peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/indexing
/test_loc.py
""" test label based indexing with loc """ | |
from collections import namedtuple | |
from datetime import ( | |
date, | |
datetime, | |
time, | |
timedelta, | |
) | |
import re | |
from dateutil.tz import gettz | |
import numpy as np | |
import pytest | |
from pandas._config import using_pyarrow_string_dtype | |
from pandas._libs import index as libindex | |
from pandas.compat.numpy import np_version_gt2 | |
from pandas.errors import IndexingError | |
import pandas.util._test_decorators as td | |
import pandas as pd | |
from pandas import ( | |
Categorical, | |
CategoricalDtype, | |
CategoricalIndex, | |
DataFrame, | |
DatetimeIndex, | |
Index, | |
IndexSlice, | |
MultiIndex, | |
Period, | |
PeriodIndex, | |
Series, | |
SparseDtype, | |
Timedelta, | |
Timestamp, | |
date_range, | |
timedelta_range, | |
to_datetime, | |
to_timedelta, | |
) | |
import pandas._testing as tm | |
from pandas.api.types import is_scalar | |
from pandas.core.indexing import _one_ellipsis_message | |
from pandas.tests.indexing.common import check_indexing_smoketest_or_raises | |
def test_not_change_nan_loc(series, new_series, expected_ser): | |
# GH 28403 | |
df = DataFrame({"A": series}) | |
df.loc[:, "A"] = new_series | |
expected = DataFrame({"A": expected_ser}) | |
tm.assert_frame_equal(df.isna(), expected) | |
tm.assert_frame_equal(df.notna(), ~expected) | |
class TestLoc: | |
def test_none_values_on_string_columns(self): | |
# Issue #32218 | |
df = DataFrame(["1", "2", None], columns=["a"], dtype="str") | |
assert df.loc[2, "a"] is None | |
def test_loc_getitem_int(self, kind, request): | |
# int label | |
obj = request.getfixturevalue(f"{kind}_labels") | |
check_indexing_smoketest_or_raises(obj, "loc", 2, fails=KeyError) | |
def test_loc_getitem_label(self, kind, request): | |
# label | |
obj = request.getfixturevalue(f"{kind}_empty") | |
check_indexing_smoketest_or_raises(obj, "loc", "c", fails=KeyError) | |
def test_loc_getitem_label_out_of_range(self, key, typs, axes, kind, request): | |
for typ in typs: | |
obj = request.getfixturevalue(f"{kind}_{typ}") | |
# out of range label | |
check_indexing_smoketest_or_raises( | |
obj, "loc", key, axes=axes, fails=KeyError | |
) | |
def test_loc_getitem_label_list(self, key, typs, kind, request): | |
for typ in typs: | |
obj = request.getfixturevalue(f"{kind}_{typ}") | |
# list of labels | |
check_indexing_smoketest_or_raises(obj, "loc", key, fails=KeyError) | |
def test_loc_getitem_label_list_with_missing(self, key, typs, axes, kind, request): | |
for typ in typs: | |
obj = request.getfixturevalue(f"{kind}_{typ}") | |
check_indexing_smoketest_or_raises( | |
obj, "loc", key, axes=axes, fails=KeyError | |
) | |
def test_loc_getitem_label_list_fails(self, typs, kind, request): | |
# fails | |
obj = request.getfixturevalue(f"{kind}_{typs}") | |
check_indexing_smoketest_or_raises( | |
obj, "loc", [20, 30, 40], axes=1, fails=KeyError | |
) | |
def test_loc_getitem_label_array_like(self): | |
# TODO: test something? | |
# array like | |
pass | |
def test_loc_getitem_bool(self, kind, request): | |
obj = request.getfixturevalue(f"{kind}_empty") | |
# boolean indexers | |
b = [True, False, True, False] | |
check_indexing_smoketest_or_raises(obj, "loc", b, fails=IndexError) | |
def test_loc_getitem_label_slice(self, slc, typs, axes, fails, kind, request): | |
# label slices (with ints) | |
# real label slices | |
# GH 14316 | |
for typ in typs: | |
obj = request.getfixturevalue(f"{kind}_{typ}") | |
check_indexing_smoketest_or_raises( | |
obj, | |
"loc", | |
slc, | |
axes=axes, | |
fails=fails, | |
) | |
def test_setitem_from_duplicate_axis(self): | |
# GH#34034 | |
df = DataFrame( | |
[[20, "a"], [200, "a"], [200, "a"]], | |
columns=["col1", "col2"], | |
index=[10, 1, 1], | |
) | |
df.loc[1, "col1"] = np.arange(2) | |
expected = DataFrame( | |
[[20, "a"], [0, "a"], [1, "a"]], columns=["col1", "col2"], index=[10, 1, 1] | |
) | |
tm.assert_frame_equal(df, expected) | |
def test_column_types_consistent(self): | |
# GH 26779 | |
df = DataFrame( | |
data={ | |
"channel": [1, 2, 3], | |
"A": ["String 1", np.nan, "String 2"], | |
"B": [ | |
Timestamp("2019-06-11 11:00:00"), | |
pd.NaT, | |
Timestamp("2019-06-11 12:00:00"), | |
], | |
} | |
) | |
df2 = DataFrame( | |
data={"A": ["String 3"], "B": [Timestamp("2019-06-11 12:00:00")]} | |
) | |
# Change Columns A and B to df2.values wherever Column A is NaN | |
df.loc[df["A"].isna(), ["A", "B"]] = df2.values | |
expected = DataFrame( | |
data={ | |
"channel": [1, 2, 3], | |
"A": ["String 1", "String 3", "String 2"], | |
"B": [ | |
Timestamp("2019-06-11 11:00:00"), | |
Timestamp("2019-06-11 12:00:00"), | |
Timestamp("2019-06-11 12:00:00"), | |
], | |
} | |
) | |
tm.assert_frame_equal(df, expected) | |
def test_loc_getitem_single_boolean_arg(self, obj, key, exp): | |
# GH 44322 | |
res = obj.loc[key] | |
if isinstance(exp, (DataFrame, Series)): | |
tm.assert_equal(res, exp) | |
else: | |
assert res == exp | |
class TestLocBaseIndependent: | |
# Tests for loc that do not depend on subclassing Base | |
def test_loc_npstr(self): | |
# GH#45580 | |
df = DataFrame(index=date_range("2021", "2022")) | |
result = df.loc[np.array(["2021/6/1"])[0] :] | |
expected = df.iloc[151:] | |
tm.assert_frame_equal(result, expected) | |
def test_contains_raise_error_if_period_index_is_in_multi_index(self, msg, key): | |
# GH#20684 | |
""" | |
parse_datetime_string_with_reso return parameter if type not matched. | |
PeriodIndex.get_loc takes returned value from parse_datetime_string_with_reso | |
as a tuple. | |
If first argument is Period and a tuple has 3 items, | |
process go on not raise exception | |
""" | |
df = DataFrame( | |
{ | |
"A": [Period(2019), "x1", "x2"], | |
"B": [Period(2018), Period(2016), "y1"], | |
"C": [Period(2017), "z1", Period(2015)], | |
"V1": [1, 2, 3], | |
"V2": [10, 20, 30], | |
} | |
).set_index(["A", "B", "C"]) | |
with pytest.raises(KeyError, match=msg): | |
df.loc[key] | |
def test_loc_getitem_missing_unicode_key(self): | |
df = DataFrame({"a": [1]}) | |
with pytest.raises(KeyError, match="\u05d0"): | |
df.loc[:, "\u05d0"] # should not raise UnicodeEncodeError | |
def test_loc_getitem_dups(self): | |
# GH 5678 | |
# repeated getitems on a dup index returning a ndarray | |
df = DataFrame( | |
np.random.default_rng(2).random((20, 5)), | |
index=["ABCDE"[x % 5] for x in range(20)], | |
) | |
expected = df.loc["A", 0] | |
result = df.loc[:, 0].loc["A"] | |
tm.assert_series_equal(result, expected) | |
def test_loc_getitem_dups2(self): | |
# GH4726 | |
# dup indexing with iloc/loc | |
df = DataFrame( | |
[[1, 2, "foo", "bar", Timestamp("20130101")]], | |
columns=["a", "a", "a", "a", "a"], | |
index=[1], | |
) | |
expected = Series( | |
[1, 2, "foo", "bar", Timestamp("20130101")], | |
index=["a", "a", "a", "a", "a"], | |
name=1, | |
) | |
result = df.iloc[0] | |
tm.assert_series_equal(result, expected) | |
result = df.loc[1] | |
tm.assert_series_equal(result, expected) | |
def test_loc_setitem_dups(self): | |
# GH 6541 | |
df_orig = DataFrame( | |
{ | |
"me": list("rttti"), | |
"foo": list("aaade"), | |
"bar": np.arange(5, dtype="float64") * 1.34 + 2, | |
"bar2": np.arange(5, dtype="float64") * -0.34 + 2, | |
} | |
).set_index("me") | |
indexer = ( | |
"r", | |
["bar", "bar2"], | |
) | |
df = df_orig.copy() | |
df.loc[indexer] *= 2.0 | |
tm.assert_series_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) | |
indexer = ( | |
"r", | |
"bar", | |
) | |
df = df_orig.copy() | |
df.loc[indexer] *= 2.0 | |
assert df.loc[indexer] == 2.0 * df_orig.loc[indexer] | |
indexer = ( | |
"t", | |
["bar", "bar2"], | |
) | |
df = df_orig.copy() | |
df.loc[indexer] *= 2.0 | |
tm.assert_frame_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) | |
def test_loc_setitem_slice(self): | |
# GH10503 | |
# assigning the same type should not change the type | |
df1 = DataFrame({"a": [0, 1, 1], "b": Series([100, 200, 300], dtype="uint32")}) | |
ix = df1["a"] == 1 | |
newb1 = df1.loc[ix, "b"] + 1 | |
df1.loc[ix, "b"] = newb1 | |
expected = DataFrame( | |
{"a": [0, 1, 1], "b": Series([100, 201, 301], dtype="uint32")} | |
) | |
tm.assert_frame_equal(df1, expected) | |
# assigning a new type should get the inferred type | |
df2 = DataFrame({"a": [0, 1, 1], "b": [100, 200, 300]}, dtype="uint64") | |
ix = df1["a"] == 1 | |
newb2 = df2.loc[ix, "b"] | |
with tm.assert_produces_warning( | |
FutureWarning, match="item of incompatible dtype" | |
): | |
df1.loc[ix, "b"] = newb2 | |
expected = DataFrame({"a": [0, 1, 1], "b": [100, 200, 300]}, dtype="uint64") | |
tm.assert_frame_equal(df2, expected) | |
def test_loc_setitem_dtype(self): | |
# GH31340 | |
df = DataFrame({"id": ["A"], "a": [1.2], "b": [0.0], "c": [-2.5]}) | |
cols = ["a", "b", "c"] | |
df.loc[:, cols] = df.loc[:, cols].astype("float32") | |
# pre-2.0 this setting would swap in new arrays, in 2.0 it is correctly | |
# in-place, consistent with non-split-path | |
expected = DataFrame( | |
{ | |
"id": ["A"], | |
"a": np.array([1.2], dtype="float64"), | |
"b": np.array([0.0], dtype="float64"), | |
"c": np.array([-2.5], dtype="float64"), | |
} | |
) # id is inferred as object | |
tm.assert_frame_equal(df, expected) | |
def test_getitem_label_list_with_missing(self): | |
s = Series(range(3), index=["a", "b", "c"]) | |
# consistency | |
with pytest.raises(KeyError, match="not in index"): | |
s[["a", "d"]] | |
s = Series(range(3)) | |
with pytest.raises(KeyError, match="not in index"): | |
s[[0, 3]] | |
def test_loc_getitem_bool_diff_len(self, index): | |
# GH26658 | |
s = Series([1, 2, 3]) | |
msg = f"Boolean index has wrong length: {len(index)} instead of {len(s)}" | |
with pytest.raises(IndexError, match=msg): | |
s.loc[index] | |
def test_loc_getitem_int_slice(self): | |
# TODO: test something here? | |
pass | |
def test_loc_to_fail(self): | |
# GH3449 | |
df = DataFrame( | |
np.random.default_rng(2).random((3, 3)), | |
index=["a", "b", "c"], | |
columns=["e", "f", "g"], | |
) | |
msg = ( | |
rf"\"None of \[Index\(\[1, 2\], dtype='{np.dtype(int)}'\)\] are " | |
r"in the \[index\]\"" | |
) | |
with pytest.raises(KeyError, match=msg): | |
df.loc[[1, 2], [1, 2]] | |
def test_loc_to_fail2(self): | |
# GH 7496 | |
# loc should not fallback | |
s = Series(dtype=object) | |
s.loc[1] = 1 | |
s.loc["a"] = 2 | |
with pytest.raises(KeyError, match=r"^-1$"): | |
s.loc[-1] | |
msg = ( | |
rf"\"None of \[Index\(\[-1, -2\], dtype='{np.dtype(int)}'\)\] are " | |
r"in the \[index\]\"" | |
) | |
with pytest.raises(KeyError, match=msg): | |
s.loc[[-1, -2]] | |
msg = r"\"None of \[Index\(\['4'\], dtype='object'\)\] are in the \[index\]\"" | |
with pytest.raises(KeyError, match=msg): | |
s.loc[Index(["4"], dtype=object)] | |
s.loc[-1] = 3 | |
with pytest.raises(KeyError, match="not in index"): | |
s.loc[[-1, -2]] | |
s["a"] = 2 | |
msg = ( | |
rf"\"None of \[Index\(\[-2\], dtype='{np.dtype(int)}'\)\] are " | |
r"in the \[index\]\"" | |
) | |
with pytest.raises(KeyError, match=msg): | |
s.loc[[-2]] | |
del s["a"] | |
with pytest.raises(KeyError, match=msg): | |
s.loc[[-2]] = 0 | |
def test_loc_to_fail3(self): | |
# inconsistency between .loc[values] and .loc[values,:] | |
# GH 7999 | |
df = DataFrame([["a"], ["b"]], index=[1, 2], columns=["value"]) | |
msg = ( | |
rf"\"None of \[Index\(\[3\], dtype='{np.dtype(int)}'\)\] are " | |
r"in the \[index\]\"" | |
) | |
with pytest.raises(KeyError, match=msg): | |
df.loc[[3], :] | |
with pytest.raises(KeyError, match=msg): | |
df.loc[[3]] | |
def test_loc_getitem_list_with_fail(self): | |
# 15747 | |
# should KeyError if *any* missing labels | |
s = Series([1, 2, 3]) | |
s.loc[[2]] | |
msg = f"\"None of [Index([3], dtype='{np.dtype(int)}')] are in the [index]" | |
with pytest.raises(KeyError, match=re.escape(msg)): | |
s.loc[[3]] | |
# a non-match and a match | |
with pytest.raises(KeyError, match="not in index"): | |
s.loc[[2, 3]] | |
def test_loc_index(self): | |
# gh-17131 | |
# a boolean index should index like a boolean numpy array | |
df = DataFrame( | |
np.random.default_rng(2).random(size=(5, 10)), | |
index=["alpha_0", "alpha_1", "alpha_2", "beta_0", "beta_1"], | |
