contains | |
assert 3.0 in s | |
# iloc succeeds with an integer | |
expected = s.iloc[3] | |
s2 = s.copy() | |
s2.iloc[3] = expected | |
result = s2.iloc[3] | |
self.check(result, s, 3, False) | |
def test_slice_non_numeric(self, index, idx, frame_or_series, indexer_sli): | |
# GH 4892 | |
# float_indexers should raise exceptions | |
# on appropriate Index types & accessors | |
s = gen_obj(frame_or_series, index) | |
# getitem | |
if indexer_sli is tm.iloc: | |
msg = ( | |
"cannot do positional indexing " | |
rf"on {type(index).__name__} with these indexers \[(3|4)\.0\] of " | |
"type float" | |
) | |
else: | |
msg = ( | |
"cannot do slice indexing " | |
rf"on {type(index).__name__} with these indexers " | |
r"\[(3|4)(\.0)?\] " | |
r"of type (float|int)" | |
) | |
with pytest.raises(TypeError, match=msg): | |
indexer_sli(s)[idx] | |
# setitem | |
if indexer_sli is tm.iloc: | |
# otherwise we keep the same message as above | |
msg = "slice indices must be integers or None or have an __index__ method" | |
with pytest.raises(TypeError, match=msg): | |
indexer_sli(s)[idx] = 0 | |
def test_slice_integer(self): | |
# same as above, but for Integer based indexes | |
# these coerce to a like integer | |
# oob indicates if we are out of bounds | |
# of positional indexing | |
for index, oob in [ | |
(Index(np.arange(5, dtype=np.int64)), False), | |
(RangeIndex(5), False), | |
(Index(np.arange(5, dtype=np.int64) + 10), True), | |
]: | |
# s is an in-range index | |
s = Series(range(5), index=index) | |
# getitem | |
for idx in [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)]: | |
result = s.loc[idx] | |
# these are all label indexing | |
# except getitem which is positional | |
# empty | |
if oob: | |
indexer = slice(0, 0) | |
else: | |
indexer = slice(3, 5) | |
self.check(result, s, indexer, False) | |
# getitem out-of-bounds | |
for idx in [slice(-6, 6), slice(-6.0, 6.0)]: | |
result = s.loc[idx] | |
# these are all label indexing | |
# except getitem which is positional | |
# empty | |
if oob: | |
indexer = slice(0, 0) | |
else: | |
indexer = slice(-6, 6) | |
self.check(result, s, indexer, False) | |
# positional indexing | |
msg = ( | |
"cannot do slice indexing " | |
rf"on {type(index).__name__} with these indexers \[-6\.0\] of " | |
"type float" | |
) | |
with pytest.raises(TypeError, match=msg): | |
s[slice(-6.0, 6.0)] | |
# getitem odd floats | |
for idx, res1 in [ | |
(slice(2.5, 4), slice(3, 5)), | |
(slice(2, 3.5), slice(2, 4)), | |
(slice(2.5, 3.5), slice(3, 4)), | |
]: | |
result = s.loc[idx] | |
if oob: | |
res = slice(0, 0) | |
else: | |
res = res1 | |
self.check(result, s, res, False) | |
# positional indexing | |
msg = ( | |
"cannot do slice indexing " | |
rf"on {type(index).__name__} with these indexers \[(2|3)\.5\] of " | |
"type float" | |
) | |
with pytest.raises(TypeError, match=msg): | |
s[idx] | |
def test_integer_positional_indexing(self, idx): | |
"""make sure that we are raising on positional indexing | |
w.r.t. an integer index | |
""" | |
s = Series(range(2, 6), index=range(2, 6)) | |
result = s[2:4] | |
expected = s.iloc[2:4] | |
tm.assert_series_equal(result, expected) | |
klass = RangeIndex | |
msg = ( | |
"cannot do (slice|positional) indexing " | |
rf"on {klass.__name__} with these indexers \[(2|4)\.0\] of " | |
"type float" | |
) | |
with pytest.raises(TypeError, match=msg): | |
s[idx] | |
with pytest.raises(TypeError, match=msg): | |
s.iloc[idx] | |
def test_slice_integer_frame_getitem(self, index): | |
# similar to above, but on the getitem dim (of a DataFrame) | |
s = DataFrame(np.random.default_rng(2).standard_normal((5, 2)), index=index) | |
