Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step80/zero/26.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/5.attention.dense.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/5.attention.dense.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/9.attention.dense.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/9.attention.dense.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/__pycache__/test_common.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/__pycache__/test_concat.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/__pycache__/test_dtypes.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/__pycache__/test_generic.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/__pycache__/test_inference.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/__pycache__/test_missing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__init__.py +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_can_hold_element.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_construct_from_scalar.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_construct_ndarray.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_construct_object_arr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_dict_compat.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_downcast.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_find_common_type.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_infer_datetimelike.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_infer_dtype.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_maybe_box_native.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_promote.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_can_hold_element.py +79 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_construct_from_scalar.py +55 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_construct_ndarray.py +36 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_construct_object_arr.py +20 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_dict_compat.py +14 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_downcast.py +97 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_find_common_type.py +175 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_infer_datetimelike.py +28 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_infer_dtype.py +216 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_maybe_box_native.py +40 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_promote.py +530 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/test_common.py +801 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/test_concat.py +51 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/test_dtypes.py +1234 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/test_generic.py +130 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/test_inference.py +2047 -0
- venv/lib/python3.10/site-packages/pandas/tests/dtypes/test_missing.py +923 -0
- venv/lib/python3.10/site-packages/pandas/tests/scalar/__init__.py +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/scalar/period/__init__.py +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/scalar/period/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/scalar/period/__pycache__/test_arithmetic.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/scalar/period/__pycache__/test_asfreq.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/scalar/period/__pycache__/test_period.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/scalar/period/test_arithmetic.py +486 -0
- venv/lib/python3.10/site-packages/pandas/tests/scalar/period/test_asfreq.py +828 -0
ckpts/universal/global_step80/zero/26.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11bbc8a84b97727084c901f3e966cc4ce09242b295e464b0659e0f35aadedd50
|
3 |
+
size 33555612
|
ckpts/universal/global_step80/zero/5.attention.dense.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:817d3994058e0589f2e491033dac6750c6ec177ff2e04c8d64276c761b85325a
|
3 |
+
size 16778411
|
ckpts/universal/global_step80/zero/5.attention.dense.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8176931b85d45564d59578d63581fb9818a3f8f999c9510bf61109cdb2f9b1f9
|
3 |
+
size 16778317
|
ckpts/universal/global_step80/zero/9.attention.dense.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b089b79fa88bcbf7975e0c3c4817b386a1bc7eaa7811f246f7c27876b8b8caf4
|
3 |
+
size 16778396
|
ckpts/universal/global_step80/zero/9.attention.dense.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7850b3c4471d518ccd5ef9c9dab61a543715698272e3b6ec398edf835a29c95a
|
3 |
+
size 16778411
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/__pycache__/test_common.cpython-310.pyc
ADDED
Binary file (23.9 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/__pycache__/test_concat.cpython-310.pyc
ADDED
Binary file (2.09 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/__pycache__/test_dtypes.cpython-310.pyc
ADDED
