peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/io
/test_fsspec.py
import io | |
import numpy as np | |
import pytest | |
from pandas import ( | |
DataFrame, | |
date_range, | |
read_csv, | |
read_excel, | |
read_feather, | |
read_json, | |
read_parquet, | |
read_pickle, | |
read_stata, | |
read_table, | |
) | |
import pandas._testing as tm | |
from pandas.util import _test_decorators as td | |
pytestmark = pytest.mark.filterwarnings( | |
"ignore:Passing a BlockManager to DataFrame:DeprecationWarning" | |
) | |
def fsspectest(): | |
pytest.importorskip("fsspec") | |
from fsspec import register_implementation | |
from fsspec.implementations.memory import MemoryFileSystem | |
from fsspec.registry import _registry as registry | |
class TestMemoryFS(MemoryFileSystem): | |
protocol = "testmem" | |
test = [None] | |
def __init__(self, **kwargs) -> None: | |
self.test[0] = kwargs.pop("test", None) | |
super().__init__(**kwargs) | |
register_implementation("testmem", TestMemoryFS, clobber=True) | |
yield TestMemoryFS() | |
registry.pop("testmem", None) | |
TestMemoryFS.test[0] = None | |
TestMemoryFS.store.clear() | |
def df1(): | |
return DataFrame( | |
{ | |
"int": [1, 3], | |
"float": [2.0, np.nan], | |
"str": ["t", "s"], | |
"dt": date_range("2018-06-18", periods=2), | |
} | |
) | |
def cleared_fs(): | |
fsspec = pytest.importorskip("fsspec") | |
memfs = fsspec.filesystem("memory") | |
yield memfs | |
memfs.store.clear() | |
def test_read_csv(cleared_fs, df1): | |
text = str(df1.to_csv(index=False)).encode() | |
with cleared_fs.open("test/test.csv", "wb") as w: | |
w.write(text) | |
df2 = read_csv("memory://test/test.csv", parse_dates=["dt"]) | |
tm.assert_frame_equal(df1, df2) | |
def test_reasonable_error(monkeypatch, cleared_fs): | |
from fsspec.registry import known_implementations | |
with pytest.raises(ValueError, match="nosuchprotocol"): | |
read_csv("nosuchprotocol://test/test.csv") | |
err_msg = "test error message" | |
monkeypatch.setitem( | |
known_implementations, | |
"couldexist", | |
{"class": "unimportable.CouldExist", "err": err_msg}, | |
) | |
with pytest.raises(ImportError, match=err_msg): | |
read_csv("couldexist://test/test.csv") | |
def test_to_csv(cleared_fs, df1): | |
df1.to_csv("memory://test/test.csv", index=True) | |
df2 = read_csv("memory://test/test.csv", parse_dates=["dt"], index_col=0) | |
tm.assert_frame_equal(df1, df2) | |
def test_to_excel(cleared_fs, df1): | |
pytest.importorskip("openpyxl") | |
ext = "xlsx" | |
path = f"memory://test/test.{ext}" | |
df1.to_excel(path, index=True) | |
df2 = read_excel(path, parse_dates=["dt"], index_col=0) | |
tm.assert_frame_equal(df1, df2) | |
def test_to_csv_fsspec_object(cleared_fs, binary_mode, df1): | |
fsspec = pytest.importorskip("fsspec") | |
path = "memory://test/test.csv" | |
mode = "wb" if binary_mode else "w" | |
with fsspec.open(path, mode=mode).open() as fsspec_object: | |
df1.to_csv(fsspec_object, index=True) | |
assert not fsspec_object.closed | |
mode = mode.replace("w", "r") | |
with fsspec.open(path, mode=mode) as fsspec_object: | |
df2 = read_csv( | |
fsspec_object, | |
parse_dates=["dt"], | |
index_col=0, | |
) | |
assert not fsspec_object.closed | |
tm.assert_frame_equal(df1, df2) | |
def test_csv_options(fsspectest): | |
