peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/scalar
/test_nat.py
from datetime import ( | |
datetime, | |
timedelta, | |
) | |
import operator | |
import numpy as np | |
import pytest | |
import pytz | |
from pandas._libs.tslibs import iNaT | |
from pandas.compat.numpy import np_version_gte1p24p3 | |
from pandas import ( | |
DatetimeIndex, | |
DatetimeTZDtype, | |
Index, | |
NaT, | |
Period, | |
Series, | |
Timedelta, | |
TimedeltaIndex, | |
Timestamp, | |
isna, | |
offsets, | |
) | |
import pandas._testing as tm | |
from pandas.core import roperator | |
from pandas.core.arrays import ( | |
DatetimeArray, | |
PeriodArray, | |
TimedeltaArray, | |
) | |
class TestNaTFormatting: | |
def test_repr(self): | |
assert repr(NaT) == "NaT" | |
def test_str(self): | |
assert str(NaT) == "NaT" | |
def test_isoformat(self): | |
assert NaT.isoformat() == "NaT" | |
def test_nat_fields(nat, idx): | |
for field in idx._field_ops: | |
# weekday is a property of DTI, but a method | |
# on NaT/Timestamp for compat with datetime | |
if field == "weekday": | |
continue | |
result = getattr(NaT, field) | |
assert np.isnan(result) | |
result = getattr(nat, field) | |
assert np.isnan(result) | |
for field in idx._bool_ops: | |
result = getattr(NaT, field) | |
assert result is False | |
result = getattr(nat, field) | |
assert result is False | |
def test_nat_vector_field_access(): | |
idx = DatetimeIndex(["1/1/2000", None, None, "1/4/2000"]) | |
for field in DatetimeArray._field_ops: | |
# weekday is a property of DTI, but a method | |
# on NaT/Timestamp for compat with datetime | |
if field == "weekday": | |
continue | |
result = getattr(idx, field) | |
expected = Index([getattr(x, field) for x in idx]) | |
tm.assert_index_equal(result, expected) | |
ser = Series(idx) | |
for field in DatetimeArray._field_ops: | |
# weekday is a property of DTI, but a method | |
# on NaT/Timestamp for compat with datetime | |
if field == "weekday": | |
continue | |
result = getattr(ser.dt, field) | |
expected = [getattr(x, field) for x in idx] | |
tm.assert_series_equal(result, Series(expected)) | |
for field in DatetimeArray._bool_ops: | |
result = getattr(ser.dt, field) | |
expected = [getattr(x, field) for x in idx] | |
tm.assert_series_equal(result, Series(expected)) | |
def test_identity(klass, value): | |
assert klass(value) is NaT | |
def test_round_nat(klass, method, freq): | |
# see gh-14940 | |
ts = klass("nat") | |
round_method = getattr(ts, method) | |
assert round_method(freq) is ts | |
def test_nat_methods_raise(method): | |
# see gh-9513, gh-17329 | |
msg = f"NaTType does not support {method}" | |
with pytest.raises(ValueError, match=msg): | |
getattr(NaT, method)() | |
def test_nat_methods_nan(method): | |
# see gh-9513, gh-17329 | |
assert np.isnan(getattr(NaT, method)()) | |
def test_nat_methods_nat(method): | |
# see gh-8254, gh-9513, gh-17329 | |
assert getattr(NaT, method)() is NaT | |
def test_nat_iso_format(get_nat): | |
# see gh-12300 | |
assert get_nat("NaT").isoformat() == "NaT" | |
assert get_nat("NaT").isoformat(timespec="nanoseconds") == "NaT" | |
def test_missing_public_nat_methods(klass, expected): | |
# see gh-17327 | |
# | |
# NaT should have *most* of the Timestamp and Timedelta methods. | |
# Here, we check which public methods NaT does not have. We | |
# ignore any missing private methods. | |
nat_names = dir(NaT) | |
klass_names = dir(klass) | |
missing = [x for x in klass_names if x not in nat_names and not x.startswith("_")] | |
missing.sort() | |
assert missing == expected | |
def _get_overlap_public_nat_methods(klass, as_tuple=False): | |
""" | |
Get overlapping public methods between NaT and another class. | |
Parameters | |
---------- | |
klass : type | |
The class to compare with NaT | |
as_tuple : bool, default False | |
Whether to return a list of tuples of the form (klass, method). | |
Returns | |
------- | |
overlap : list | |
""" | |
nat_names = dir(NaT) | |
klass_names = dir(klass) | |
overlap = [ | |