) | |
mask = df.index.map(lambda x: "alpha" in x) | |
expected = df.loc[np.array(mask)] | |
result = df.loc[mask] | |
tm.assert_frame_equal(result, expected) | |
result = df.loc[mask.values] | |
tm.assert_frame_equal(result, expected) | |
result = df.loc[pd.array(mask, dtype="boolean")] | |
tm.assert_frame_equal(result, expected) | |
def test_loc_general(self): | |
df = DataFrame( | |
np.random.default_rng(2).random((4, 4)), | |
columns=["A", "B", "C", "D"], | |
index=["A", "B", "C", "D"], | |
) | |
# want this to work | |
result = df.loc[:, "A":"B"].iloc[0:2, :] | |
assert (result.columns == ["A", "B"]).all() | |
assert (result.index == ["A", "B"]).all() | |
# mixed type | |
result = DataFrame({"a": [Timestamp("20130101")], "b": [1]}).iloc[0] | |
expected = Series([Timestamp("20130101"), 1], index=["a", "b"], name=0) | |
tm.assert_series_equal(result, expected) | |
assert result.dtype == object | |
def frame_for_consistency(self): | |
return DataFrame( | |
{ | |
"date": date_range("2000-01-01", "2000-01-5"), | |
"val": Series(range(5), dtype=np.int64), | |
} | |
) | |
def test_loc_setitem_consistency(self, frame_for_consistency, val): | |
# GH 6149 | |
# coerce similarly for setitem and loc when rows have a null-slice | |
expected = DataFrame( | |
{ | |
"date": Series(0, index=range(5), dtype=np.int64), | |
"val": Series(range(5), dtype=np.int64), | |
} | |
) | |
df = frame_for_consistency.copy() | |
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): | |
df.loc[:, "date"] = val | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_consistency_dt64_to_str(self, frame_for_consistency): | |
# GH 6149 | |
# coerce similarly for setitem and loc when rows have a null-slice | |
expected = DataFrame( | |
{ | |
"date": Series("foo", index=range(5)), | |
"val": Series(range(5), dtype=np.int64), | |
} | |
) | |
df = frame_for_consistency.copy() | |
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): | |
df.loc[:, "date"] = "foo" | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_consistency_dt64_to_float(self, frame_for_consistency): | |
# GH 6149 | |
# coerce similarly for setitem and loc when rows have a null-slice | |
expected = DataFrame( | |
{ | |
"date": Series(1.0, index=range(5)), | |
"val": Series(range(5), dtype=np.int64), | |
} | |
) | |
df = frame_for_consistency.copy() | |
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): | |
df.loc[:, "date"] = 1.0 | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_consistency_single_row(self): | |
# GH 15494 | |
# setting on frame with single row | |
df = DataFrame({"date": Series([Timestamp("20180101")])}) | |
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): | |
df.loc[:, "date"] = "string" | |
expected = DataFrame({"date": Series(["string"])}) | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_consistency_empty(self): | |
# empty (essentially noops) | |
# before the enforcement of #45333 in 2.0, the loc.setitem here would | |
# change the dtype of df.x to int64 | |
expected = DataFrame(columns=["x", "y"]) | |
df = DataFrame(columns=["x", "y"]) | |
with tm.assert_produces_warning(None): | |
df.loc[:, "x"] = 1 | |
tm.assert_frame_equal(df, expected) | |
# setting with setitem swaps in a new array, so changes the dtype | |
df = DataFrame(columns=["x", "y"]) | |
df["x"] = 1 | |
expected["x"] = expected["x"].astype(np.int64) | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_consistency_slice_column_len(self): | |
# .loc[:,column] setting with slice == len of the column | |
# GH10408 | |
levels = [ | |
["Region_1"] * 4, | |
["Site_1", "Site_1", "Site_2", "Site_2"], | |
[3987227376, 3980680971, 3977723249, 3977723089], | |
] | |
mi = MultiIndex.from_arrays(levels, names=["Region", "Site", "RespondentID"]) | |
clevels = [ | |
["Respondent", "Respondent", "Respondent", "OtherCat", "OtherCat"], | |
["Something", "StartDate", "EndDate", "Yes/No", "SomethingElse"], | |
] | |
cols = MultiIndex.from_arrays(clevels, names=["Level_0", "Level_1"]) | |
values = [ | |
["A", "5/25/2015 10:59", "5/25/2015 11:22", "Yes", np.nan], | |
["A", "5/21/2015 9:40", "5/21/2015 9:52", "Yes", "Yes"], | |
["A", "5/20/2015 8:27", "5/20/2015 8:41", "Yes", np.nan], | |
["A", "5/20/2015 8:33", "5/20/2015 9:09", "Yes", "No"], | |
] | |
df = DataFrame(values, index=mi, columns=cols) | |
df.loc[:, ("Respondent", "StartDate")] = to_datetime( | |
df.loc[:, ("Respondent", "StartDate")] | |
) | |
df.loc[:, ("Respondent", "EndDate")] = to_datetime( | |
df.loc[:, ("Respondent", "EndDate")] | |
) | |
df = df.infer_objects(copy=False) | |
# Adding a new key | |
df.loc[:, ("Respondent", "Duration")] = ( | |
df.loc[:, ("Respondent", "EndDate")] | |
- df.loc[:, ("Respondent", "StartDate")] | |
) | |
# timedelta64[m] -> float, so this cannot be done inplace, so | |
# no warning | |
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): | |
df.loc[:, ("Respondent", "Duration")] = df.loc[ | |
:, ("Respondent", "Duration") | |
] / Timedelta(60_000_000_000) | |
expected = Series( | |
[23.0, 12.0, 14.0, 36.0], index=df.index, name=("Respondent", "Duration") | |
) | |
tm.assert_series_equal(df[("Respondent", "Duration")], expected) | |
def test_loc_assign_non_ns_datetime(self, unit): | |
# GH 27395, non-ns dtype assignment via .loc should work | |
# and return the same result when using simple assignment | |
df = DataFrame( | |
{ | |
"timestamp": [ | |
np.datetime64("2017-02-11 12:41:29"), | |
np.datetime64("1991-11-07 04:22:37"), | |
] | |
} | |
) | |
df.loc[:, unit] = df.loc[:, "timestamp"].values.astype(f"datetime64[{unit}]") | |
df["expected"] = df.loc[:, "timestamp"].values.astype(f"datetime64[{unit}]") | |
expected = Series(df.loc[:, "expected"], name=unit) | |
tm.assert_series_equal(df.loc[:, unit], expected) | |
def test_loc_modify_datetime(self): | |
# see gh-28837 | |
df = DataFrame.from_dict( | |
{"date": [1485264372711, 1485265925110, 1540215845888, 1540282121025]} | |
) | |
df["date_dt"] = to_datetime(df["date"], unit="ms", cache=True) | |
df.loc[:, "date_dt_cp"] = df.loc[:, "date_dt"] | |
df.loc[[2, 3], "date_dt_cp"] = df.loc[[2, 3], "date_dt"] | |
expected = DataFrame( | |
[ | |
[1485264372711, "2017-01-24 13:26:12.711", "2017-01-24 13:26:12.711"], | |
[1485265925110, "2017-01-24 13:52:05.110", "2017-01-24 13:52:05.110"], | |
[1540215845888, "2018-10-22 13:44:05.888", "2018-10-22 13:44:05.888"], | |
[1540282121025, "2018-10-23 08:08:41.025", "2018-10-23 08:08:41.025"], | |
], | |
columns=["date", "date_dt", "date_dt_cp"], | |
) | |
columns = ["date_dt", "date_dt_cp"] | |
expected[columns] = expected[columns].apply(to_datetime) | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_frame_with_reindex(self): | |
# GH#6254 setting issue | |
df = DataFrame(index=[3, 5, 4], columns=["A"], dtype=float) | |
df.loc[[4, 3, 5], "A"] = np.array([1, 2, 3], dtype="int64") | |
# setting integer values into a float dataframe with loc is inplace, | |
# so we retain float dtype | |
ser = Series([2, 3, 1], index=[3, 5, 4], dtype=float) | |
expected = DataFrame({"A": ser}) | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_frame_with_reindex_mixed(self): | |
# GH#40480 | |
df = DataFrame(index=[3, 5, 4], columns=["A", "B"], dtype=float) | |
df["B"] = "string" | |
df.loc[[4, 3, 5], "A"] = np.array([1, 2, 3], dtype="int64") | |
ser = Series([2, 3, 1], index=[3, 5, 4], dtype="int64") | |
# pre-2.0 this setting swapped in a new array, now it is inplace | |
# consistent with non-split-path | |
expected = DataFrame({"A": ser.astype(float)}) | |
expected["B"] = "string" | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_frame_with_inverted_slice(self): | |
# GH#40480 | |
df = DataFrame(index=[1, 2, 3], columns=["A", "B"], dtype=float) | |
df["B"] = "string" | |
df.loc[slice(3, 0, -1), "A"] = np.array([1, 2, 3], dtype="int64") | |
# pre-2.0 this setting swapped in a new array, now it is inplace | |
# consistent with non-split-path | |
expected = DataFrame({"A": [3.0, 2.0, 1.0], "B": "string"}, index=[1, 2, 3]) | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_empty_frame(self): | |
# GH#6252 setting with an empty frame | |
keys1 = ["@" + str(i) for i in range(5)] | |
val1 = np.arange(5, dtype="int64") | |
keys2 = ["@" + str(i) for i in range(4)] | |
val2 = np.arange(4, dtype="int64") | |
index = list(set(keys1).union(keys2)) | |
df = DataFrame(index=index) | |
df["A"] = np.nan | |
df.loc[keys1, "A"] = val1 | |
df["B"] = np.nan | |
df.loc[keys2, "B"] = val2 | |
# Because df["A"] was initialized as float64, setting values into it | |
# is inplace, so that dtype is retained | |
sera = Series(val1, index=keys1, dtype=np.float64) | |
serb = Series(val2, index=keys2) | |
expected = DataFrame( | |
{"A": sera, "B": serb}, columns=Index(["A", "B"], dtype=object) | |
).reindex(index=index) | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_frame(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((4, 4)), | |
index=list("abcd"), | |
columns=list("ABCD"), | |
) | |
result = df.iloc[0, 0] | |
df.loc["a", "A"] = 1 | |
result = df.loc["a", "A"] | |
assert result == 1 | |
result = df.iloc[0, 0] | |
assert result == 1 | |
df.loc[:, "B":"D"] = 0 | |
expected = df.loc[:, "B":"D"] | |
result = df.iloc[:, 1:] | |
tm.assert_frame_equal(result, expected) | |
def test_loc_setitem_frame_nan_int_coercion_invalid(self): | |
# GH 8669 | |
# invalid coercion of nan -> int | |
df = DataFrame({"A": [1, 2, 3], "B": np.nan}) | |
df.loc[df.B > df.A, "B"] = df.A | |
expected = DataFrame({"A": [1, 2, 3], "B": np.nan}) | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_frame_mixed_labels(self): | |
# GH 6546 | |
# setting with mixed labels | |
df = DataFrame({1: [1, 2], 2: [3, 4], "a": ["a", "b"]}) | |
result = df.loc[0, [1, 2]] | |
expected = Series( | |
[1, 3], index=Index([1, 2], dtype=object), dtype=object, name=0 | |
) | |
tm.assert_series_equal(result, expected) | |
expected = DataFrame({1: [5, 2], 2: [6, 4], "a": ["a", "b"]}) | |
df.loc[0, [1, 2]] = [5, 6] | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_frame_multiples(self, warn_copy_on_write): | |
# multiple setting | |
df = DataFrame( | |
{"A": ["foo", "bar", "baz"], "B": Series(range(3), dtype=np.int64)} | |
) | |
rhs = df.loc[1:2] | |
rhs.index = df.index[0:2] | |
df.loc[0:1] = rhs | |
expected = DataFrame( | |
{"A": ["bar", "baz", "baz"], "B": Series([1, 2, 2], dtype=np.int64)} | |
) | |
tm.assert_frame_equal(df, expected) | |
# multiple setting with frame on rhs (with M8) | |
df = DataFrame( | |
{ | |
"date": date_range("2000-01-01", "2000-01-5"), | |
"val": Series(range(5), dtype=np.int64), | |
} | |
) | |
expected = DataFrame( | |
{ | |
"date": [ | |
Timestamp("20000101"), | |
Timestamp("20000102"), | |
Timestamp("20000101"), | |
Timestamp("20000102"), | |
Timestamp("20000103"), | |
], | |
"val": Series([0, 1, 0, 1, 2], dtype=np.int64), | |
} | |
) | |
rhs = df.loc[0:2] | |
rhs.index = df.index[2:5] | |
df.loc[2:4] = rhs | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_with_scalar_index(self, indexer, value): | |
# GH #19474 | |
# assigning like "df.loc[0, ['A']] = ['Z']" should be evaluated | |
# elementwisely, not using "setter('A', ['Z'])". | |
# Set object dtype to avoid upcast when setting 'Z' | |
df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"]).astype({"A": object}) | |
df.loc[0, indexer] = value | |
result = df.loc[0, "A"] | |
assert is_scalar(result) and result == "Z" | |
def test_loc_setitem_missing_columns(self, index, box, expected): | |
# GH 29334 | |
df = DataFrame([[1, 2], [3, 4], [5, 6]], columns=["A", "B"]) | |
df.loc[index] = box | |
tm.assert_frame_equal(df, expected) | |
def test_loc_coercion(self): | |
# GH#12411 | |
df = DataFrame({"date": [Timestamp("20130101").tz_localize("UTC"), pd.NaT]}) | |
expected = df.dtypes | |
result = df.iloc[[0]] | |
tm.assert_series_equal(result.dtypes, expected) | |
result = df.iloc[[1]] | |
tm.assert_series_equal(result.dtypes, expected) | |
def test_loc_coercion2(self): | |
# GH#12045 | |
df = DataFrame({"date": [datetime(2012, 1, 1), datetime(1012, 1, 2)]}) | |
expected = df.dtypes | |
result = df.iloc[[0]] | |
tm.assert_series_equal(result.dtypes, expected) | |