df = DataFrame({"a": [0]}) | |
df.to_csv( | |
"testmem://test/test.csv", storage_options={"test": "csv_write"}, index=False | |
) | |
assert fsspectest.test[0] == "csv_write" | |
read_csv("testmem://test/test.csv", storage_options={"test": "csv_read"}) | |
assert fsspectest.test[0] == "csv_read" | |
def test_read_table_options(fsspectest): | |
# GH #39167 | |
df = DataFrame({"a": [0]}) | |
df.to_csv( | |
"testmem://test/test.csv", storage_options={"test": "csv_write"}, index=False | |
) | |
assert fsspectest.test[0] == "csv_write" | |
read_table("testmem://test/test.csv", storage_options={"test": "csv_read"}) | |
assert fsspectest.test[0] == "csv_read" | |
def test_excel_options(fsspectest): | |
pytest.importorskip("openpyxl") | |
extension = "xlsx" | |
df = DataFrame({"a": [0]}) | |
path = f"testmem://test/test.{extension}" | |
df.to_excel(path, storage_options={"test": "write"}, index=False) | |
assert fsspectest.test[0] == "write" | |
read_excel(path, storage_options={"test": "read"}) | |
assert fsspectest.test[0] == "read" | |
def test_to_parquet_new_file(cleared_fs, df1): | |
"""Regression test for writing to a not-yet-existent GCS Parquet file.""" | |
pytest.importorskip("fastparquet") | |
df1.to_parquet( | |
"memory://test/test.csv", index=True, engine="fastparquet", compression=None | |
) | |
def test_arrowparquet_options(fsspectest): | |
"""Regression test for writing to a not-yet-existent GCS Parquet file.""" | |
pytest.importorskip("pyarrow") | |
df = DataFrame({"a": [0]}) | |
df.to_parquet( | |
"testmem://test/test.csv", | |
engine="pyarrow", | |
compression=None, | |
storage_options={"test": "parquet_write"}, | |
) | |
assert fsspectest.test[0] == "parquet_write" | |
read_parquet( | |
"testmem://test/test.csv", | |
engine="pyarrow", | |
storage_options={"test": "parquet_read"}, | |
) | |
assert fsspectest.test[0] == "parquet_read" | |
# TODO(ArrayManager) fastparquet | |
def test_fastparquet_options(fsspectest): | |
"""Regression test for writing to a not-yet-existent GCS Parquet file.""" | |
pytest.importorskip("fastparquet") | |
df = DataFrame({"a": [0]}) | |
df.to_parquet( | |
"testmem://test/test.csv", | |
engine="fastparquet", | |
compression=None, | |
storage_options={"test": "parquet_write"}, | |
) | |
assert fsspectest.test[0] == "parquet_write" | |
read_parquet( | |
"testmem://test/test.csv", | |
engine="fastparquet", | |
storage_options={"test": "parquet_read"}, | |
) | |
assert fsspectest.test[0] == "parquet_read" | |
def test_from_s3_csv(s3_public_bucket_with_data, tips_file, s3so): | |
pytest.importorskip("s3fs") | |
tm.assert_equal( | |
read_csv( | |
f"s3://{s3_public_bucket_with_data.name}/tips.csv", storage_options=s3so | |
), | |
read_csv(tips_file), | |
) | |
# the following are decompressed by pandas, not fsspec | |
tm.assert_equal( | |
read_csv( | |
f"s3://{s3_public_bucket_with_data.name}/tips.csv.gz", storage_options=s3so | |
), | |
read_csv(tips_file), | |
) | |
tm.assert_equal( | |
read_csv( | |
f"s3://{s3_public_bucket_with_data.name}/tips.csv.bz2", storage_options=s3so | |
), | |
read_csv(tips_file), | |
) | |
def test_s3_protocols(s3_public_bucket_with_data, tips_file, protocol, s3so): | |
pytest.importorskip("s3fs") | |
tm.assert_equal( | |
read_csv( | |
f"{protocol}://{s3_public_bucket_with_data.name}/tips.csv", | |