x | |
for x in nat_names | |
if x in klass_names and not x.startswith("_") and callable(getattr(klass, x)) | |
] | |
# Timestamp takes precedence over Timedelta in terms of overlap. | |
if klass is Timedelta: | |
ts_names = dir(Timestamp) | |
overlap = [x for x in overlap if x not in ts_names] | |
if as_tuple: | |
overlap = [(klass, method) for method in overlap] | |
overlap.sort() | |
return overlap | |
def test_overlap_public_nat_methods(klass, expected): | |
# see gh-17327 | |
# | |
# NaT should have *most* of the Timestamp and Timedelta methods. | |
# In case when Timestamp, Timedelta, and NaT are overlap, the overlap | |
# is considered to be with Timestamp and NaT, not Timedelta. | |
assert _get_overlap_public_nat_methods(klass) == expected | |
def test_nat_doc_strings(compare): | |
# see gh-17327 | |
# | |
# The docstrings for overlapping methods should match. | |
klass, method = compare | |
klass_doc = getattr(klass, method).__doc__ | |
if klass == Timestamp and method == "isoformat": | |
pytest.skip( | |
"Ignore differences with Timestamp.isoformat() as they're intentional" | |
) | |
if method == "to_numpy": | |
# GH#44460 can return either dt64 or td64 depending on dtype, | |
# different docstring is intentional | |
pytest.skip(f"different docstring for {method} is intentional") | |
nat_doc = getattr(NaT, method).__doc__ | |
assert klass_doc == nat_doc | |
_ops = { | |
"left_plus_right": lambda a, b: a + b, | |
"right_plus_left": lambda a, b: b + a, | |
"left_minus_right": lambda a, b: a - b, | |
"right_minus_left": lambda a, b: b - a, | |
"left_times_right": lambda a, b: a * b, | |
"right_times_left": lambda a, b: b * a, | |
"left_div_right": lambda a, b: a / b, | |
"right_div_left": lambda a, b: b / a, | |
} | |
def test_nat_arithmetic_scalar(op_name, value, val_type): | |
# see gh-6873 | |
invalid_ops = { | |
"scalar": {"right_div_left"}, | |
"floating": { | |
"right_div_left", | |
"left_minus_right", | |
"right_minus_left", | |
"left_plus_right", | |
"right_plus_left", | |
}, | |
"str": set(_ops.keys()), | |
"timedelta": {"left_times_right", "right_times_left"}, | |
"timestamp": { | |
"left_times_right", | |
"right_times_left", | |
"left_div_right", | |
"right_div_left", | |
}, | |
} | |
op = _ops[op_name] | |
if op_name in invalid_ops.get(val_type, set()): | |
if ( | |
val_type == "timedelta" | |
and "times" in op_name | |
and isinstance(value, Timedelta) | |
): | |
typs = "(Timedelta|NaTType)" | |
msg = rf"unsupported operand type\(s\) for \*: '{typs}' and '{typs}'" | |
elif val_type == "str": | |
# un-specific check here because the message comes from str | |
# and varies by method | |
msg = "|".join( | |
[ | |
"can only concatenate str", | |
"unsupported operand type", | |
"can't multiply sequence", | |
"Can't convert 'NaTType'", | |
"must be str, not NaTType", | |
] | |
) | |
else: | |
msg = "unsupported operand type" | |
with pytest.raises(TypeError, match=msg): | |
op(NaT, value) | |
else: | |
if val_type == "timedelta" and "div" in op_name: | |
expected = np.nan | |
else: | |
expected = NaT | |
assert op(NaT, value) is expected | |
def test_nat_rfloordiv_timedelta(val, expected): | |
# see gh-#18846 | |
# | |
# See also test_timedelta.TestTimedeltaArithmetic.test_floordiv | |
td = Timedelta(hours=3, minutes=4) | |
assert td // val is expected | |
def test_nat_arithmetic_index(op_name, value): | |
# see gh-11718 | |
exp_name = "x" | |
exp_data = [NaT] * 2 | |
if value.dtype.kind == "M" and "plus" in op_name: | |
expected = DatetimeIndex(exp_data, tz=value.tz, name=exp_name) | |
else: | |
expected = TimedeltaIndex(exp_data, name=exp_name) | |
expected = expected.as_unit(value.unit) | |
if not isinstance(value, Index): | |
expected = expected.array | |
op = _ops[op_name] | |
result = op(NaT, value) | |
tm.assert_equal(result, expected) | |
def test_nat_arithmetic_td64_vector(op_name, box): | |
# see gh-19124 | |
vec = box(["1 day", "2 day"], dtype="timedelta64[ns]") | |