result = df.iloc[[1]] | |
tm.assert_series_equal(result.dtypes, expected) | |
def test_loc_coercion3(self): | |
# GH#11594 | |
df = DataFrame({"text": ["some words"] + [None] * 9}) | |
expected = df.dtypes | |
result = df.iloc[0:2] | |
tm.assert_series_equal(result.dtypes, expected) | |
result = df.iloc[3:] | |
tm.assert_series_equal(result.dtypes, expected) | |
def test_setitem_new_key_tz(self, indexer_sl): | |
# GH#12862 should not raise on assigning the second value | |
vals = [ | |
to_datetime(42).tz_localize("UTC"), | |
to_datetime(666).tz_localize("UTC"), | |
] | |
expected = Series(vals, index=Index(["foo", "bar"], dtype=object)) | |
ser = Series(dtype=object) | |
indexer_sl(ser)["foo"] = vals[0] | |
indexer_sl(ser)["bar"] = vals[1] | |
tm.assert_series_equal(ser, expected) | |
def test_loc_non_unique(self): | |
# GH3659 | |
# non-unique indexer with loc slice | |
# https://groups.google.com/forum/?fromgroups#!topic/pydata/zTm2No0crYs | |
# these are going to raise because the we are non monotonic | |
df = DataFrame( | |
{"A": [1, 2, 3, 4, 5, 6], "B": [3, 4, 5, 6, 7, 8]}, index=[0, 1, 0, 1, 2, 3] | |
) | |
msg = "'Cannot get left slice bound for non-unique label: 1'" | |
with pytest.raises(KeyError, match=msg): | |
df.loc[1:] | |
msg = "'Cannot get left slice bound for non-unique label: 0'" | |
with pytest.raises(KeyError, match=msg): | |
df.loc[0:] | |
msg = "'Cannot get left slice bound for non-unique label: 1'" | |
with pytest.raises(KeyError, match=msg): | |
df.loc[1:2] | |
# monotonic are ok | |
df = DataFrame( | |
{"A": [1, 2, 3, 4, 5, 6], "B": [3, 4, 5, 6, 7, 8]}, index=[0, 1, 0, 1, 2, 3] | |
).sort_index(axis=0) | |
result = df.loc[1:] | |
expected = DataFrame({"A": [2, 4, 5, 6], "B": [4, 6, 7, 8]}, index=[1, 1, 2, 3]) | |
tm.assert_frame_equal(result, expected) | |
result = df.loc[0:] | |
tm.assert_frame_equal(result, df) | |
result = df.loc[1:2] | |
expected = DataFrame({"A": [2, 4, 5], "B": [4, 6, 7]}, index=[1, 1, 2]) | |
tm.assert_frame_equal(result, expected) | |
def test_loc_non_unique_memory_error(self, length, l2): | |
# GH 4280 | |
# non_unique index with a large selection triggers a memory error | |
columns = list("ABCDEFG") | |
df = pd.concat( | |
[ | |
DataFrame( | |
np.random.default_rng(2).standard_normal((length, len(columns))), | |
index=np.arange(length), | |
columns=columns, | |
), | |
DataFrame(np.ones((l2, len(columns))), index=[0] * l2, columns=columns), | |
] | |
) | |
assert df.index.is_unique is False | |
mask = np.arange(l2) | |
result = df.loc[mask] | |
expected = pd.concat( | |
[ | |
df.take([0]), | |
DataFrame( | |
np.ones((len(mask), len(columns))), | |
index=[0] * len(mask), | |
columns=columns, | |
), | |
df.take(mask[1:]), | |
] | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_loc_name(self): | |
# GH 3880 | |
df = DataFrame([[1, 1], [1, 1]]) | |
df.index.name = "index_name" | |
result = df.iloc[[0, 1]].index.name | |
assert result == "index_name" | |
result = df.loc[[0, 1]].index.name | |
assert result == "index_name" | |
def test_loc_empty_list_indexer_is_ok(self): | |
df = DataFrame( | |
np.ones((5, 2)), | |
index=Index([f"i-{i}" for i in range(5)], name="a"), | |
columns=Index([f"i-{i}" for i in range(2)], name="a"), | |
) | |
# vertical empty | |
tm.assert_frame_equal( | |
df.loc[:, []], df.iloc[:, :0], check_index_type=True, check_column_type=True | |
) | |
# horizontal empty | |
tm.assert_frame_equal( | |
df.loc[[], :], df.iloc[:0, :], check_index_type=True, check_column_type=True | |
) | |
# horizontal empty | |
tm.assert_frame_equal( | |
df.loc[[]], df.iloc[:0, :], check_index_type=True, check_column_type=True | |
) | |
def test_identity_slice_returns_new_object( | |
self, using_copy_on_write, warn_copy_on_write | |
): | |
# GH13873 | |
original_df = DataFrame({"a": [1, 2, 3]}) | |
sliced_df = original_df.loc[:] | |
assert sliced_df is not original_df | |
assert original_df[:] is not original_df | |
assert original_df.loc[:, :] is not original_df | |
# should be a shallow copy | |
assert np.shares_memory(original_df["a"]._values, sliced_df["a"]._values) | |
# Setting using .loc[:, "a"] sets inplace so alters both sliced and orig | |
# depending on CoW | |
with tm.assert_cow_warning(warn_copy_on_write): | |
original_df.loc[:, "a"] = [4, 4, 4] | |
if using_copy_on_write: | |
assert (sliced_df["a"] == [1, 2, 3]).all() | |
else: | |
assert (sliced_df["a"] == 4).all() | |
# These should not return copies | |
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4))) | |
if using_copy_on_write or warn_copy_on_write: | |
assert df[0] is not df.loc[:, 0] | |
else: | |
assert df[0] is df.loc[:, 0] | |
# Same tests for Series | |
original_series = Series([1, 2, 3, 4, 5, 6]) | |
sliced_series = original_series.loc[:] | |
assert sliced_series is not original_series | |
assert original_series[:] is not original_series | |
with tm.assert_cow_warning(warn_copy_on_write): | |
original_series[:3] = [7, 8, 9] | |
if using_copy_on_write: | |
assert all(sliced_series[:3] == [1, 2, 3]) | |
else: | |
assert all(sliced_series[:3] == [7, 8, 9]) | |
def test_loc_copy_vs_view(self, request, using_copy_on_write): | |
# GH 15631 | |
if not using_copy_on_write: | |
mark = pytest.mark.xfail(reason="accidental fix reverted - GH37497") | |
request.applymarker(mark) | |
x = DataFrame(zip(range(3), range(3)), columns=["a", "b"]) | |
y = x.copy() | |
q = y.loc[:, "a"] | |
q += 2 | |
tm.assert_frame_equal(x, y) | |
z = x.copy() | |
q = z.loc[x.index, "a"] | |
q += 2 | |
tm.assert_frame_equal(x, z) | |
def test_loc_uint64(self): | |
# GH20722 | |
# Test whether loc accept uint64 max value as index. | |
umax = np.iinfo("uint64").max | |
ser = Series([1, 2], index=[umax - 1, umax]) | |
result = ser.loc[umax - 1] | |
expected = ser.iloc[0] | |
assert result == expected | |
result = ser.loc[[umax - 1]] | |
expected = ser.iloc[[0]] | |
tm.assert_series_equal(result, expected) | |
result = ser.loc[[umax - 1, umax]] | |
tm.assert_series_equal(result, ser) | |
def test_loc_uint64_disallow_negative(self): | |
# GH#41775 | |
umax = np.iinfo("uint64").max | |
ser = Series([1, 2], index=[umax - 1, umax]) | |
with pytest.raises(KeyError, match="-1"): | |
# don't wrap around | |
ser.loc[-1] | |
with pytest.raises(KeyError, match="-1"): | |
# don't wrap around | |
ser.loc[[-1]] | |
def test_loc_setitem_empty_append_expands_rows(self): | |
# GH6173, various appends to an empty dataframe | |
data = [1, 2, 3] | |
expected = DataFrame( | |
{"x": data, "y": np.array([np.nan] * len(data), dtype=object)} | |
) | |
# appends to fit length of data | |
df = DataFrame(columns=["x", "y"]) | |
df.loc[:, "x"] = data | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_empty_append_expands_rows_mixed_dtype(self): | |
# GH#37932 same as test_loc_setitem_empty_append_expands_rows | |
# but with mixed dtype so we go through take_split_path | |
data = [1, 2, 3] | |
expected = DataFrame( | |
{"x": data, "y": np.array([np.nan] * len(data), dtype=object)} | |
) | |
df = DataFrame(columns=["x", "y"]) | |
df["x"] = df["x"].astype(np.int64) | |
df.loc[:, "x"] = data | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_empty_append_single_value(self): | |
# only appends one value | |
expected = DataFrame({"x": [1.0], "y": [np.nan]}) | |
df = DataFrame(columns=["x", "y"], dtype=float) | |
df.loc[0, "x"] = expected.loc[0, "x"] | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_empty_append_raises(self): | |
# GH6173, various appends to an empty dataframe | |
data = [1, 2] | |
df = DataFrame(columns=["x", "y"]) | |
df.index = df.index.astype(np.int64) | |
msg = ( | |
rf"None of \[Index\(\[0, 1\], dtype='{np.dtype(int)}'\)\] " | |
r"are in the \[index\]" | |
) | |
with pytest.raises(KeyError, match=msg): | |
df.loc[[0, 1], "x"] = data | |
msg = "setting an array element with a sequence." | |
with pytest.raises(ValueError, match=msg): | |
df.loc[0:2, "x"] = data | |
def test_indexing_zerodim_np_array(self): | |
# GH24924 | |
df = DataFrame([[1, 2], [3, 4]]) | |
result = df.loc[np.array(0)] | |
s = Series([1, 2], name=0) | |
tm.assert_series_equal(result, s) | |
def test_series_indexing_zerodim_np_array(self): | |
# GH24924 | |
s = Series([1, 2]) | |
result = s.loc[np.array(0)] | |
assert result == 1 | |
def test_loc_reverse_assignment(self): | |
# GH26939 | |
data = [1, 2, 3, 4, 5, 6] + [None] * 4 | |
expected = Series(data, index=range(2010, 2020)) | |
result = Series(index=range(2010, 2020), dtype=np.float64) | |
result.loc[2015:2010:-1] = [6, 5, 4, 3, 2, 1] | |
tm.assert_series_equal(result, expected) | |
def test_loc_setitem_str_to_small_float_conversion_type(self): | |
# GH#20388 | |
col_data = [str(np.random.default_rng(2).random() * 1e-12) for _ in range(5)] | |
result = DataFrame(col_data, columns=["A"]) | |
expected = DataFrame(col_data, columns=["A"], dtype=object) | |
tm.assert_frame_equal(result, expected) | |
# assigning with loc/iloc attempts to set the values inplace, which | |
# in this case is successful | |
result.loc[result.index, "A"] = [float(x) for x in col_data] | |
expected = DataFrame(col_data, columns=["A"], dtype=float).astype(object) | |
tm.assert_frame_equal(result, expected) | |
# assigning the entire column using __setitem__ swaps in the new array | |
# GH#??? | |
result["A"] = [float(x) for x in col_data] | |
expected = DataFrame(col_data, columns=["A"], dtype=float) | |
tm.assert_frame_equal(result, expected) | |
def test_loc_getitem_time_object(self, frame_or_series): | |
rng = date_range("1/1/2000", "1/5/2000", freq="5min") | |
mask = (rng.hour == 9) & (rng.minute == 30) | |
obj = DataFrame( | |
np.random.default_rng(2).standard_normal((len(rng), 3)), index=rng | |
) | |
obj = tm.get_obj(obj, frame_or_series) | |
result = obj.loc[time(9, 30)] | |
exp = obj.loc[mask] | |
tm.assert_equal(result, exp) | |
chunk = obj.loc["1/4/2000":] | |
result = chunk.loc[time(9, 30)] | |
expected = result[-1:] | |
# Without resetting the freqs, these are 5 min and 1440 min, respectively | |
result.index = result.index._with_freq(None) | |
expected.index = expected.index._with_freq(None) | |
tm.assert_equal(result, expected) | |
def test_loc_getitem_range_from_spmatrix(self, spmatrix_t, dtype): | |
sp_sparse = pytest.importorskip("scipy.sparse") | |
spmatrix_t = getattr(sp_sparse, spmatrix_t) | |
# The bug is triggered by a sparse matrix with purely sparse columns. So the | |
# recipe below generates a rectangular matrix of dimension (5, 7) where all the | |
# diagonal cells are ones, meaning the last two columns are purely sparse. | |
rows, cols = 5, 7 | |
spmatrix = spmatrix_t(np.eye(rows, cols, dtype=dtype), dtype=dtype) | |
df = DataFrame.sparse.from_spmatrix(spmatrix) | |
# regression test for GH#34526 | |
itr_idx = range(2, rows) | |
result = df.loc[itr_idx].values | |
expected = spmatrix.toarray()[itr_idx] | |
tm.assert_numpy_array_equal(result, expected) | |
# regression test for GH#34540 | |
result = df.loc[itr_idx].dtypes.values | |
expected = np.full(cols, SparseDtype(dtype, fill_value=0)) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_loc_getitem_listlike_all_retains_sparse(self): | |
df = DataFrame({"A": pd.array([0, 0], dtype=SparseDtype("int64"))}) | |
result = df.loc[[0, 1]] | |
tm.assert_frame_equal(result, df) | |
def test_loc_getitem_sparse_frame(self): | |
# GH34687 | |
sp_sparse = pytest.importorskip("scipy.sparse") | |
df = DataFrame.sparse.from_spmatrix(sp_sparse.eye(5)) | |
result = df.loc[range(2)] | |
expected = DataFrame( | |
[[1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0]], | |
dtype=SparseDtype("float64", 0.0), | |
) | |
tm.assert_frame_equal(result, expected) | |
result = df.loc[range(2)].loc[range(1)] | |
expected = DataFrame( | |
[[1.0, 0.0, 0.0, 0.0, 0.0]], dtype=SparseDtype("float64", 0.0) | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_loc_getitem_sparse_series(self): | |
# GH34687 | |
s = Series([1.0, 0.0, 0.0, 0.0, 0.0], dtype=SparseDtype("float64", 0.0)) | |
result = s.loc[range(2)] | |
expected = Series([1.0, 0.0], dtype=SparseDtype("float64", 0.0)) | |
tm.assert_series_equal(result, expected) | |
result = s.loc[range(3)].loc[range(2)] | |