Binary file (40.1 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/__pycache__/test_generic.cpython-310.pyc
ADDED
Binary file (4.64 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/__pycache__/test_inference.cpython-310.pyc
ADDED
Binary file (58.5 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/__pycache__/test_missing.cpython-310.pyc
ADDED
Binary file (23.3 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (192 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_can_hold_element.cpython-310.pyc
ADDED
Binary file (1.82 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_construct_from_scalar.cpython-310.pyc
ADDED
Binary file (1.86 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_construct_ndarray.cpython-310.pyc
ADDED
Binary file (1.61 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_construct_object_arr.cpython-310.pyc
ADDED
Binary file (978 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_dict_compat.cpython-310.pyc
ADDED
Binary file (681 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_downcast.cpython-310.pyc
ADDED
Binary file (2.57 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_find_common_type.cpython-310.pyc
ADDED
Binary file (4.12 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_infer_datetimelike.cpython-310.pyc
ADDED
Binary file (897 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_infer_dtype.cpython-310.pyc
ADDED
Binary file (5.69 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_maybe_box_native.cpython-310.pyc
ADDED
Binary file (1.09 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/__pycache__/test_promote.cpython-310.pyc
ADDED
Binary file (10.6 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_can_hold_element.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas.core.dtypes.cast import can_hold_element
|
4 |
+
|
5 |
+
|
6 |
+
def test_can_hold_element_range(any_int_numpy_dtype):
|
7 |
+
# GH#44261
|
8 |
+
dtype = np.dtype(any_int_numpy_dtype)
|
9 |
+
arr = np.array([], dtype=dtype)
|
10 |
+
|
11 |
+
rng = range(2, 127)
|
12 |
+
assert can_hold_element(arr, rng)
|
13 |
+
|
14 |
+
# negatives -> can't be held by uint dtypes
|
15 |
+
rng = range(-2, 127)
|
16 |
+
if dtype.kind == "i":
|
17 |
+
assert can_hold_element(arr, rng)
|
18 |
+
else:
|
19 |
+
assert not can_hold_element(arr, rng)
|
20 |
+
|
21 |
+
rng = range(2, 255)
|
22 |
+
if dtype == "int8":
|
23 |
+
assert not can_hold_element(arr, rng)
|
24 |
+
else:
|
25 |
+
assert can_hold_element(arr, rng)
|
26 |
+
|
27 |
+
rng = range(-255, 65537)
|
28 |
+
if dtype.kind == "u":
|
29 |
+
assert not can_hold_element(arr, rng)
|
30 |
+
elif dtype.itemsize < 4:
|
31 |
+
assert not can_hold_element(arr, rng)
|
32 |
+
else:
|
33 |
+
assert can_hold_element(arr, rng)
|
34 |
+
|
35 |
+
# empty
|
36 |
+
rng = range(-(10**10), -(10**10))
|
37 |
+
assert len(rng) == 0
|
38 |
+
# assert can_hold_element(arr, rng)
|
39 |
+
|
40 |
+
rng = range(10**10, 10**10)
|
41 |
+
assert len(rng) == 0
|
42 |
+
assert can_hold_element(arr, rng)
|
43 |
+
|
44 |
+
|
45 |
+
def test_can_hold_element_int_values_float_ndarray():
|
46 |
+
arr = np.array([], dtype=np.int64)
|
47 |
+
|
48 |
+
element = np.array([1.0, 2.0])
|
49 |
+
assert can_hold_element(arr, element)
|
50 |
+
|
51 |
+
assert not can_hold_element(arr, element + 0.5)
|
52 |
+
|
53 |
+
# integer but not losslessly castable to int64
|
54 |
+
element = np.array([3, 2**65], dtype=np.float64)
|
55 |
+
assert not can_hold_element(arr, element)
|
56 |
+
|
57 |
+
|
58 |
+
def test_can_hold_element_int8_int():
|
59 |
+
arr = np.array([], dtype=np.int8)
|
60 |
+
|
61 |
+
element = 2
|
62 |
+
assert can_hold_element(arr, element)
|
63 |
+
assert can_hold_element(arr, np.int8(element))
|
64 |
+
assert can_hold_element(arr, np.uint8(element))
|
65 |
+
assert can_hold_element(arr, np.int16(element))
|
66 |
+
assert can_hold_element(arr, np.uint16(element))
|
67 |
+
assert can_hold_element(arr, np.int32(element))
|
68 |
+
assert can_hold_element(arr, np.uint32(element))
|
69 |
+
assert can_hold_element(arr, np.int64(element))
|
70 |
+
assert can_hold_element(arr, np.uint64(element))
|
71 |
+
|
72 |
+
element = 2**9
|
73 |
+
assert not can_hold_element(arr, element)
|
74 |
+
assert not can_hold_element(arr, np.int16(element))
|
75 |
+
assert not can_hold_element(arr, np.uint16(element))
|
76 |
+
assert not can_hold_element(arr, np.int32(element))
|
77 |
+
assert not can_hold_element(arr, np.uint32(element))
|
78 |
+
assert not can_hold_element(arr, np.int64(element))
|
79 |
+
assert not can_hold_element(arr, np.uint64(element))
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_construct_from_scalar.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas.core.dtypes.cast import construct_1d_arraylike_from_scalar
|
5 |
+
from pandas.core.dtypes.dtypes import CategoricalDtype
|
6 |
+
|
7 |
+
from pandas import (
|
8 |
+
Categorical,
|
9 |
+
Timedelta,
|
10 |
+
)
|
11 |
+
import pandas._testing as tm
|
12 |
+
|
13 |
+
|
14 |
+
def test_cast_1d_array_like_from_scalar_categorical():