# getitem | |
for idx in [slice(0.0, 1), slice(0, 1.0), slice(0.0, 1.0)]: | |
result = s.loc[idx] | |
indexer = slice(0, 2) | |
self.check(result, s, indexer, False) | |
# positional indexing | |
msg = ( | |
"cannot do slice indexing " | |
rf"on {type(index).__name__} with these indexers \[(0|1)\.0\] of " | |
"type float" | |
) | |
with pytest.raises(TypeError, match=msg): | |
s[idx] | |
# getitem out-of-bounds | |
for idx in [slice(-10, 10), slice(-10.0, 10.0)]: | |
result = s.loc[idx] | |
self.check(result, s, slice(-10, 10), True) | |
# positional indexing | |
msg = ( | |
"cannot do slice indexing " | |
rf"on {type(index).__name__} with these indexers \[-10\.0\] of " | |
"type float" | |
) | |
with pytest.raises(TypeError, match=msg): | |
s[slice(-10.0, 10.0)] | |
# getitem odd floats | |
for idx, res in [ | |
(slice(0.5, 1), slice(1, 2)), | |
(slice(0, 0.5), slice(0, 1)), | |
(slice(0.5, 1.5), slice(1, 2)), | |
]: | |
result = s.loc[idx] | |
self.check(result, s, res, False) | |
# positional indexing | |
msg = ( | |
"cannot do slice indexing " | |
rf"on {type(index).__name__} with these indexers \[0\.5\] of " | |
"type float" | |
) | |
with pytest.raises(TypeError, match=msg): | |
s[idx] | |
def test_float_slice_getitem_with_integer_index_raises(self, idx, index): | |
# similar to above, but on the getitem dim (of a DataFrame) | |
s = DataFrame(np.random.default_rng(2).standard_normal((5, 2)), index=index) | |
# setitem | |
sc = s.copy() | |
sc.loc[idx] = 0 | |
result = sc.loc[idx].values.ravel() | |
assert (result == 0).all() | |
# positional indexing | |
msg = ( | |
"cannot do slice indexing " | |
rf"on {type(index).__name__} with these indexers \[(3|4)\.0\] of " | |
"type float" | |
) | |
with pytest.raises(TypeError, match=msg): | |
s[idx] = 0 | |
with pytest.raises(TypeError, match=msg): | |
s[idx] | |
def test_slice_float(self, idx, frame_or_series, indexer_sl): | |
# same as above, but for floats | |
index = Index(np.arange(5.0)) + 0.1 | |
s = gen_obj(frame_or_series, index) | |
expected = s.iloc[3:4] | |
# getitem | |
result = indexer_sl(s)[idx] | |
assert isinstance(result, type(s)) | |
tm.assert_equal(result, expected) | |
# setitem | |
s2 = s.copy() | |
indexer_sl(s2)[idx] = 0 | |
result = indexer_sl(s2)[idx].values.ravel() | |
assert (result == 0).all() | |
def test_floating_index_doc_example(self): | |
index = Index([1.5, 2, 3, 4.5, 5]) | |
s = Series(range(5), index=index) | |
assert s[3] == 2 | |
assert s.loc[3] == 2 | |
assert s.iloc[3] == 3 | |
def test_floating_misc(self, indexer_sl): | |
# related 236 | |
# scalar/slicing of a float index | |
s = Series(np.arange(5), index=np.arange(5) * 2.5, dtype=np.int64) | |
# label based slicing | |
result = indexer_sl(s)[1.0:3.0] | |
expected = Series(1, index=[2.5]) | |
tm.assert_series_equal(result, expected) | |
# exact indexing when found | |
result = indexer_sl(s)[5.0] | |
assert result == 2 | |
result = indexer_sl(s)[5] | |
assert result == 2 | |
# value not found (and no fallbacking at all) | |
# scalar integers | |
with pytest.raises(KeyError, match=r"^4$"): | |
indexer_sl(s)[4] | |
# fancy floats/integers create the correct entry (as nan) | |
# fancy tests | |
expected = Series([2, 0], index=Index([5.0, 0.0], dtype=np.float64)) | |
for fancy_idx in [[5.0, 0.0], np.array([5.0, 0.0])]: # float | |
tm.assert_series_equal(indexer_sl(s)[fancy_idx], expected) | |
expected = Series([2, 0], index=Index([5, 0], dtype="float64")) | |
for fancy_idx in [[5, 0], np.array([5, 0])]: | |
tm.assert_series_equal(indexer_sl(s)[fancy_idx], expected) | |