expected = Series([1.0, 0.0], dtype=SparseDtype("float64", 0.0)) | |
tm.assert_series_equal(result, expected) | |
def test_getitem_single_row_sparse_df(self, indexer): | |
# GH#46406 | |
df = DataFrame([[1.0, 0.0, 1.5], [0.0, 2.0, 0.0]], dtype=SparseDtype(float)) | |
result = getattr(df, indexer)[0] | |
expected = Series([1.0, 0.0, 1.5], dtype=SparseDtype(float), name=0) | |
tm.assert_series_equal(result, expected) | |
def test_loc_getitem_iterable(self, float_frame, key_type): | |
idx = key_type(["A", "B", "C"]) | |
result = float_frame.loc[:, idx] | |
expected = float_frame.loc[:, ["A", "B", "C"]] | |
tm.assert_frame_equal(result, expected) | |
def test_loc_getitem_timedelta_0seconds(self): | |
# GH#10583 | |
df = DataFrame(np.random.default_rng(2).normal(size=(10, 4))) | |
df.index = timedelta_range(start="0s", periods=10, freq="s") | |
expected = df.loc[Timedelta("0s") :, :] | |
result = df.loc["0s":, :] | |
tm.assert_frame_equal(result, expected) | |
def test_loc_getitem_uint64_scalar(self, val, expected): | |
# see GH#19399 | |
df = DataFrame([1, 2], index=[2**63 - 1, 2**63]) | |
result = df.loc[val] | |
expected.name = val | |
tm.assert_series_equal(result, expected) | |
def test_loc_setitem_int_label_with_float_index(self, float_numpy_dtype): | |
# note labels are floats | |
dtype = float_numpy_dtype | |
ser = Series(["a", "b", "c"], index=Index([0, 0.5, 1], dtype=dtype)) | |
expected = ser.copy() | |
ser.loc[1] = "zoo" | |
expected.iloc[2] = "zoo" | |
tm.assert_series_equal(ser, expected) | |
def test_loc_setitem_listlike_with_timedelta64index(self, indexer, expected): | |
# GH#16637 | |
tdi = to_timedelta(range(10), unit="s") | |
df = DataFrame({"x": range(10)}, dtype="int64", index=tdi) | |
df.loc[df.index[indexer], "x"] = 20 | |
expected = DataFrame( | |
expected, | |
index=tdi, | |
columns=["x"], | |
dtype="int64", | |
) | |
tm.assert_frame_equal(expected, df) | |
def test_loc_setitem_categorical_values_partial_column_slice(self): | |
# Assigning a Category to parts of a int/... column uses the values of | |
# the Categorical | |
df = DataFrame({"a": [1, 1, 1, 1, 1], "b": list("aaaaa")}) | |
exp = DataFrame({"a": [1, "b", "b", 1, 1], "b": list("aabba")}) | |
with tm.assert_produces_warning( | |
FutureWarning, match="item of incompatible dtype" | |
): | |
df.loc[1:2, "a"] = Categorical(["b", "b"], categories=["a", "b"]) | |
df.loc[2:3, "b"] = Categorical(["b", "b"], categories=["a", "b"]) | |
tm.assert_frame_equal(df, exp) | |
def test_loc_setitem_single_row_categorical(self, using_infer_string): | |
# GH#25495 | |
df = DataFrame({"Alpha": ["a"], "Numeric": [0]}) | |
categories = Categorical(df["Alpha"], categories=["a", "b", "c"]) | |
# pre-2.0 this swapped in a new array, in 2.0 it operates inplace, | |
# consistent with non-split-path | |
df.loc[:, "Alpha"] = categories | |
result = df["Alpha"] | |
expected = Series(categories, index=df.index, name="Alpha").astype( | |
object if not using_infer_string else "string[pyarrow_numpy]" | |
) | |
tm.assert_series_equal(result, expected) | |
# double-check that the non-loc setting retains categoricalness | |
df["Alpha"] = categories | |
tm.assert_series_equal(df["Alpha"], Series(categories, name="Alpha")) | |
def test_loc_setitem_datetime_coercion(self): | |
# GH#1048 | |
df = DataFrame({"c": [Timestamp("2010-10-01")] * 3}) | |
df.loc[0:1, "c"] = np.datetime64("2008-08-08") | |
assert Timestamp("2008-08-08") == df.loc[0, "c"] | |
assert Timestamp("2008-08-08") == df.loc[1, "c"] | |
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): | |
df.loc[2, "c"] = date(2005, 5, 5) | |
assert Timestamp("2005-05-05").date() == df.loc[2, "c"] | |
def test_loc_setitem_datetimeindex_tz(self, idxer, tz_naive_fixture): | |
# GH#11365 | |
tz = tz_naive_fixture | |
idx = date_range(start="2015-07-12", periods=3, freq="h", tz=tz) | |
expected = DataFrame(1.2, index=idx, columns=["var"]) | |
# if result started off with object dtype, then the .loc.__setitem__ | |
# below would retain object dtype | |
result = DataFrame(index=idx, columns=["var"], dtype=np.float64) | |
with tm.assert_produces_warning( | |
FutureWarning if idxer == "var" else None, match="incompatible dtype" | |
): | |
# See https://github.com/pandas-dev/pandas/issues/56223 | |
result.loc[:, idxer] = expected | |
tm.assert_frame_equal(result, expected) | |
def test_loc_setitem_time_key(self, using_array_manager): | |
index = date_range("2012-01-01", "2012-01-05", freq="30min") | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((len(index), 5)), index=index | |
) | |
akey = time(12, 0, 0) | |
bkey = slice(time(13, 0, 0), time(14, 0, 0)) | |
ainds = [24, 72, 120, 168] | |
binds = [26, 27, 28, 74, 75, 76, 122, 123, 124, 170, 171, 172] | |
result = df.copy() | |
result.loc[akey] = 0 | |
result = result.loc[akey] | |
expected = df.loc[akey].copy() | |
expected.loc[:] = 0 | |
if using_array_manager: | |
# TODO(ArrayManager) we are still overwriting columns | |
expected = expected.astype(float) | |
tm.assert_frame_equal(result, expected) | |
result = df.copy() | |
result.loc[akey] = 0 | |
result.loc[akey] = df.iloc[ainds] | |
tm.assert_frame_equal(result, df) | |
result = df.copy() | |
result.loc[bkey] = 0 | |
result = result.loc[bkey] | |
expected = df.loc[bkey].copy() | |
expected.loc[:] = 0 | |
if using_array_manager: | |
# TODO(ArrayManager) we are still overwriting columns | |
expected = expected.astype(float) | |
tm.assert_frame_equal(result, expected) | |
result = df.copy() | |
result.loc[bkey] = 0 | |
result.loc[bkey] = df.iloc[binds] | |
tm.assert_frame_equal(result, df) | |
def test_loc_setitem_unsorted_multiindex_columns(self, key): | |
# GH#38601 | |
mi = MultiIndex.from_tuples([("A", 4), ("B", "3"), ("A", "2")]) | |
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=mi) | |
obj = df.copy() | |
obj.loc[:, key] = np.zeros((2, 2), dtype="int64") | |
expected = DataFrame([[0, 2, 0], [0, 5, 0]], columns=mi) | |
tm.assert_frame_equal(obj, expected) | |
df = df.sort_index(axis=1) | |
df.loc[:, key] = np.zeros((2, 2), dtype="int64") | |
expected = expected.sort_index(axis=1) | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_uint_drop(self, any_int_numpy_dtype): | |
# see GH#18311 | |
# assigning series.loc[0] = 4 changed series.dtype to int | |
series = Series([1, 2, 3], dtype=any_int_numpy_dtype) | |
series.loc[0] = 4 | |
expected = Series([4, 2, 3], dtype=any_int_numpy_dtype) | |
tm.assert_series_equal(series, expected) | |
def test_loc_setitem_td64_non_nano(self): | |
# GH#14155 | |
ser = Series(10 * [np.timedelta64(10, "m")]) | |
ser.loc[[1, 2, 3]] = np.timedelta64(20, "m") | |
expected = Series(10 * [np.timedelta64(10, "m")]) | |
expected.loc[[1, 2, 3]] = Timedelta(np.timedelta64(20, "m")) | |
tm.assert_series_equal(ser, expected) | |
def test_loc_setitem_2d_to_1d_raises(self): | |
data = np.random.default_rng(2).standard_normal((2, 2)) | |
# float64 dtype to avoid upcast when trying to set float data | |
ser = Series(range(2), dtype="float64") | |
msg = "setting an array element with a sequence." | |
with pytest.raises(ValueError, match=msg): | |
ser.loc[range(2)] = data | |
with pytest.raises(ValueError, match=msg): | |
ser.loc[:] = data | |
def test_loc_getitem_interval_index(self): | |
# GH#19977 | |
index = pd.interval_range(start=0, periods=3) | |
df = DataFrame( | |
[[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=index, columns=["A", "B", "C"] | |
) | |
expected = 1 | |
result = df.loc[0.5, "A"] | |
tm.assert_almost_equal(result, expected) | |
def test_loc_getitem_interval_index2(self): | |
# GH#19977 | |
index = pd.interval_range(start=0, periods=3, closed="both") | |
df = DataFrame( | |
[[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=index, columns=["A", "B", "C"] | |
) | |
index_exp = pd.interval_range(start=0, periods=2, freq=1, closed="both") | |
expected = Series([1, 4], index=index_exp, name="A") | |
result = df.loc[1, "A"] | |
tm.assert_series_equal(result, expected) | |
def test_loc_getitem_index_single_double_tuples(self, tpl): | |
# GH#20991 | |
idx = Index( | |
[(1,), (1, 2)], | |
name="A", | |
tupleize_cols=False, | |
) | |
df = DataFrame(index=idx) | |
result = df.loc[[tpl]] | |
idx = Index([tpl], name="A", tupleize_cols=False) | |
expected = DataFrame(index=idx) | |
tm.assert_frame_equal(result, expected) | |
def test_loc_getitem_index_namedtuple(self): | |
IndexType = namedtuple("IndexType", ["a", "b"]) | |
idx1 = IndexType("foo", "bar") | |
idx2 = IndexType("baz", "bof") | |
index = Index([idx1, idx2], name="composite_index", tupleize_cols=False) | |
df = DataFrame([(1, 2), (3, 4)], index=index, columns=["A", "B"]) | |
result = df.loc[IndexType("foo", "bar")]["A"] | |
assert result == 1 | |
def test_loc_setitem_single_column_mixed(self, using_infer_string): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 3)), | |
index=["a", "b", "c", "d", "e"], | |
columns=["foo", "bar", "baz"], | |
) | |
df["str"] = "qux" | |
df.loc[df.index[::2], "str"] = np.nan | |
expected = Series( | |
[np.nan, "qux", np.nan, "qux", np.nan], | |
dtype=object if not using_infer_string else "string[pyarrow_numpy]", | |
).values | |
tm.assert_almost_equal(df["str"].values, expected) | |
def test_loc_setitem_cast2(self): | |
# GH#7704 | |
# dtype conversion on setting | |
df = DataFrame(np.random.default_rng(2).random((30, 3)), columns=tuple("ABC")) | |
df["event"] = np.nan | |
with tm.assert_produces_warning( | |
FutureWarning, match="item of incompatible dtype" | |
): | |
df.loc[10, "event"] = "foo" | |
result = df.dtypes | |
expected = Series( | |
[np.dtype("float64")] * 3 + [np.dtype("object")], | |
index=["A", "B", "C", "event"], | |
) | |
tm.assert_series_equal(result, expected) | |
def test_loc_setitem_cast3(self): | |
# Test that data type is preserved . GH#5782 | |
df = DataFrame({"one": np.arange(6, dtype=np.int8)}) | |
df.loc[1, "one"] = 6 | |
assert df.dtypes.one == np.dtype(np.int8) | |
df.one = np.int8(7) | |
assert df.dtypes.one == np.dtype(np.int8) | |
def test_loc_setitem_range_key(self, frame_or_series): | |
# GH#45479 don't treat range key as positional | |
obj = frame_or_series(range(5), index=[3, 4, 1, 0, 2]) | |
values = [9, 10, 11] | |
if obj.ndim == 2: | |
values = [[9], [10], [11]] | |
obj.loc[range(3)] = values | |
expected = frame_or_series([0, 1, 10, 9, 11], index=obj.index) | |
tm.assert_equal(obj, expected) | |
def test_loc_setitem_numpy_frame_categorical_value(self): | |
# GH#52927 | |
df = DataFrame({"a": [1, 1, 1, 1, 1], "b": ["a", "a", "a", "a", "a"]}) | |
df.loc[1:2, "a"] = Categorical([2, 2], categories=[1, 2]) | |
expected = DataFrame({"a": [1, 2, 2, 1, 1], "b": ["a", "a", "a", "a", "a"]}) | |
tm.assert_frame_equal(df, expected) | |
class TestLocWithEllipsis: | |
def indexer(self, request): | |
# Test iloc while we're here | |
return request.param | |
def obj(self, series_with_simple_index, frame_or_series): | |
obj = series_with_simple_index | |
if frame_or_series is not Series: | |
obj = obj.to_frame() | |
return obj | |
def test_loc_iloc_getitem_ellipsis(self, obj, indexer): | |
result = indexer(obj)[...] | |
tm.assert_equal(result, obj) | |
def test_loc_iloc_getitem_leading_ellipses(self, series_with_simple_index, indexer): | |
obj = series_with_simple_index | |
key = 0 if (indexer is tm.iloc or len(obj) == 0) else obj.index[0] | |
if indexer is tm.loc and obj.index.inferred_type == "boolean": | |
# passing [False] will get interpreted as a boolean mask | |
# TODO: should it? unambiguous when lengths dont match? | |
return | |
if indexer is tm.loc and isinstance(obj.index, MultiIndex): | |
msg = "MultiIndex does not support indexing with Ellipsis" | |
with pytest.raises(NotImplementedError, match=msg): | |
result = indexer(obj)[..., [key]] | |
elif len(obj) != 0: | |
result = indexer(obj)[..., [key]] | |
expected = indexer(obj)[[key]] | |
tm.assert_series_equal(result, expected) | |
key2 = 0 if indexer is tm.iloc else obj.name | |
df = obj.to_frame() | |
result = indexer(df)[..., [key2]] | |
expected = indexer(df)[:, [key2]] | |
tm.assert_frame_equal(result, expected) | |
def test_loc_iloc_getitem_ellipses_only_one_ellipsis(self, obj, indexer): | |