|
15 |
+
# see gh-19565
|
16 |
+
#
|
17 |
+
# Categorical result from scalar did not maintain
|
18 |
+
# categories and ordering of the passed dtype.
|
19 |
+
cats = ["a", "b", "c"]
|
20 |
+
cat_type = CategoricalDtype(categories=cats, ordered=False)
|
21 |
+
expected = Categorical(["a", "a"], categories=cats)
|
22 |
+
|
23 |
+
result = construct_1d_arraylike_from_scalar("a", len(expected), cat_type)
|
24 |
+
tm.assert_categorical_equal(result, expected)
|
25 |
+
|
26 |
+
|
27 |
+
def test_cast_1d_array_like_from_timestamp(fixed_now_ts):
|
28 |
+
# check we dont lose nanoseconds
|
29 |
+
ts = fixed_now_ts + Timedelta(1)
|
30 |
+
res = construct_1d_arraylike_from_scalar(ts, 2, np.dtype("M8[ns]"))
|
31 |
+
assert res[0] == ts
|
32 |
+
|
33 |
+
|
34 |
+
def test_cast_1d_array_like_from_timedelta():
|
35 |
+
# check we dont lose nanoseconds
|
36 |
+
td = Timedelta(1)
|
37 |
+
res = construct_1d_arraylike_from_scalar(td, 2, np.dtype("m8[ns]"))
|
38 |
+
assert res[0] == td
|
39 |
+
|
40 |
+
|
41 |
+
def test_cast_1d_array_like_mismatched_datetimelike():
|
42 |
+
td = np.timedelta64("NaT", "ns")
|
43 |
+
dt = np.datetime64("NaT", "ns")
|
44 |
+
|
45 |
+
with pytest.raises(TypeError, match="Cannot cast"):
|
46 |
+
construct_1d_arraylike_from_scalar(td, 2, dt.dtype)
|
47 |
+
|
48 |
+
with pytest.raises(TypeError, match="Cannot cast"):
|
49 |
+
construct_1d_arraylike_from_scalar(np.timedelta64(4, "ns"), 2, dt.dtype)
|
50 |
+
|
51 |
+
with pytest.raises(TypeError, match="Cannot cast"):
|
52 |
+
construct_1d_arraylike_from_scalar(dt, 2, td.dtype)
|
53 |
+
|
54 |
+
with pytest.raises(TypeError, match="Cannot cast"):
|
55 |
+
construct_1d_arraylike_from_scalar(np.datetime64(4, "ns"), 2, td.dtype)
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_construct_ndarray.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import pandas._testing as tm
|
6 |
+
from pandas.core.construction import sanitize_array
|
7 |
+
|
8 |
+
|
9 |
+
@pytest.mark.parametrize(
|
10 |
+
"values, dtype, expected",
|
11 |
+
[
|
12 |
+
([1, 2, 3], None, np.array([1, 2, 3], dtype=np.int64)),
|
13 |
+
(np.array([1, 2, 3]), None, np.array([1, 2, 3])),
|
14 |
+
(["1", "2", None], None, np.array(["1", "2", None])),
|
15 |
+
(["1", "2", None], np.dtype("str"), np.array(["1", "2", None])),
|
16 |
+
([1, 2, None], np.dtype("str"), np.array(["1", "2", None])),
|
17 |
+
],
|
18 |
+
)
|
19 |
+
def test_construct_1d_ndarray_preserving_na(
|
20 |
+
values, dtype, expected, using_infer_string
|
21 |
+
):
|
22 |
+
result = sanitize_array(values, index=None, dtype=dtype)
|
23 |
+
if using_infer_string and expected.dtype == object and dtype is None:
|
24 |
+
tm.assert_extension_array_equal(result, pd.array(expected))
|
25 |
+
else:
|
26 |
+
tm.assert_numpy_array_equal(result, expected)
|
27 |
+
|
28 |
+
|
29 |
+
@pytest.mark.parametrize("dtype", ["m8[ns]", "M8[ns]"])
|
30 |
+
def test_construct_1d_ndarray_preserving_na_datetimelike(dtype):
|
31 |
+
arr = np.arange(5, dtype=np.int64).view(dtype)
|
32 |
+
expected = np.array(list(arr), dtype=object)
|
33 |
+
assert all(isinstance(x, type(arr[0])) for x in expected)
|
34 |
+
|
35 |
+
result = sanitize_array(arr, index=None, dtype=np.dtype(object))
|
36 |
+
tm.assert_numpy_array_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_construct_object_arr.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike
|
4 |
+
|
5 |
+
|
6 |
+
@pytest.mark.parametrize("datum1", [1, 2.0, "3", (4, 5), [6, 7], None])
|
7 |
+