warn = FutureWarning if indexer_sl is tm.setitem else None | |
msg = r"The behavior of obj\[i:j\] with a float-dtype index" | |
# all should return the same as we are slicing 'the same' | |
with tm.assert_produces_warning(warn, match=msg): | |
result1 = indexer_sl(s)[2:5] | |
result2 = indexer_sl(s)[2.0:5.0] | |
result3 = indexer_sl(s)[2.0:5] | |
result4 = indexer_sl(s)[2.1:5] | |
tm.assert_series_equal(result1, result2) | |
tm.assert_series_equal(result1, result3) | |
tm.assert_series_equal(result1, result4) | |
expected = Series([1, 2], index=[2.5, 5.0]) | |
with tm.assert_produces_warning(warn, match=msg): | |
result = indexer_sl(s)[2:5] | |
tm.assert_series_equal(result, expected) | |
# list selection | |
result1 = indexer_sl(s)[[0.0, 5, 10]] | |
result2 = s.iloc[[0, 2, 4]] | |
tm.assert_series_equal(result1, result2) | |
with pytest.raises(KeyError, match="not in index"): | |
indexer_sl(s)[[1.6, 5, 10]] | |
with pytest.raises(KeyError, match="not in index"): | |
indexer_sl(s)[[0, 1, 2]] | |
result = indexer_sl(s)[[2.5, 5]] | |
tm.assert_series_equal(result, Series([1, 2], index=[2.5, 5.0])) | |
result = indexer_sl(s)[[2.5]] | |
tm.assert_series_equal(result, Series([1], index=[2.5])) | |
def test_floatindex_slicing_bug(self, float_numpy_dtype): | |
# GH 5557, related to slicing a float index | |
dtype = float_numpy_dtype | |
ser = { | |
256: 2321.0, | |
1: 78.0, | |
2: 2716.0, | |
3: 0.0, | |
4: 369.0, | |
5: 0.0, | |
6: 269.0, | |
7: 0.0, | |
8: 0.0, | |
9: 0.0, | |
10: 3536.0, | |
11: 0.0, | |
12: 24.0, | |
13: 0.0, | |
14: 931.0, | |
15: 0.0, | |
16: 101.0, | |
17: 78.0, | |
18: 9643.0, | |
19: 0.0, | |
20: 0.0, | |
21: 0.0, | |
22: 63761.0, | |
23: 0.0, | |
24: 446.0, | |
25: 0.0, | |
26: 34773.0, | |
27: 0.0, | |
28: 729.0, | |
29: 78.0, | |
30: 0.0, | |
31: 0.0, | |
32: 3374.0, | |
33: 0.0, | |
34: 1391.0, | |
35: 0.0, | |
36: 361.0, | |
37: 0.0, | |
38: 61808.0, | |
39: 0.0, | |
40: 0.0, | |
41: 0.0, | |
42: 6677.0, | |
43: 0.0, | |
44: 802.0, | |
45: 0.0, | |
46: 2691.0, | |
47: 0.0, | |
48: 3582.0, | |
49: 0.0, | |
50: 734.0, | |
51: 0.0, | |
52: 627.0, | |
53: 70.0, | |
54: 2584.0, | |
55: 0.0, | |
56: 324.0, | |
57: 0.0, | |
58: 605.0, | |
59: 0.0, | |
60: 0.0, | |
61: 0.0, | |
62: 3989.0, | |
63: 10.0, | |
64: 42.0, | |
65: 0.0, | |
66: 904.0, | |
67: 0.0, | |
68: 88.0, | |
69: 70.0, | |
70: 8172.0, | |
71: 0.0, | |
72: 0.0, | |
73: 0.0, | |
74: 64902.0, | |
75: 0.0, | |
76: 347.0, | |
77: 0.0, | |
78: 36605.0, | |
79: 0.0, | |
80: 379.0, | |
81: 70.0, | |
82: 0.0, | |
83: 0.0, | |
84: 3001.0, | |
85: 0.0, | |
86: 1630.0, | |
87: 7.0, | |
88: 364.0, | |
89: 0.0, | |
90: 67404.0, | |
91: 9.0, | |
92: 0.0, | |
93: 0.0, | |
94: 7685.0, | |
95: 0.0, | |
96: 1017.0, | |
97: 0.0, | |
98: 2831.0, | |
99: 0.0, | |
100: 2963.0, | |
101: 0.0, | |
102: 854.0, | |
103: 0.0, | |
104: 0.0, | |
105: 0.0, | |
106: 0.0, | |
107: 0.0, | |
108: 0.0, | |
109: 0.0, | |
110: 0.0, | |
111: 0.0, | |
112: 0.0, | |
113: 0.0, | |
114: 0.0, | |
115: 0.0, | |
116: 0.0, | |
117: 0.0, | |
118: 0.0, | |
119: 0.0, | |
120: 0.0, | |
121: 0.0, | |
122: 0.0, | |
123: 0.0, | |
124: 0.0, | |
125: 0.0, | |
126: 67744.0, | |
127: 22.0, | |
128: 264.0, | |
129: 0.0, | |
260: 197.0, | |
268: 0.0, | |
265: 0.0, | |
269: 0.0, | |
261: 0.0, | |
266: 1198.0, | |
267: 0.0, | |
262: 2629.0, | |
258: 775.0, | |
257: 0.0, | |
263: 0.0, | |
259: 0.0, | |
264: 163.0, | |
250: 10326.0, | |
251: 0.0, | |
252: 1228.0, | |
253: 0.0, | |
254: 2769.0, | |
255: 0.0, | |
} | |
# smoke test for the repr | |
s = Series(ser, dtype=dtype) | |
result = s.value_counts() | |
assert result.index.dtype == dtype | |
str(result) | |