# GH37750 | |
key = 0 if (indexer is tm.iloc or len(obj) == 0) else obj.index[0] | |
with pytest.raises(IndexingError, match=_one_ellipsis_message): | |
indexer(obj)[..., ...] | |
with pytest.raises(IndexingError, match=_one_ellipsis_message): | |
indexer(obj)[..., [key], ...] | |
with pytest.raises(IndexingError, match=_one_ellipsis_message): | |
indexer(obj)[..., ..., key] | |
# one_ellipsis_message takes precedence over "Too many indexers" | |
# only when the first key is Ellipsis | |
with pytest.raises(IndexingError, match="Too many indexers"): | |
indexer(obj)[key, ..., ...] | |
class TestLocWithMultiIndex: | |
def test_loc_getitem_multilevel_index_order(self, dim, keys, expected): | |
# GH#22797 | |
# Try to respect order of keys given for MultiIndex.loc | |
kwargs = {dim: [["c", "a", "a", "b", "b"], [1, 1, 2, 1, 2]]} | |
df = DataFrame(np.arange(25).reshape(5, 5), **kwargs) | |
exp_index = MultiIndex.from_arrays(expected) | |
if dim == "index": | |
res = df.loc[keys, :] | |
tm.assert_index_equal(res.index, exp_index) | |
elif dim == "columns": | |
res = df.loc[:, keys] | |
tm.assert_index_equal(res.columns, exp_index) | |
def test_loc_preserve_names(self, multiindex_year_month_day_dataframe_random_data): | |
ymd = multiindex_year_month_day_dataframe_random_data | |
result = ymd.loc[2000] | |
result2 = ymd["A"].loc[2000] | |
assert result.index.names == ymd.index.names[1:] | |
assert result2.index.names == ymd.index.names[1:] | |
result = ymd.loc[2000, 2] | |
result2 = ymd["A"].loc[2000, 2] | |
assert result.index.name == ymd.index.names[2] | |
assert result2.index.name == ymd.index.names[2] | |
def test_loc_getitem_multiindex_nonunique_len_zero(self): | |
# GH#13691 | |
mi = MultiIndex.from_product([[0], [1, 1]]) | |
ser = Series(0, index=mi) | |
res = ser.loc[[]] | |
expected = ser[:0] | |
tm.assert_series_equal(res, expected) | |
res2 = ser.loc[ser.iloc[0:0]] | |
tm.assert_series_equal(res2, expected) | |
def test_loc_getitem_access_none_value_in_multiindex(self): | |
# GH#34318: test that you can access a None value using .loc | |
# through a Multiindex | |
ser = Series([None], MultiIndex.from_arrays([["Level1"], ["Level2"]])) | |
result = ser.loc[("Level1", "Level2")] | |
assert result is None | |
midx = MultiIndex.from_product([["Level1"], ["Level2_a", "Level2_b"]]) | |
ser = Series([None] * len(midx), dtype=object, index=midx) | |
result = ser.loc[("Level1", "Level2_a")] | |
assert result is None | |
ser = Series([1] * len(midx), dtype=object, index=midx) | |
result = ser.loc[("Level1", "Level2_a")] | |
assert result == 1 | |
def test_loc_setitem_multiindex_slice(self): | |
# GH 34870 | |
index = MultiIndex.from_tuples( | |
zip( | |
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], | |
["one", "two", "one", "two", "one", "two", "one", "two"], | |
), | |
names=["first", "second"], | |
) | |
result = Series([1, 1, 1, 1, 1, 1, 1, 1], index=index) | |
result.loc[("baz", "one"):("foo", "two")] = 100 | |
expected = Series([1, 1, 100, 100, 100, 100, 1, 1], index=index) | |
tm.assert_series_equal(result, expected) | |
def test_loc_getitem_slice_datetime_objs_with_datetimeindex(self): | |
times = date_range("2000-01-01", freq="10min", periods=100000) | |
ser = Series(range(100000), times) | |
result = ser.loc[datetime(1900, 1, 1) : datetime(2100, 1, 1)] | |
tm.assert_series_equal(result, ser) | |
def test_loc_getitem_datetime_string_with_datetimeindex(self): | |
# GH 16710 | |
df = DataFrame( | |
{"a": range(10), "b": range(10)}, | |
index=date_range("2010-01-01", "2010-01-10"), | |
) | |
result = df.loc[["2010-01-01", "2010-01-05"], ["a", "b"]] | |
expected = DataFrame( | |
{"a": [0, 4], "b": [0, 4]}, | |
index=DatetimeIndex(["2010-01-01", "2010-01-05"]), | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_loc_getitem_sorted_index_level_with_duplicates(self): | |
# GH#4516 sorting a MultiIndex with duplicates and multiple dtypes | |
mi = MultiIndex.from_tuples( | |
[ | |
("foo", "bar"), | |
("foo", "bar"), | |
("bah", "bam"), | |
("bah", "bam"), | |
("foo", "bar"), | |
("bah", "bam"), | |
], | |
names=["A", "B"], | |
) | |
df = DataFrame( | |
[ | |
[1.0, 1], | |
[2.0, 2], | |
[3.0, 3], | |
[4.0, 4], | |
[5.0, 5], | |
[6.0, 6], | |
], | |
index=mi, | |
columns=["C", "D"], | |
) | |
df = df.sort_index(level=0) | |
expected = DataFrame( | |
[[1.0, 1], [2.0, 2], [5.0, 5]], columns=["C", "D"], index=mi.take([0, 1, 4]) | |
) | |
result = df.loc[("foo", "bar")] | |
tm.assert_frame_equal(result, expected) | |
def test_additional_element_to_categorical_series_loc(self): | |
# GH#47677 | |
result = Series(["a", "b", "c"], dtype="category") | |
result.loc[3] = 0 | |
expected = Series(["a", "b", "c", 0], dtype="object") | |
tm.assert_series_equal(result, expected) | |
def test_additional_categorical_element_loc(self): | |
# GH#47677 | |
result = Series(["a", "b", "c"], dtype="category") | |
result.loc[3] = "a" | |
expected = Series(["a", "b", "c", "a"], dtype="category") | |
tm.assert_series_equal(result, expected) | |
def test_loc_set_nan_in_categorical_series(self, any_numeric_ea_dtype): | |
# GH#47677 | |
srs = Series( | |
[1, 2, 3], | |
dtype=CategoricalDtype(Index([1, 2, 3], dtype=any_numeric_ea_dtype)), | |
) | |
# enlarge | |
srs.loc[3] = np.nan | |
expected = Series( | |
[1, 2, 3, np.nan], | |
dtype=CategoricalDtype(Index([1, 2, 3], dtype=any_numeric_ea_dtype)), | |
) | |
tm.assert_series_equal(srs, expected) | |
# set into | |
srs.loc[1] = np.nan | |
expected = Series( | |
[1, np.nan, 3, np.nan], | |
dtype=CategoricalDtype(Index([1, 2, 3], dtype=any_numeric_ea_dtype)), | |
) | |
tm.assert_series_equal(srs, expected) | |
def test_loc_consistency_series_enlarge_set_into(self, na): | |
# GH#47677 | |
srs_enlarge = Series(["a", "b", "c"], dtype="category") | |
srs_enlarge.loc[3] = na | |
srs_setinto = Series(["a", "b", "c", "a"], dtype="category") | |
srs_setinto.loc[3] = na | |
tm.assert_series_equal(srs_enlarge, srs_setinto) | |
expected = Series(["a", "b", "c", na], dtype="category") | |
tm.assert_series_equal(srs_enlarge, expected) | |
def test_loc_getitem_preserves_index_level_category_dtype(self): | |
# GH#15166 | |
df = DataFrame( | |
data=np.arange(2, 22, 2), | |
index=MultiIndex( | |
levels=[CategoricalIndex(["a", "b"]), range(10)], | |
codes=[[0] * 5 + [1] * 5, range(10)], | |
names=["Index1", "Index2"], | |
), | |
) | |
expected = CategoricalIndex( | |
["a", "b"], | |
categories=["a", "b"], | |
ordered=False, | |
name="Index1", | |
dtype="category", | |
) | |
result = df.index.levels[0] | |
tm.assert_index_equal(result, expected) | |
result = df.loc[["a"]].index.levels[0] | |
tm.assert_index_equal(result, expected) | |
def test_loc_multiindex_levels_contain_values_not_in_index_anymore(self, lt_value): | |
# GH#41170 | |
df = DataFrame({"a": [12, 23, 34, 45]}, index=[list("aabb"), [0, 1, 2, 3]]) | |
with pytest.raises(KeyError, match=r"\['b'\] not in index"): | |
df.loc[df["a"] < lt_value, :].loc[["b"], :] | |
def test_loc_multiindex_null_slice_na_level(self): | |
# GH#42055 | |
lev1 = np.array([np.nan, np.nan]) | |
lev2 = ["bar", "baz"] | |
mi = MultiIndex.from_arrays([lev1, lev2]) | |
ser = Series([0, 1], index=mi) | |
result = ser.loc[:, "bar"] | |
# TODO: should we have name="bar"? | |
expected = Series([0], index=[np.nan]) | |
tm.assert_series_equal(result, expected) | |
def test_loc_drops_level(self): | |
# Based on test_series_varied_multiindex_alignment, where | |
# this used to fail to drop the first level | |
mi = MultiIndex.from_product( | |
[list("ab"), list("xy"), [1, 2]], names=["ab", "xy", "num"] | |
) | |
ser = Series(range(8), index=mi) | |
loc_result = ser.loc["a", :, :] | |
expected = ser.index.droplevel(0)[:4] | |
tm.assert_index_equal(loc_result.index, expected) | |
class TestLocSetitemWithExpansion: | |
def test_loc_setitem_with_expansion_large_dataframe(self, monkeypatch): | |
# GH#10692 | |
size_cutoff = 50 | |
with monkeypatch.context(): | |
monkeypatch.setattr(libindex, "_SIZE_CUTOFF", size_cutoff) | |
result = DataFrame({"x": range(size_cutoff)}, dtype="int64") | |
result.loc[size_cutoff] = size_cutoff | |
expected = DataFrame({"x": range(size_cutoff + 1)}, dtype="int64") | |
tm.assert_frame_equal(result, expected) | |
def test_loc_setitem_empty_series(self): | |
# GH#5226 | |
# partially set with an empty object series | |
ser = Series(dtype=object) | |
ser.loc[1] = 1 | |
tm.assert_series_equal(ser, Series([1], index=[1])) | |
ser.loc[3] = 3 | |
tm.assert_series_equal(ser, Series([1, 3], index=[1, 3])) | |
def test_loc_setitem_empty_series_float(self): | |
# GH#5226 | |
# partially set with an empty object series | |
ser = Series(dtype=object) | |
ser.loc[1] = 1.0 | |
tm.assert_series_equal(ser, Series([1.0], index=[1])) | |
ser.loc[3] = 3.0 | |
tm.assert_series_equal(ser, Series([1.0, 3.0], index=[1, 3])) | |
def test_loc_setitem_empty_series_str_idx(self): | |
# GH#5226 | |
# partially set with an empty object series | |
ser = Series(dtype=object) | |
ser.loc["foo"] = 1 | |
tm.assert_series_equal(ser, Series([1], index=Index(["foo"], dtype=object))) | |
ser.loc["bar"] = 3 | |
tm.assert_series_equal( | |
ser, Series([1, 3], index=Index(["foo", "bar"], dtype=object)) | |
) | |
ser.loc[3] = 4 | |
tm.assert_series_equal( | |
ser, Series([1, 3, 4], index=Index(["foo", "bar", 3], dtype=object)) | |
) | |
def test_loc_setitem_incremental_with_dst(self): | |
# GH#20724 | |
base = datetime(2015, 11, 1, tzinfo=gettz("US/Pacific")) | |
idxs = [base + timedelta(seconds=i * 900) for i in range(16)] | |
result = Series([0], index=[idxs[0]]) | |
for ts in idxs: | |
result.loc[ts] = 1 | |
expected = Series(1, index=idxs) | |
tm.assert_series_equal(result, expected) | |
def test_loc_setitem_datetime_keys_cast(self, conv): | |
# GH#9516 | |
dt1 = Timestamp("20130101 09:00:00") | |
dt2 = Timestamp("20130101 10:00:00") | |
df = DataFrame() | |
df.loc[conv(dt1), "one"] = 100 | |
df.loc[conv(dt2), "one"] = 200 | |
expected = DataFrame( | |
{"one": [100.0, 200.0]}, | |
index=[dt1, dt2], | |
columns=Index(["one"], dtype=object), | |
) | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_categorical_column_retains_dtype(self, ordered): | |
# GH16360 | |
result = DataFrame({"A": [1]}) | |
result.loc[:, "B"] = Categorical(["b"], ordered=ordered) | |
expected = DataFrame({"A": [1], "B": Categorical(["b"], ordered=ordered)}) | |
tm.assert_frame_equal(result, expected) | |
def test_loc_setitem_with_expansion_and_existing_dst(self): | |
# GH#18308 | |
start = Timestamp("2017-10-29 00:00:00+0200", tz="Europe/Madrid") | |
end = Timestamp("2017-10-29 03:00:00+0100", tz="Europe/Madrid") | |
ts = Timestamp("2016-10-10 03:00:00", tz="Europe/Madrid") | |
idx = date_range(start, end, inclusive="left", freq="h") | |
assert ts not in idx # i.e. result.loc setitem is with-expansion | |
result = DataFrame(index=idx, columns=["value"]) | |
result.loc[ts, "value"] = 12 | |
expected = DataFrame( | |
[np.nan] * len(idx) + [12], | |
index=idx.append(DatetimeIndex([ts])), | |
columns=["value"], | |
dtype=object, | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_setitem_with_expansion(self): | |
# indexing - setting an element | |
df = DataFrame( | |
data=to_datetime(["2015-03-30 20:12:32", "2015-03-12 00:11:11"]), | |
columns=["time"], | |
) | |
df["new_col"] = ["new", "old"] | |
df.time = df.set_index("time").index.tz_localize("UTC") | |
v = df[df.new_col == "new"].set_index("time").index.tz_convert("US/Pacific") | |
# pre-2.0 trying to set a single element on a part of a different | |
# timezone converted to object; in 2.0 it retains dtype | |
df2 = df.copy() | |
df2.loc[df2.new_col == "new", "time"] = v | |
expected = Series([v[0].tz_convert("UTC"), df.loc[1, "time"]], name="time") | |
tm.assert_series_equal(df2.time, expected) | |
v = df.loc[df.new_col == "new", "time"] + Timedelta("1s") | |
df.loc[df.new_col == "new", "time"] = v | |
tm.assert_series_equal(df.loc[df.new_col == "new", "time"], v) | |
def test_loc_setitem_with_expansion_inf_upcast_empty(self): | |
# Test with np.inf in columns | |
df = DataFrame() | |
df.loc[0, 0] = 1 | |
df.loc[1, 1] = 2 | |
df.loc[0, np.inf] = 3 | |
result = df.columns | |