box_nat = box([NaT, NaT], dtype="timedelta64[ns]") | |
tm.assert_equal(_ops[op_name](vec, NaT), box_nat) | |
def test_nat_arithmetic_ndarray(dtype, op, out_dtype): | |
other = np.arange(10).astype(dtype) | |
result = op(NaT, other) | |
expected = np.empty(other.shape, dtype=out_dtype) | |
expected.fill("NaT") | |
tm.assert_numpy_array_equal(result, expected) | |
def test_nat_pinned_docstrings(): | |
# see gh-17327 | |
assert NaT.ctime.__doc__ == Timestamp.ctime.__doc__ | |
def test_to_numpy_alias(): | |
# GH 24653: alias .to_numpy() for scalars | |
expected = NaT.to_datetime64() | |
result = NaT.to_numpy() | |
assert isna(expected) and isna(result) | |
# GH#44460 | |
result = NaT.to_numpy("M8[s]") | |
assert isinstance(result, np.datetime64) | |
assert result.dtype == "M8[s]" | |
result = NaT.to_numpy("m8[ns]") | |
assert isinstance(result, np.timedelta64) | |
assert result.dtype == "m8[ns]" | |
result = NaT.to_numpy("m8[s]") | |
assert isinstance(result, np.timedelta64) | |
assert result.dtype == "m8[s]" | |
with pytest.raises(ValueError, match="NaT.to_numpy dtype must be a "): | |
NaT.to_numpy(np.int64) | |
def test_nat_comparisons(compare_operators_no_eq_ne, other): | |
# GH 26039 | |
opname = compare_operators_no_eq_ne | |
assert getattr(NaT, opname)(other) is False | |
op = getattr(operator, opname.strip("_")) | |
assert op(NaT, other) is False | |
assert op(other, NaT) is False | |
def test_nat_comparisons_numpy(other): | |
# Once numpy#17017 is fixed and the xfailed cases in test_nat_comparisons | |
# pass, this test can be removed | |
assert not NaT == other | |
assert NaT != other | |
assert not NaT < other | |
assert not NaT > other | |
assert not NaT <= other | |
assert not NaT >= other | |
def test_nat_comparisons_invalid(other_and_type, symbol_and_op): | |
# GH#35585 | |
other, other_type = other_and_type | |
symbol, op = symbol_and_op | |
assert not NaT == other | |
assert not other == NaT | |
assert NaT != other | |
assert other != NaT | |
msg = f"'{symbol}' not supported between instances of 'NaTType' and '{other_type}'" | |
with pytest.raises(TypeError, match=msg): | |
op(NaT, other) | |
msg = f"'{symbol}' not supported between instances of '{other_type}' and 'NaTType'" | |
with pytest.raises(TypeError, match=msg): | |
op(other, NaT) | |
def test_nat_comparisons_invalid_ndarray(other): | |
# GH#40722 | |
expected = np.array([False, False]) | |
result = NaT == other | |
tm.assert_numpy_array_equal(result, expected) | |
result = other == NaT | |
tm.assert_numpy_array_equal(result, expected) | |
expected = np.array([True, True]) | |
result = NaT != other | |
tm.assert_numpy_array_equal(result, expected) | |
result = other != NaT | |
tm.assert_numpy_array_equal(result, expected) | |
for symbol, op in [ | |
("<=", operator.le), | |
("<", operator.lt), | |
(">=", operator.ge), | |
(">", operator.gt), | |
]: | |
msg = f"'{symbol}' not supported between" | |
with pytest.raises(TypeError, match=msg): | |
op(NaT, other) | |
if other.dtype == np.dtype("object"): | |
# uses the reverse operator, so symbol changes | |
msg = None | |
with pytest.raises(TypeError, match=msg): | |
op(other, NaT) | |
def test_compare_date(fixed_now_ts): | |
# GH#39151 comparing NaT with date object is deprecated | |
# See also: tests.scalar.timestamps.test_comparisons::test_compare_date | |
dt = fixed_now_ts.to_pydatetime().date() | |
msg = "Cannot compare NaT with datetime.date object" | |
for left, right in [(NaT, dt), (dt, NaT)]: | |
assert not left == right | |
assert left != right | |
with pytest.raises(TypeError, match=msg): | |
left < right | |
with pytest.raises(TypeError, match=msg): | |
left <= right | |
with pytest.raises(TypeError, match=msg): | |
left > right | |
with pytest.raises(TypeError, match=msg): | |
left >= right | |
def test_nat_addsub_tdlike_scalar(obj): | |
assert NaT + obj is NaT | |
assert obj + NaT is NaT | |
assert NaT - obj is NaT | |
def test_pickle(): | |
# GH#4606 | |
p = tm.round_trip_pickle(NaT) | |
assert p is NaT | |