storage_options=s3so, | |
), | |
read_csv(tips_file), | |
) | |
# TODO(ArrayManager) fastparquet | |
def test_s3_parquet(s3_public_bucket, s3so, df1): | |
pytest.importorskip("fastparquet") | |
pytest.importorskip("s3fs") | |
fn = f"s3://{s3_public_bucket.name}/test.parquet" | |
df1.to_parquet( | |
fn, index=False, engine="fastparquet", compression=None, storage_options=s3so | |
) | |
df2 = read_parquet(fn, engine="fastparquet", storage_options=s3so) | |
tm.assert_equal(df1, df2) | |
def test_not_present_exception(): | |
msg = "Missing optional dependency 'fsspec'|fsspec library is required" | |
with pytest.raises(ImportError, match=msg): | |
read_csv("memory://test/test.csv") | |
def test_feather_options(fsspectest): | |
pytest.importorskip("pyarrow") | |
df = DataFrame({"a": [0]}) | |
df.to_feather("testmem://mockfile", storage_options={"test": "feather_write"}) | |
assert fsspectest.test[0] == "feather_write" | |
out = read_feather("testmem://mockfile", storage_options={"test": "feather_read"}) | |
assert fsspectest.test[0] == "feather_read" | |
tm.assert_frame_equal(df, out) | |
def test_pickle_options(fsspectest): | |
df = DataFrame({"a": [0]}) | |
df.to_pickle("testmem://mockfile", storage_options={"test": "pickle_write"}) | |
assert fsspectest.test[0] == "pickle_write" | |
out = read_pickle("testmem://mockfile", storage_options={"test": "pickle_read"}) | |
assert fsspectest.test[0] == "pickle_read" | |
tm.assert_frame_equal(df, out) | |
def test_json_options(fsspectest, compression): | |
df = DataFrame({"a": [0]}) | |
df.to_json( | |
"testmem://mockfile", | |
compression=compression, | |
storage_options={"test": "json_write"}, | |
) | |
assert fsspectest.test[0] == "json_write" | |
out = read_json( | |
"testmem://mockfile", | |
compression=compression, | |
storage_options={"test": "json_read"}, | |
) | |
assert fsspectest.test[0] == "json_read" | |
tm.assert_frame_equal(df, out) | |
def test_stata_options(fsspectest): | |
df = DataFrame({"a": [0]}) | |
df.to_stata( | |
"testmem://mockfile", storage_options={"test": "stata_write"}, write_index=False | |
) | |
assert fsspectest.test[0] == "stata_write" | |
out = read_stata("testmem://mockfile", storage_options={"test": "stata_read"}) | |
assert fsspectest.test[0] == "stata_read" | |
tm.assert_frame_equal(df, out.astype("int64")) | |
def test_markdown_options(fsspectest): | |
pytest.importorskip("tabulate") | |
df = DataFrame({"a": [0]}) | |
df.to_markdown("testmem://mockfile", storage_options={"test": "md_write"}) | |
assert fsspectest.test[0] == "md_write" | |
assert fsspectest.cat("testmem://mockfile") | |
def test_non_fsspec_options(): | |
pytest.importorskip("pyarrow") | |
with pytest.raises(ValueError, match="storage_options"): | |
read_csv("localfile", storage_options={"a": True}) | |
with pytest.raises(ValueError, match="storage_options"): | |
# separate test for parquet, which has a different code path | |
read_parquet("localfile", storage_options={"a": True}) | |
by = io.BytesIO() | |
with pytest.raises(ValueError, match="storage_options"): | |
read_csv(by, storage_options={"a": True}) | |
df = DataFrame({"a": [0]}) | |
with pytest.raises(ValueError, match="storage_options"): | |
df.to_parquet("nonfsspecpath", storage_options={"a": True}) | |