expected = Index([0, 1, np.inf], dtype=np.float64) | |
tm.assert_index_equal(result, expected) | |
def test_loc_setitem_with_expansion_nonunique_index(self, index): | |
# GH#40096 | |
if not len(index): | |
pytest.skip("Not relevant for empty Index") | |
index = index.repeat(2) # ensure non-unique | |
N = len(index) | |
arr = np.arange(N).astype(np.int64) | |
orig = DataFrame(arr, index=index, columns=[0]) | |
# key that will requiring object-dtype casting in the index | |
key = "kapow" | |
assert key not in index # otherwise test is invalid | |
# TODO: using a tuple key breaks here in many cases | |
exp_index = index.insert(len(index), key) | |
if isinstance(index, MultiIndex): | |
assert exp_index[-1][0] == key | |
else: | |
assert exp_index[-1] == key | |
exp_data = np.arange(N + 1).astype(np.float64) | |
expected = DataFrame(exp_data, index=exp_index, columns=[0]) | |
# Add new row, but no new columns | |
df = orig.copy() | |
df.loc[key, 0] = N | |
tm.assert_frame_equal(df, expected) | |
# add new row on a Series | |
ser = orig.copy()[0] | |
ser.loc[key] = N | |
# the series machinery lets us preserve int dtype instead of float | |
expected = expected[0].astype(np.int64) | |
tm.assert_series_equal(ser, expected) | |
# add new row and new column | |
df = orig.copy() | |
df.loc[key, 1] = N | |
expected = DataFrame( | |
{0: list(arr) + [np.nan], 1: [np.nan] * N + [float(N)]}, | |
index=exp_index, | |
) | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_with_expansion_preserves_nullable_int(self, dtype): | |
# GH#42099 | |
ser = Series([0, 1, 2, 3], dtype=dtype) | |
df = DataFrame({"data": ser}) | |
result = DataFrame(index=df.index) | |
result.loc[df.index, "data"] = ser | |
tm.assert_frame_equal(result, df, check_column_type=False) | |
result = DataFrame(index=df.index) | |
result.loc[df.index, "data"] = ser._values | |
tm.assert_frame_equal(result, df, check_column_type=False) | |
def test_loc_setitem_ea_not_full_column(self): | |
# GH#39163 | |
df = DataFrame({"A": range(5)}) | |
val = date_range("2016-01-01", periods=3, tz="US/Pacific") | |
df.loc[[0, 1, 2], "B"] = val | |
bex = val.append(DatetimeIndex([pd.NaT, pd.NaT], dtype=val.dtype)) | |
expected = DataFrame({"A": range(5), "B": bex}) | |
assert expected.dtypes["B"] == val.dtype | |
tm.assert_frame_equal(df, expected) | |
class TestLocCallable: | |
def test_frame_loc_getitem_callable(self): | |
# GH#11485 | |
df = DataFrame({"A": [1, 2, 3, 4], "B": list("aabb"), "C": [1, 2, 3, 4]}) | |
# iloc cannot use boolean Series (see GH3635) | |
# return bool indexer | |
res = df.loc[lambda x: x.A > 2] | |
tm.assert_frame_equal(res, df.loc[df.A > 2]) | |
res = df.loc[lambda x: x.B == "b", :] | |
tm.assert_frame_equal(res, df.loc[df.B == "b", :]) | |
res = df.loc[lambda x: x.A > 2, lambda x: x.columns == "B"] | |
tm.assert_frame_equal(res, df.loc[df.A > 2, [False, True, False]]) | |
res = df.loc[lambda x: x.A > 2, lambda x: "B"] | |
tm.assert_series_equal(res, df.loc[df.A > 2, "B"]) | |
res = df.loc[lambda x: x.A > 2, lambda x: ["A", "B"]] | |
tm.assert_frame_equal(res, df.loc[df.A > 2, ["A", "B"]]) | |
res = df.loc[lambda x: x.A == 2, lambda x: ["A", "B"]] | |
tm.assert_frame_equal(res, df.loc[df.A == 2, ["A", "B"]]) | |
# scalar | |
res = df.loc[lambda x: 1, lambda x: "A"] | |
assert res == df.loc[1, "A"] | |
def test_frame_loc_getitem_callable_mixture(self): | |
# GH#11485 | |
df = DataFrame({"A": [1, 2, 3, 4], "B": list("aabb"), "C": [1, 2, 3, 4]}) | |
res = df.loc[lambda x: x.A > 2, ["A", "B"]] | |
tm.assert_frame_equal(res, df.loc[df.A > 2, ["A", "B"]]) | |
res = df.loc[[2, 3], lambda x: ["A", "B"]] | |
tm.assert_frame_equal(res, df.loc[[2, 3], ["A", "B"]]) | |
res = df.loc[3, lambda x: ["A", "B"]] | |
tm.assert_series_equal(res, df.loc[3, ["A", "B"]]) | |
def test_frame_loc_getitem_callable_labels(self): | |
# GH#11485 | |
df = DataFrame({"X": [1, 2, 3, 4], "Y": list("aabb")}, index=list("ABCD")) | |
# return label | |
res = df.loc[lambda x: ["A", "C"]] | |
tm.assert_frame_equal(res, df.loc[["A", "C"]]) | |
res = df.loc[lambda x: ["A", "C"], :] | |
tm.assert_frame_equal(res, df.loc[["A", "C"], :]) | |
res = df.loc[lambda x: ["A", "C"], lambda x: "X"] | |
tm.assert_series_equal(res, df.loc[["A", "C"], "X"]) | |
res = df.loc[lambda x: ["A", "C"], lambda x: ["X"]] | |
tm.assert_frame_equal(res, df.loc[["A", "C"], ["X"]]) | |
# mixture | |
res = df.loc[["A", "C"], lambda x: "X"] | |
tm.assert_series_equal(res, df.loc[["A", "C"], "X"]) | |
res = df.loc[["A", "C"], lambda x: ["X"]] | |
tm.assert_frame_equal(res, df.loc[["A", "C"], ["X"]]) | |
res = df.loc[lambda x: ["A", "C"], "X"] | |
tm.assert_series_equal(res, df.loc[["A", "C"], "X"]) | |
res = df.loc[lambda x: ["A", "C"], ["X"]] | |
tm.assert_frame_equal(res, df.loc[["A", "C"], ["X"]]) | |
def test_frame_loc_setitem_callable(self): | |
# GH#11485 | |
df = DataFrame( | |
{"X": [1, 2, 3, 4], "Y": Series(list("aabb"), dtype=object)}, | |
index=list("ABCD"), | |
) | |
# return label | |
res = df.copy() | |
res.loc[lambda x: ["A", "C"]] = -20 | |
exp = df.copy() | |
exp.loc[["A", "C"]] = -20 | |
tm.assert_frame_equal(res, exp) | |
res = df.copy() | |
res.loc[lambda x: ["A", "C"], :] = 20 | |
exp = df.copy() | |
exp.loc[["A", "C"], :] = 20 | |
tm.assert_frame_equal(res, exp) | |
res = df.copy() | |
res.loc[lambda x: ["A", "C"], lambda x: "X"] = -1 | |
exp = df.copy() | |
exp.loc[["A", "C"], "X"] = -1 | |
tm.assert_frame_equal(res, exp) | |
res = df.copy() | |
res.loc[lambda x: ["A", "C"], lambda x: ["X"]] = [5, 10] | |
exp = df.copy() | |
exp.loc[["A", "C"], ["X"]] = [5, 10] | |
tm.assert_frame_equal(res, exp) | |
# mixture | |
res = df.copy() | |
res.loc[["A", "C"], lambda x: "X"] = np.array([-1, -2]) | |
exp = df.copy() | |
exp.loc[["A", "C"], "X"] = np.array([-1, -2]) | |
tm.assert_frame_equal(res, exp) | |
res = df.copy() | |
res.loc[["A", "C"], lambda x: ["X"]] = 10 | |
exp = df.copy() | |
exp.loc[["A", "C"], ["X"]] = 10 | |
tm.assert_frame_equal(res, exp) | |
res = df.copy() | |
res.loc[lambda x: ["A", "C"], "X"] = -2 | |
exp = df.copy() | |
exp.loc[["A", "C"], "X"] = -2 | |
tm.assert_frame_equal(res, exp) | |
res = df.copy() | |
res.loc[lambda x: ["A", "C"], ["X"]] = -4 | |
exp = df.copy() | |
exp.loc[["A", "C"], ["X"]] = -4 | |
tm.assert_frame_equal(res, exp) | |
class TestPartialStringSlicing: | |
def test_loc_getitem_partial_string_slicing_datetimeindex(self): | |
# GH#35509 | |
df = DataFrame( | |
{"col1": ["a", "b", "c"], "col2": [1, 2, 3]}, | |
index=to_datetime(["2020-08-01", "2020-07-02", "2020-08-05"]), | |
) | |
expected = DataFrame( | |
{"col1": ["a", "c"], "col2": [1, 3]}, | |
index=to_datetime(["2020-08-01", "2020-08-05"]), | |
) | |
result = df.loc["2020-08"] | |
tm.assert_frame_equal(result, expected) | |
def test_loc_getitem_partial_string_slicing_with_periodindex(self): | |
pi = pd.period_range(start="2017-01-01", end="2018-01-01", freq="M") | |
ser = pi.to_series() | |
result = ser.loc[:"2017-12"] | |
expected = ser.iloc[:-1] | |
tm.assert_series_equal(result, expected) | |
def test_loc_getitem_partial_string_slicing_with_timedeltaindex(self): | |
ix = timedelta_range(start="1 day", end="2 days", freq="1h") | |
ser = ix.to_series() | |
result = ser.loc[:"1 days"] | |
expected = ser.iloc[:-1] | |
tm.assert_series_equal(result, expected) | |
def test_loc_getitem_str_timedeltaindex(self): | |
# GH#16896 | |
df = DataFrame({"x": range(3)}, index=to_timedelta(range(3), unit="days")) | |
expected = df.iloc[0] | |
sliced = df.loc["0 days"] | |
tm.assert_series_equal(sliced, expected) | |
def test_loc_getitem_partial_slice_non_monotonicity( | |
self, tz_aware_fixture, indexer_end, frame_or_series | |
): | |
# GH#33146 | |
obj = frame_or_series( | |
[1] * 5, | |
index=DatetimeIndex( | |
[ | |
Timestamp("2019-12-30"), | |
Timestamp("2020-01-01"), | |
Timestamp("2019-12-25"), | |
Timestamp("2020-01-02 23:59:59.999999999"), | |
Timestamp("2019-12-19"), | |
], | |
tz=tz_aware_fixture, | |
), | |
) | |
expected = frame_or_series( | |
[1] * 2, | |
index=DatetimeIndex( | |
[ | |
Timestamp("2020-01-01"), | |
Timestamp("2020-01-02 23:59:59.999999999"), | |
], | |
tz=tz_aware_fixture, | |
), | |
) | |
indexer = slice("2020-01-01", indexer_end) | |
result = obj[indexer] | |
tm.assert_equal(result, expected) | |
result = obj.loc[indexer] | |
tm.assert_equal(result, expected) | |
class TestLabelSlicing: | |
def test_loc_getitem_slicing_datetimes_frame(self): | |
# GH#7523 | |
# unique | |
df_unique = DataFrame( | |
np.arange(4.0, dtype="float64"), | |
index=[datetime(2001, 1, i, 10, 00) for i in [1, 2, 3, 4]], | |
) | |
# duplicates | |
df_dups = DataFrame( | |
np.arange(5.0, dtype="float64"), | |
index=[datetime(2001, 1, i, 10, 00) for i in [1, 2, 2, 3, 4]], | |
) | |
for df in [df_unique, df_dups]: | |
result = df.loc[datetime(2001, 1, 1, 10) :] | |
tm.assert_frame_equal(result, df) | |
result = df.loc[: datetime(2001, 1, 4, 10)] | |
tm.assert_frame_equal(result, df) | |
result = df.loc[datetime(2001, 1, 1, 10) : datetime(2001, 1, 4, 10)] | |
tm.assert_frame_equal(result, df) | |
result = df.loc[datetime(2001, 1, 1, 11) :] | |
expected = df.iloc[1:] | |
tm.assert_frame_equal(result, expected) | |
result = df.loc["20010101 11":] | |
tm.assert_frame_equal(result, expected) | |
def test_loc_getitem_label_slice_across_dst(self): | |
# GH#21846 | |
idx = date_range( | |
"2017-10-29 01:30:00", tz="Europe/Berlin", periods=5, freq="30 min" | |
) | |
series2 = Series([0, 1, 2, 3, 4], index=idx) | |
t_1 = Timestamp("2017-10-29 02:30:00+02:00", tz="Europe/Berlin") | |
t_2 = Timestamp("2017-10-29 02:00:00+01:00", tz="Europe/Berlin") | |
result = series2.loc[t_1:t_2] | |
expected = Series([2, 3], index=idx[2:4]) | |
tm.assert_series_equal(result, expected) | |
result = series2[t_1] | |
expected = 2 | |
assert result == expected | |
def test_loc_getitem_label_slice_period_timedelta(self, index): | |
ser = index.to_series() | |
result = ser.loc[: index[-2]] | |
expected = ser.iloc[:-1] | |
tm.assert_series_equal(result, expected) | |
def test_loc_getitem_slice_floats_inexact(self): | |
index = [52195.504153, 52196.303147, 52198.369883] | |
df = DataFrame(np.random.default_rng(2).random((3, 2)), index=index) | |
s1 = df.loc[52195.1:52196.5] | |
assert len(s1) == 2 | |
s1 = df.loc[52195.1:52196.6] | |
assert len(s1) == 2 | |
s1 = df.loc[52195.1:52198.9] | |
assert len(s1) == 3 | |
def test_loc_getitem_float_slice_floatindex(self, float_numpy_dtype): | |
dtype = float_numpy_dtype | |
ser = Series( | |
np.random.default_rng(2).random(10), index=np.arange(10, 20, dtype=dtype) | |
) | |
assert len(ser.loc[12.0:]) == 8 | |
assert len(ser.loc[12.5:]) == 7 | |
idx = np.arange(10, 20, dtype=dtype) | |
idx[2] = 12.2 | |
ser.index = idx | |
assert len(ser.loc[12.0:]) == 8 | |
assert len(ser.loc[12.5:]) == 7 | |
def test_loc_getitem_slice_label_td64obj(self, start, stop, expected_slice): | |
# GH#20393 | |
ser = Series(range(11), timedelta_range("0 days", "10 days")) | |
result = ser.loc[slice(start, stop)] | |
expected = ser.iloc[expected_slice] | |
tm.assert_series_equal(result, expected) | |
def test_loc_getitem_slice_unordered_dt_index(self, frame_or_series, start): | |
obj = frame_or_series( | |
[1, 2, 3], | |
index=[Timestamp("2016"), Timestamp("2019"), Timestamp("2017")], | |
) | |
with pytest.raises( | |
KeyError, match="Value based partial slicing on non-monotonic" | |
): | |
obj.loc[start:"2022"] | |
def test_loc_getitem_slice_labels_int_in_object_index(self, frame_or_series, value): | |
# GH: 26491 | |
obj = frame_or_series(range(4), index=[value, "first", 2, "third"]) | |
result = obj.loc[value:"third"] | |
expected = frame_or_series(range(4), index=[value, "first", 2, "third"]) | |
tm.assert_equal(result, expected) | |
def test_loc_getitem_slice_columns_mixed_dtype(self): | |
# GH: 20975 | |
df = DataFrame({"test": 1, 1: 2, 2: 3}, index=[0]) | |
expected = DataFrame( | |
data=[[2, 3]], index=[0], columns=Index([1, 2], dtype=object) | |
) | |
tm.assert_frame_equal(df.loc[:, 1:], expected) | |
class TestLocBooleanLabelsAndSlices: | |
def test_loc_bool_incompatible_index_raises( | |
self, index, frame_or_series, bool_value | |
): | |
