peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/io
/test_gcs.py
from io import BytesIO | |
import os | |
import pathlib | |
import tarfile | |
import zipfile | |
import numpy as np | |
import pytest | |
from pandas import ( | |
DataFrame, | |
Index, | |
date_range, | |
read_csv, | |
read_excel, | |
read_json, | |
read_parquet, | |
) | |
import pandas._testing as tm | |
from pandas.util import _test_decorators as td | |
pytestmark = pytest.mark.filterwarnings( | |
"ignore:Passing a BlockManager to DataFrame:DeprecationWarning" | |
) | |
def gcs_buffer(): | |
"""Emulate GCS using a binary buffer.""" | |
pytest.importorskip("gcsfs") | |
fsspec = pytest.importorskip("fsspec") | |
gcs_buffer = BytesIO() | |
gcs_buffer.close = lambda: True | |
class MockGCSFileSystem(fsspec.AbstractFileSystem): | |
def open(*args, **kwargs): | |
gcs_buffer.seek(0) | |
return gcs_buffer | |
def ls(self, path, **kwargs): | |
# needed for pyarrow | |
return [{"name": path, "type": "file"}] | |
# Overwrites the default implementation from gcsfs to our mock class | |
fsspec.register_implementation("gs", MockGCSFileSystem, clobber=True) | |
return gcs_buffer | |
# Patches pyarrow; other processes should not pick up change | |
def test_to_read_gcs(gcs_buffer, format, monkeypatch, capsys): | |
""" | |
Test that many to/read functions support GCS. | |
GH 33987 | |
""" | |
df1 = DataFrame( | |
{ | |
"int": [1, 3], | |
"float": [2.0, np.nan], | |
"str": ["t", "s"], | |
"dt": date_range("2018-06-18", periods=2), | |
} | |
) | |
path = f"gs://test/test.{format}" | |
if format == "csv": | |
df1.to_csv(path, index=True) | |
df2 = read_csv(path, parse_dates=["dt"], index_col=0) | |
elif format == "excel": | |
path = "gs://test/test.xlsx" | |
df1.to_excel(path) | |
df2 = read_excel(path, parse_dates=["dt"], index_col=0) | |
elif format == "json": | |
df1.to_json(path) | |
df2 = read_json(path, convert_dates=["dt"]) | |
elif format == "parquet": | |
pytest.importorskip("pyarrow") | |
pa_fs = pytest.importorskip("pyarrow.fs") | |
class MockFileSystem(pa_fs.FileSystem): | |
def from_uri(path): | |
print("Using pyarrow filesystem") | |
to_local = pathlib.Path(path.replace("gs://", "")).absolute().as_uri() | |
return pa_fs.LocalFileSystem(to_local) | |
with monkeypatch.context() as m: | |
m.setattr(pa_fs, "FileSystem", MockFileSystem) | |
df1.to_parquet(path) | |
df2 = read_parquet(path) | |
captured = capsys.readouterr() | |
assert captured.out == "Using pyarrow filesystem\nUsing pyarrow filesystem\n" | |
elif format == "markdown": | |
pytest.importorskip("tabulate") | |
df1.to_markdown(path) | |
df2 = df1 | |
tm.assert_frame_equal(df1, df2) | |
def assert_equal_zip_safe(result: bytes, expected: bytes, compression: str): | |
""" | |
For zip compression, only compare the CRC-32 checksum of the file contents | |
to avoid checking the time-dependent last-modified timestamp which | |
in some CI builds is off-by-one | |
See https://en.wikipedia.org/wiki/ZIP_(file_format)#File_headers | |
""" | |
if compression == "zip": | |
# Only compare the CRC checksum of the file contents | |
with zipfile.ZipFile(BytesIO(result)) as exp, zipfile.ZipFile( | |
BytesIO(expected) | |
) as res: | |
for res_info, exp_info in zip(res.infolist(), exp.infolist()): | |
assert res_info.CRC == exp_info.CRC | |
elif compression == "tar": | |
with tarfile.open(fileobj=BytesIO(result)) as tar_exp, tarfile.open( | |
fileobj=BytesIO(expected) | |
) as tar_res: | |
for tar_res_info, tar_exp_info in zip( | |
tar_res.getmembers(), tar_exp.getmembers() | |
): | |
actual_file = tar_res.extractfile(tar_res_info) | |
expected_file = tar_exp.extractfile(tar_exp_info) | |
assert (actual_file is None) == (expected_file is None) | |
if actual_file is not None and expected_file is not None: | |
assert actual_file.read() == expected_file.read() | |
else: | |
assert result == expected | |
def test_to_csv_compression_encoding_gcs( | |
gcs_buffer, compression_only, encoding, compression_to_extension | |
): | |
""" | |
Compression and encoding should with GCS. | |
GH 35677 (to_csv, compression), GH 26124 (to_csv, encoding), and | |
GH 32392 (read_csv, encoding) | |
""" | |
df = DataFrame( | |
1.1 * np.arange(120).reshape((30, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=Index([f"i-{i}" for i in range(30)], dtype=object), | |
) | |
# reference of compressed and encoded file | |
compression = {"method": compression_only} | |
if compression_only == "gzip": | |
compression["mtime"] = 1 # be reproducible | |
buffer = BytesIO() | |
df.to_csv(buffer, compression=compression, encoding=encoding, mode="wb") | |
# write compressed file with explicit compression | |
path_gcs = "gs://test/test.csv" | |
df.to_csv(path_gcs, compression=compression, encoding=encoding) | |
res = gcs_buffer.getvalue() | |
expected = buffer.getvalue() | |
assert_equal_zip_safe(res, expected, compression_only) | |
read_df = read_csv( | |
path_gcs, index_col=0, compression=compression_only, encoding=encoding | |
) | |
tm.assert_frame_equal(df, read_df) | |
# write compressed file with implicit compression | |
file_ext = compression_to_extension[compression_only] | |
compression["method"] = "infer" | |
path_gcs += f".{file_ext}" | |
df.to_csv(path_gcs, compression=compression, encoding=encoding) | |
res = gcs_buffer.getvalue() | |
expected = buffer.getvalue() | |
assert_equal_zip_safe(res, expected, compression_only) | |
read_df = read_csv(path_gcs, index_col=0, compression="infer", encoding=encoding) | |
tm.assert_frame_equal(df, read_df) | |
def test_to_parquet_gcs_new_file(monkeypatch, tmpdir): | |
"""Regression test for writing to a not-yet-existent GCS Parquet file.""" | |
pytest.importorskip("fastparquet") | |
pytest.importorskip("gcsfs") | |
from fsspec import AbstractFileSystem | |
df1 = DataFrame( | |
{ | |
"int": [1, 3], | |
"float": [2.0, np.nan], | |
"str": ["t", "s"], | |
"dt": date_range("2018-06-18", periods=2), | |
} | |
) | |
class MockGCSFileSystem(AbstractFileSystem): | |
def open(self, path, mode="r", *args): | |
if "w" not in mode: | |
raise FileNotFoundError | |
return open(os.path.join(tmpdir, "test.parquet"), mode, encoding="utf-8") | |
monkeypatch.setattr("gcsfs.GCSFileSystem", MockGCSFileSystem) | |
df1.to_parquet( | |
"gs://test/test.csv", index=True, engine="fastparquet", compression=None | |
) | |
def test_gcs_not_present_exception(): | |
with tm.external_error_raised(ImportError): | |
read_csv("gs://test/test.csv") | |