# GH20432 | |
message = f"{bool_value}: boolean label can not be used without a boolean index" | |
if index.inferred_type != "boolean": | |
obj = frame_or_series(index=index, dtype="object") | |
with pytest.raises(KeyError, match=message): | |
obj.loc[bool_value] | |
def test_loc_bool_should_not_raise(self, frame_or_series, bool_value): | |
obj = frame_or_series( | |
index=Index([True, False], dtype="boolean"), dtype="object" | |
) | |
obj.loc[bool_value] | |
def test_loc_bool_slice_raises(self, index, frame_or_series): | |
# GH20432 | |
message = ( | |
r"slice\(True, False, None\): boolean values can not be used in a slice" | |
) | |
obj = frame_or_series(index=index, dtype="object") | |
with pytest.raises(TypeError, match=message): | |
obj.loc[True:False] | |
class TestLocBooleanMask: | |
def test_loc_setitem_bool_mask_timedeltaindex(self): | |
# GH#14946 | |
df = DataFrame({"x": range(10)}) | |
df.index = to_timedelta(range(10), unit="s") | |
conditions = [df["x"] > 3, df["x"] == 3, df["x"] < 3] | |
expected_data = [ | |
[0, 1, 2, 3, 10, 10, 10, 10, 10, 10], | |
[0, 1, 2, 10, 4, 5, 6, 7, 8, 9], | |
[10, 10, 10, 3, 4, 5, 6, 7, 8, 9], | |
] | |
for cond, data in zip(conditions, expected_data): | |
result = df.copy() | |
result.loc[cond, "x"] = 10 | |
expected = DataFrame( | |
data, | |
index=to_timedelta(range(10), unit="s"), | |
columns=["x"], | |
dtype="int64", | |
) | |
tm.assert_frame_equal(expected, result) | |
def test_loc_setitem_mask_with_datetimeindex_tz(self, tz): | |
# GH#16889 | |
# support .loc with alignment and tz-aware DatetimeIndex | |
mask = np.array([True, False, True, False]) | |
idx = date_range("20010101", periods=4, tz=tz) | |
df = DataFrame({"a": np.arange(4)}, index=idx).astype("float64") | |
result = df.copy() | |
result.loc[mask, :] = df.loc[mask, :] | |
tm.assert_frame_equal(result, df) | |
result = df.copy() | |
result.loc[mask] = df.loc[mask] | |
tm.assert_frame_equal(result, df) | |
def test_loc_setitem_mask_and_label_with_datetimeindex(self): | |
# GH#9478 | |
# a datetimeindex alignment issue with partial setting | |
df = DataFrame( | |
np.arange(6.0).reshape(3, 2), | |
columns=list("AB"), | |
index=date_range("1/1/2000", periods=3, freq="1h"), | |
) | |
expected = df.copy() | |
expected["C"] = [expected.index[0]] + [pd.NaT, pd.NaT] | |
mask = df.A < 1 | |
df.loc[mask, "C"] = df.loc[mask].index | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_mask_td64_series_value(self): | |
# GH#23462 key list of bools, value is a Series | |
td1 = Timedelta(0) | |
td2 = Timedelta(28767471428571405) | |
df = DataFrame({"col": Series([td1, td2])}) | |
df_copy = df.copy() | |
ser = Series([td1]) | |
expected = df["col"].iloc[1]._value | |
df.loc[[True, False]] = ser | |
result = df["col"].iloc[1]._value | |
assert expected == result | |
tm.assert_frame_equal(df, df_copy) | |
# TODO(ArrayManager) rewrite not using .values | |
def test_loc_setitem_boolean_and_column(self, float_frame): | |
expected = float_frame.copy() | |
mask = float_frame["A"] > 0 | |
float_frame.loc[mask, "B"] = 0 | |
values = expected.values.copy() | |
values[mask.values, 1] = 0 | |
expected = DataFrame(values, index=expected.index, columns=expected.columns) | |
tm.assert_frame_equal(float_frame, expected) | |
def test_loc_setitem_ndframe_values_alignment( | |
self, using_copy_on_write, warn_copy_on_write | |
): | |
# GH#45501 | |
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) | |
df.loc[[False, False, True], ["a"]] = DataFrame( | |
{"a": [10, 20, 30]}, index=[2, 1, 0] | |
) | |
expected = DataFrame({"a": [1, 2, 10], "b": [4, 5, 6]}) | |
tm.assert_frame_equal(df, expected) | |
# same thing with Series RHS | |
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) | |
df.loc[[False, False, True], ["a"]] = Series([10, 11, 12], index=[2, 1, 0]) | |
tm.assert_frame_equal(df, expected) | |
# same thing but setting "a" instead of ["a"] | |
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) | |
df.loc[[False, False, True], "a"] = Series([10, 11, 12], index=[2, 1, 0]) | |
tm.assert_frame_equal(df, expected) | |
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) | |
df_orig = df.copy() | |
ser = df["a"] | |
with tm.assert_cow_warning(warn_copy_on_write): | |
ser.loc[[False, False, True]] = Series([10, 11, 12], index=[2, 1, 0]) | |
if using_copy_on_write: | |
tm.assert_frame_equal(df, df_orig) | |
else: | |
tm.assert_frame_equal(df, expected) | |
def test_loc_indexer_empty_broadcast(self): | |
# GH#51450 | |
df = DataFrame({"a": [], "b": []}, dtype=object) | |
expected = df.copy() | |
df.loc[np.array([], dtype=np.bool_), ["a"]] = df["a"].copy() | |
tm.assert_frame_equal(df, expected) | |
def test_loc_indexer_all_false_broadcast(self): | |
# GH#51450 | |
df = DataFrame({"a": ["x"], "b": ["y"]}, dtype=object) | |
expected = df.copy() | |
df.loc[np.array([False], dtype=np.bool_), ["a"]] = df["b"].copy() | |
tm.assert_frame_equal(df, expected) | |
def test_loc_indexer_length_one(self): | |
# GH#51435 | |
df = DataFrame({"a": ["x"], "b": ["y"]}, dtype=object) | |
expected = DataFrame({"a": ["y"], "b": ["y"]}, dtype=object) | |
df.loc[np.array([True], dtype=np.bool_), ["a"]] = df["b"].copy() | |
tm.assert_frame_equal(df, expected) | |
class TestLocListlike: | |
def test_loc_getitem_list_of_labels_categoricalindex_with_na(self, box): | |
# passing a list can include valid categories _or_ NA values | |
ci = CategoricalIndex(["A", "B", np.nan]) | |
ser = Series(range(3), index=ci) | |
result = ser.loc[box(ci)] | |
tm.assert_series_equal(result, ser) | |
result = ser[box(ci)] | |
tm.assert_series_equal(result, ser) | |
result = ser.to_frame().loc[box(ci)] | |
tm.assert_frame_equal(result, ser.to_frame()) | |
ser2 = ser[:-1] | |
ci2 = ci[1:] | |
# but if there are no NAs present, this should raise KeyError | |
msg = "not in index" | |
with pytest.raises(KeyError, match=msg): | |
ser2.loc[box(ci2)] | |
with pytest.raises(KeyError, match=msg): | |
ser2[box(ci2)] | |
with pytest.raises(KeyError, match=msg): | |
ser2.to_frame().loc[box(ci2)] | |
def test_loc_getitem_series_label_list_missing_values(self): | |
# gh-11428 | |
key = np.array( | |
["2001-01-04", "2001-01-02", "2001-01-04", "2001-01-14"], dtype="datetime64" | |
) | |
ser = Series([2, 5, 8, 11], date_range("2001-01-01", freq="D", periods=4)) | |
with pytest.raises(KeyError, match="not in index"): | |
ser.loc[key] | |
def test_loc_getitem_series_label_list_missing_integer_values(self): | |
# GH: 25927 | |
ser = Series( | |
index=np.array([9730701000001104, 10049011000001109]), | |
data=np.array([999000011000001104, 999000011000001104]), | |
) | |
with pytest.raises(KeyError, match="not in index"): | |
ser.loc[np.array([9730701000001104, 10047311000001102])] | |
def test_loc_getitem_listlike_of_datetimelike_keys(self, to_period): | |
# GH#11497 | |
idx = date_range("2011-01-01", "2011-01-02", freq="D", name="idx") | |
if to_period: | |
idx = idx.to_period("D") | |
ser = Series([0.1, 0.2], index=idx, name="s") | |
keys = [Timestamp("2011-01-01"), Timestamp("2011-01-02")] | |
if to_period: | |
keys = [x.to_period("D") for x in keys] | |
result = ser.loc[keys] | |
exp = Series([0.1, 0.2], index=idx, name="s") | |
if not to_period: | |
exp.index = exp.index._with_freq(None) | |
tm.assert_series_equal(result, exp, check_index_type=True) | |
keys = [ | |
Timestamp("2011-01-02"), | |
Timestamp("2011-01-02"), | |
Timestamp("2011-01-01"), | |
] | |
if to_period: | |
keys = [x.to_period("D") for x in keys] | |
exp = Series( | |
[0.2, 0.2, 0.1], index=Index(keys, name="idx", dtype=idx.dtype), name="s" | |
) | |
result = ser.loc[keys] | |
tm.assert_series_equal(result, exp, check_index_type=True) | |
keys = [ | |
Timestamp("2011-01-03"), | |
Timestamp("2011-01-02"), | |
Timestamp("2011-01-03"), | |
] | |
if to_period: | |
keys = [x.to_period("D") for x in keys] | |
with pytest.raises(KeyError, match="not in index"): | |
ser.loc[keys] | |
def test_loc_named_index(self): | |
# GH 42790 | |
df = DataFrame( | |
[[1, 2], [4, 5], [7, 8]], | |
index=["cobra", "viper", "sidewinder"], | |
columns=["max_speed", "shield"], | |
) | |
expected = df.iloc[:2] | |
expected.index.name = "foo" | |
result = df.loc[Index(["cobra", "viper"], name="foo")] | |
tm.assert_frame_equal(result, expected) | |
def test_loc_getitem_label_list_integer_labels(columns, column_key, expected_columns): | |
# gh-14836 | |
df = DataFrame( | |
np.random.default_rng(2).random((3, 3)), columns=columns, index=list("ABC") | |
) | |
expected = df.iloc[:, expected_columns] | |
result = df.loc[["A", "B", "C"], column_key] | |
tm.assert_frame_equal(result, expected, check_column_type=True) | |
def test_loc_setitem_float_intindex(): | |
# GH 8720 | |
rand_data = np.random.default_rng(2).standard_normal((8, 4)) | |
result = DataFrame(rand_data) | |
result.loc[:, 0.5] = np.nan | |
expected_data = np.hstack((rand_data, np.array([np.nan] * 8).reshape(8, 1))) | |
expected = DataFrame(expected_data, columns=[0.0, 1.0, 2.0, 3.0, 0.5]) | |
tm.assert_frame_equal(result, expected) | |
result = DataFrame(rand_data) | |
result.loc[:, 0.5] = np.nan | |
tm.assert_frame_equal(result, expected) | |
def test_loc_axis_1_slice(): | |
# GH 10586 | |
cols = [(yr, m) for yr in [2014, 2015] for m in [7, 8, 9, 10]] | |
df = DataFrame( | |
np.ones((10, 8)), | |
index=tuple("ABCDEFGHIJ"), | |
columns=MultiIndex.from_tuples(cols), | |
) | |
result = df.loc(axis=1)[(2014, 9):(2015, 8)] | |
expected = DataFrame( | |
np.ones((10, 4)), | |
index=tuple("ABCDEFGHIJ"), | |
columns=MultiIndex.from_tuples([(2014, 9), (2014, 10), (2015, 7), (2015, 8)]), | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_loc_set_dataframe_multiindex(): | |
# GH 14592 | |
expected = DataFrame( | |
"a", index=range(2), columns=MultiIndex.from_product([range(2), range(2)]) | |
) | |
result = expected.copy() | |
result.loc[0, [(0, 1)]] = result.loc[0, [(0, 1)]] | |
tm.assert_frame_equal(result, expected) | |
def test_loc_mixed_int_float(): | |
# GH#19456 | |
ser = Series(range(2), Index([1, 2.0], dtype=object)) | |
result = ser.loc[1] | |
assert result == 0 | |
def test_loc_with_positional_slice_raises(): | |
# GH#31840 | |
ser = Series(range(4), index=["A", "B", "C", "D"]) | |
with pytest.raises(TypeError, match="Slicing a positional slice with .loc"): | |
ser.loc[:3] = 2 | |
def test_loc_slice_disallows_positional(): | |
# GH#16121, GH#24612, GH#31810 | |
dti = date_range("2016-01-01", periods=3) | |
df = DataFrame(np.random.default_rng(2).random((3, 2)), index=dti) | |
ser = df[0] | |
msg = ( | |
"cannot do slice indexing on DatetimeIndex with these " | |
r"indexers \[1\] of type int" | |
) | |
for obj in [df, ser]: | |
with pytest.raises(TypeError, match=msg): | |
obj.loc[1:3] | |
with pytest.raises(TypeError, match="Slicing a positional slice with .loc"): | |
# GH#31840 enforce incorrect behavior | |
obj.loc[1:3] = 1 | |
with pytest.raises(TypeError, match=msg): | |
df.loc[1:3, 1] | |
with pytest.raises(TypeError, match="Slicing a positional slice with .loc"): | |
# GH#31840 enforce incorrect behavior | |
df.loc[1:3, 1] = 2 | |
def test_loc_datetimelike_mismatched_dtypes(): | |
# GH#32650 dont mix and match datetime/timedelta/period dtypes | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 3)), | |
columns=["a", "b", "c"], | |
index=date_range("2012", freq="h", periods=5), | |
) | |
# create dataframe with non-unique DatetimeIndex | |
df = df.iloc[[0, 2, 2, 3]].copy() | |
dti = df.index | |
tdi = pd.TimedeltaIndex(dti.asi8) # matching i8 values | |
msg = r"None of \[TimedeltaIndex.* are in the \[index\]" | |
with pytest.raises(KeyError, match=msg): | |
df.loc[tdi] | |
with pytest.raises(KeyError, match=msg): | |
df["a"].loc[tdi] | |
def test_loc_with_period_index_indexer(): | |
# GH#4125 | |
idx = pd.period_range("2002-01", "2003-12", freq="M") | |
df = DataFrame(np.random.default_rng(2).standard_normal((24, 10)), index=idx) | |
tm.assert_frame_equal(df, df.loc[idx]) | |
tm.assert_frame_equal(df, df.loc[list(idx)]) | |
tm.assert_frame_equal(df, df.loc[list(idx)]) | |
tm.assert_frame_equal(df.iloc[0:5], df.loc[idx[0:5]]) | |
tm.assert_frame_equal(df, df.loc[list(idx)]) | |
def test_loc_setitem_multiindex_timestamp(): | |
# GH#13831 | |
vals = np.random.default_rng(2).standard_normal((8, 6)) | |
idx = date_range("1/1/2000", periods=8) | |
cols = ["A", "B", "C", "D", "E", "F"] | |
exp = DataFrame(vals, index=idx, columns=cols) | |
exp.loc[exp.index[1], ("A", "B")] = np.nan | |
vals[1][0:2] = np.nan | |
res = DataFrame(vals, index=idx, columns=cols) | |
tm.assert_frame_equal(res, exp) | |
def test_loc_getitem_multiindex_tuple_level(): | |
# GH#27591 | |
lev1 = ["a", "b", "c"] | |
lev2 = [(0, 1), (1, 0)] | |
lev3 = [0, 1] | |
cols = MultiIndex.from_product([lev1, lev2, lev3], names=["x", "y", "z"]) | |
df = DataFrame(6, index=range(5), columns=cols) | |
# the lev2[0] here should be treated as a single label, not as a sequence | |
# of labels | |
result = df.loc[:, (lev1[0], lev2[0], lev3[0])] | |
# TODO: i think this actually should drop levels | |
expected = df.iloc[:, :1] | |
tm.assert_frame_equal(result, expected) | |
alt = df.xs((lev1[0], lev2[0], lev3[0]), level=[0, 1, 2], axis=1) | |
tm.assert_frame_equal(alt, expected) | |
# same thing on a Series | |
ser = df.iloc[0] | |
expected2 = ser.iloc[:1] | |
alt2 = ser.xs((lev1[0], lev2[0], lev3[0]), level=[0, 1, 2], axis=0) | |
tm.assert_series_equal(alt2, expected2) | |
result2 = ser.loc[lev1[0], lev2[0], lev3[0]] | |
assert result2 == 6 | |
def test_loc_getitem_nullable_index_with_duplicates(): | |
# GH#34497 | |
df = DataFrame( | |
data=np.array([[1, 2, 3, 4], [5, 6, 7, 8], [1, 2, np.nan, np.nan]]).T, | |
columns=["a", "b", "c"], | |
dtype="Int64", | |
) | |
df2 = df.set_index("c") | |
assert df2.index.dtype == "Int64" | |
res = df2.loc[1] | |
expected = Series([1, 5], index=df2.columns, dtype="Int64", name=1) | |
tm.assert_series_equal(res, expected) | |
# pd.NA and duplicates in an object-dtype Index | |
df2.index = df2.index.astype(object) | |
res = df2.loc[1] | |
tm.assert_series_equal(res, expected) | |
def test_loc_setitem_uint8_upcast(value): | |
# GH#26049 | |
df = DataFrame([1, 2, 3, 4], columns=["col1"], dtype="uint8") | |
with tm.assert_produces_warning(FutureWarning, match="item of incompatible dtype"): | |
df.loc[2, "col1"] = value # value that can't be held in uint8 | |
if np_version_gt2 and isinstance(value, np.int16): | |
# Note, result type of uint8 + int16 is int16 | |
# in numpy < 2, though, numpy would inspect the | |
# value and see that it could fit in an uint16, resulting in a uint16 | |
dtype = "int16" | |
else: | |
dtype = "uint16" | |
expected = DataFrame([1, 2, 300, 4], columns=["col1"], dtype=dtype) | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_using_datetimelike_str_as_index(fill_val, exp_dtype): | |
data = ["2022-01-02", "2022-01-03", "2022-01-04", fill_val.date()] | |
index = DatetimeIndex(data, tz=fill_val.tz, dtype=exp_dtype) | |
df = DataFrame([10, 11, 12, 14], columns=["a"], index=index) | |
# adding new row using an unexisting datetime-like str index | |
df.loc["2022-01-08", "a"] = 13 | |
data.append("2022-01-08") | |
expected_index = DatetimeIndex(data, dtype=exp_dtype) | |
tm.assert_index_equal(df.index, expected_index, exact=True) | |
def test_loc_set_int_dtype(): | |
# GH#23326 | |
df = DataFrame([list("abc")]) | |
df.loc[:, "col1"] = 5 | |
expected = DataFrame({0: ["a"], 1: ["b"], 2: ["c"], "col1": [5]}) | |
tm.assert_frame_equal(df, expected) | |
def test_loc_periodindex_3_levels(): | |
# GH#24091 | |
p_index = PeriodIndex( | |
["20181101 1100", "20181101 1200", "20181102 1300", "20181102 1400"], | |
name="datetime", | |
freq="B", | |
) | |
mi_series = DataFrame( | |
[["A", "B", 1.0], ["A", "C", 2.0], ["Z", "Q", 3.0], ["W", "F", 4.0]], | |
index=p_index, | |
columns=["ONE", "TWO", "VALUES"], | |
) | |
mi_series = mi_series.set_index(["ONE", "TWO"], append=True)["VALUES"] | |
assert mi_series.loc[(p_index[0], "A", "B")] == 1.0 | |
def test_loc_setitem_pyarrow_strings(): | |
# GH#52319 | |
pytest.importorskip("pyarrow") | |
df = DataFrame( | |
{ | |
"strings": Series(["A", "B", "C"], dtype="string[pyarrow]"), | |
"ids": Series([True, True, False]), | |
} | |
) | |
new_value = Series(["X", "Y"]) | |
df.loc[df.ids, "strings"] = new_value | |
expected_df = DataFrame( | |
{ | |
"strings": Series(["X", "Y", "C"], dtype="string[pyarrow]"), | |
"ids": Series([True, True, False]), | |
} | |
) | |
tm.assert_frame_equal(df, expected_df) | |
class TestLocSeries: | |
def test_loc_uint64(self, val, expected): | |
# see GH#19399 | |
ser = Series({2**63 - 1: 3, 2**63: 4}) | |
assert ser.loc[val] == expected | |
def test_loc_getitem(self, string_series, datetime_series): | |
inds = string_series.index[[3, 4, 7]] | |
tm.assert_series_equal(string_series.loc[inds], string_series.reindex(inds)) | |
tm.assert_series_equal(string_series.iloc[5::2], string_series[5::2]) | |
# slice with indices | |
d1, d2 = datetime_series.index[[5, 15]] | |
result = datetime_series.loc[d1:d2] | |
expected = datetime_series.truncate(d1, d2) | |
tm.assert_series_equal(result, expected) | |
# boolean | |
mask = string_series > string_series.median() | |
tm.assert_series_equal(string_series.loc[mask], string_series[mask]) | |
# ask for index value | |
assert datetime_series.loc[d1] == datetime_series[d1] | |
assert datetime_series.loc[d2] == datetime_series[d2] | |
def test_loc_getitem_not_monotonic(self, datetime_series): | |
d1, d2 = datetime_series.index[[5, 15]] | |
ts2 = datetime_series[::2].iloc[[1, 2, 0]] | |
msg = r"Timestamp\('2000-01-10 00:00:00'\)" | |
with pytest.raises(KeyError, match=msg): | |
ts2.loc[d1:d2] | |
with pytest.raises(KeyError, match=msg): | |
ts2.loc[d1:d2] = 0 | |
def test_loc_getitem_setitem_integer_slice_keyerrors(self): | |
ser = Series( | |
np.random.default_rng(2).standard_normal(10), index=list(range(0, 20, 2)) | |
) | |
# this is OK | |
cp = ser.copy() | |
cp.iloc[4:10] = 0 | |
assert (cp.iloc[4:10] == 0).all() | |
# so is this | |
cp = ser.copy() | |
cp.iloc[3:11] = 0 | |
assert (cp.iloc[3:11] == 0).values.all() | |
result = ser.iloc[2:6] | |
result2 = ser.loc[3:11] | |
expected = ser.reindex([4, 6, 8, 10]) | |
tm.assert_series_equal(result, expected) | |
tm.assert_series_equal(result2, expected) | |
# non-monotonic, raise KeyError | |
s2 = ser.iloc[list(range(5)) + list(range(9, 4, -1))] | |
with pytest.raises(KeyError, match=r"^3$"): | |
s2.loc[3:11] | |
with pytest.raises(KeyError, match=r"^3$"): | |
s2.loc[3:11] = 0 | |
def test_loc_getitem_iterator(self, string_series): | |
idx = iter(string_series.index[:10]) | |
result = string_series.loc[idx] | |
tm.assert_series_equal(result, string_series[:10]) | |
def test_loc_setitem_boolean(self, string_series): | |
mask = string_series > string_series.median() | |
result = string_series.copy() | |
result.loc[mask] = 0 | |
expected = string_series | |
expected[mask] = 0 | |
tm.assert_series_equal(result, expected) | |
def test_loc_setitem_corner(self, string_series): | |
inds = list(string_series.index[[5, 8, 12]]) | |
string_series.loc[inds] = 5 | |
msg = r"\['foo'\] not in index" | |
with pytest.raises(KeyError, match=msg): | |
string_series.loc[inds + ["foo"]] = 5 | |
def test_basic_setitem_with_labels(self, datetime_series): | |
indices = datetime_series.index[[5, 10, 15]] | |
cp = datetime_series.copy() | |
exp = datetime_series.copy() | |
cp[indices] = 0 | |
exp.loc[indices] = 0 | |
tm.assert_series_equal(cp, exp) | |
cp = datetime_series.copy() | |
exp = datetime_series.copy() | |
cp[indices[0] : indices[2]] = 0 | |
exp.loc[indices[0] : indices[2]] = 0 | |
tm.assert_series_equal(cp, exp) | |
def test_loc_setitem_listlike_of_ints(self): | |
# integer indexes, be careful | |
ser = Series( | |
np.random.default_rng(2).standard_normal(10), index=list(range(0, 20, 2)) | |
) | |
inds = [0, 4, 6] | |
arr_inds = np.array([0, 4, 6]) | |
cp = ser.copy() | |
exp = ser.copy() | |
ser[inds] = 0 | |
ser.loc[inds] = 0 | |
tm.assert_series_equal(cp, exp) | |
cp = ser.copy() | |
exp = ser.copy() | |
ser[arr_inds] = 0 | |
ser.loc[arr_inds] = 0 | |
tm.assert_series_equal(cp, exp) | |
inds_notfound = [0, 4, 5, 6] | |
arr_inds_notfound = np.array([0, 4, 5, 6]) | |
msg = r"\[5\] not in index" | |
with pytest.raises(KeyError, match=msg): | |
ser[inds_notfound] = 0 | |
with pytest.raises(Exception, match=msg): | |
ser[arr_inds_notfound] = 0 | |
def test_loc_setitem_dt64tz_values(self): | |
# GH#12089 | |
ser = Series( | |
date_range("2011-01-01", periods=3, tz="US/Eastern"), | |
index=["a", "b", "c"], | |
) | |
s2 = ser.copy() | |
expected = Timestamp("2011-01-03", tz="US/Eastern") | |
s2.loc["a"] = expected | |
result = s2.loc["a"] | |
assert result == expected | |
s2 = ser.copy() | |
s2.iloc[0] = expected | |
result = s2.iloc[0] | |
assert result == expected | |
s2 = ser.copy() | |
s2["a"] = expected | |
result = s2["a"] | |
assert result == expected | |
def test_loc_iloc_setitem_with_listlike(self, size, array_fn): | |
# GH37748 | |
# testing insertion, in a Series of size N (here 5), of a listlike object | |
# of size 0, N-1, N, N+1 | |
arr = array_fn([0] * size) | |
expected = Series([arr, 0, 0, 0, 0], index=list("abcde"), dtype=object) | |
ser = Series(0, index=list("abcde"), dtype=object) | |
ser.loc["a"] = arr | |
tm.assert_series_equal(ser, expected) | |
ser = Series(0, index=list("abcde"), dtype=object) | |
ser.iloc[0] = arr | |
tm.assert_series_equal(ser, expected) | |
def test_loc_series_getitem_too_many_dimensions(self, indexer): | |
# GH#35349 | |
ser = Series( | |
index=MultiIndex.from_tuples([("A", "0"), ("A", "1"), ("B", "0")]), | |
data=[21, 22, 23], | |
) | |
msg = "Too many indexers" | |
with pytest.raises(IndexingError, match=msg): | |
ser.loc[indexer, :] | |
with pytest.raises(IndexingError, match=msg): | |
ser.loc[indexer, :] = 1 | |
def test_loc_setitem(self, string_series): | |
inds = string_series.index[[3, 4, 7]] | |
result = string_series.copy() | |
result.loc[inds] = 5 | |
expected = string_series.copy() | |
expected.iloc[[3, 4, 7]] = 5 | |
tm.assert_series_equal(result, expected) | |
result.iloc[5:10] = 10 | |
expected[5:10] = 10 | |
tm.assert_series_equal(result, expected) | |
# set slice with indices | |
d1, d2 = string_series.index[[5, 15]] | |
result.loc[d1:d2] = 6 | |
expected[5:16] = 6 # because it's inclusive | |
tm.assert_series_equal(result, expected) | |
# set index value | |
string_series.loc[d1] = 4 | |
string_series.loc[d2] = 6 | |
assert string_series[d1] == 4 | |
assert string_series[d2] == 6 | |
def test_loc_assign_dict_to_row(self, dtype): | |
# GH41044 | |
df = DataFrame({"A": ["abc", "def"], "B": ["ghi", "jkl"]}, dtype=dtype) | |
df.loc[0, :] = {"A": "newA", "B": "newB"} | |
expected = DataFrame({"A": ["newA", "def"], "B": ["newB", "jkl"]}, dtype=dtype) | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_dict_timedelta_multiple_set(self): | |
# GH 16309 | |
result = DataFrame(columns=["time", "value"]) | |
result.loc[1] = {"time": Timedelta(6, unit="s"), "value": "foo"} | |
result.loc[1] = {"time": Timedelta(6, unit="s"), "value": "foo"} | |
expected = DataFrame( | |
[[Timedelta(6, unit="s"), "foo"]], columns=["time", "value"], index=[1] | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_loc_set_multiple_items_in_multiple_new_columns(self): | |
# GH 25594 | |
df = DataFrame(index=[1, 2], columns=["a"]) | |
df.loc[1, ["b", "c"]] = [6, 7] | |
expected = DataFrame( | |
{ | |
"a": Series([np.nan, np.nan], dtype="object"), | |
"b": [6, np.nan], | |
"c": [7, np.nan], | |
}, | |
index=[1, 2], | |
) | |
tm.assert_frame_equal(df, expected) | |
def test_getitem_loc_str_periodindex(self): | |
# GH#33964 | |
msg = "Period with BDay freq is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
index = pd.period_range(start="2000", periods=20, freq="B") | |
series = Series(range(20), index=index) | |
assert series.loc["2000-01-14"] == 9 | |
def test_loc_nonunique_masked_index(self): | |
# GH 57027 | |
ids = list(range(11)) | |
index = Index(ids * 1000, dtype="Int64") | |
df = DataFrame({"val": np.arange(len(index), dtype=np.intp)}, index=index) | |
result = df.loc[ids] | |
expected = DataFrame( | |
{"val": index.argsort(kind="stable").astype(np.intp)}, | |
index=Index(np.array(ids).repeat(1000), dtype="Int64"), | |
) | |
tm.assert_frame_equal(result, expected) | |