@pytest.mark.parametrize("datum2", [8, 9.0, "10", (11, 12), [13, 14], None])
|
8 |
+
def test_cast_1d_array(datum1, datum2):
|
9 |
+
data = [datum1, datum2]
|
10 |
+
result = construct_1d_object_array_from_listlike(data)
|
11 |
+
|
12 |
+
# Direct comparison fails: https://github.com/numpy/numpy/issues/10218
|
13 |
+
assert result.dtype == "object"
|
14 |
+
assert list(result) == data
|
15 |
+
|
16 |
+
|
17 |
+
@pytest.mark.parametrize("val", [1, 2.0, None])
|
18 |
+
def test_cast_1d_array_invalid_scalar(val):
|
19 |
+
with pytest.raises(TypeError, match="has no len()"):
|
20 |
+
construct_1d_object_array_from_listlike(val)
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_dict_compat.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas.core.dtypes.cast import dict_compat
|
4 |
+
|
5 |
+
from pandas import Timestamp
|
6 |
+
|
7 |
+
|
8 |
+
def test_dict_compat():
|
9 |
+
data_datetime64 = {np.datetime64("1990-03-15"): 1, np.datetime64("2015-03-15"): 2}
|
10 |
+
data_unchanged = {1: 2, 3: 4, 5: 6}
|
11 |
+
expected = {Timestamp("1990-3-15"): 1, Timestamp("2015-03-15"): 2}
|
12 |
+
assert dict_compat(data_datetime64) == expected
|
13 |
+
assert dict_compat(expected) == expected
|
14 |
+
assert dict_compat(data_unchanged) == data_unchanged
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_downcast.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import decimal
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas.core.dtypes.cast import maybe_downcast_to_dtype
|
7 |
+
|
8 |
+
from pandas import (
|
9 |
+
Series,
|
10 |
+
Timedelta,
|
11 |
+
)
|
12 |
+
import pandas._testing as tm
|
13 |
+
|
14 |
+
|
15 |
+
@pytest.mark.parametrize(
|
16 |
+
"arr,dtype,expected",
|
17 |
+
[
|
18 |
+
(
|
19 |
+
np.array([8.5, 8.6, 8.7, 8.8, 8.9999999999995]),
|
20 |
+
"infer",
|
21 |
+
np.array([8.5, 8.6, 8.7, 8.8, 8.9999999999995]),
|
22 |
+
),
|
23 |
+
(
|
24 |
+
np.array([8.0, 8.0, 8.0, 8.0, 8.9999999999995]),
|
25 |
+
"infer",
|
26 |
+
np.array([8, 8, 8, 8, 9], dtype=np.int64),
|
27 |
+
),
|
28 |
+
(
|
29 |
+
np.array([8.0, 8.0, 8.0, 8.0, 9.0000000000005]),
|
30 |
+
"infer",
|
31 |
+
np.array([8, 8, 8, 8, 9], dtype=np.int64),
|
32 |
+
),
|
33 |
+
(
|
34 |
+
# This is a judgement call, but we do _not_ downcast Decimal
|
35 |
+
# objects
|
36 |
+
np.array([decimal.Decimal(0.0)]),
|
37 |
+
"int64",
|
38 |
+
np.array([decimal.Decimal(0.0)]),
|
39 |
+
),
|
40 |
+
(
|
41 |
+
# GH#45837
|
42 |
+
np.array([Timedelta(days=1), Timedelta(days=2)], dtype=object),
|
43 |
+
"infer",
|
44 |
+
np.array([1, 2], dtype="m8[D]").astype("m8[ns]"),
|
45 |
+
),
|
46 |
+
# TODO: similar for dt64, dt64tz, Period, Interval?
|
47 |
+
],
|
48 |
+
)
|
49 |
+
def test_downcast(arr, expected, dtype):
|
50 |
+
result = maybe_downcast_to_dtype(arr, dtype)
|
51 |
+
tm.assert_numpy_array_equal(result, expected)
|
52 |
+
|
53 |
+
|
54 |
+
def test_downcast_booleans():
|
55 |
+
# see gh-16875: coercing of booleans.
|
56 |
+
ser = Series([True, True, False])
|
57 |
+
result = maybe_downcast_to_dtype(ser, np.dtype(np.float64))
|
58 |
+
|
59 |
+
expected = ser.values
|
60 |
+
tm.assert_numpy_array_equal(result, expected)
|
61 |
+
|
62 |
+
|
63 |
+
def test_downcast_conversion_no_nan(any_real_numpy_dtype):
|
64 |
+
dtype = any_real_numpy_dtype
|
65 |
+
expected = np.array([1, 2])
|
66 |
+
arr = np.array([1.0, 2.0], dtype=dtype)
|
67 |
+
|
68 |
+
result = maybe_downcast_to_dtype(arr, "infer")
|
69 |
+
tm.assert_almost_equal(result, expected, check_dtype=False)
|
70 |
+
|
71 |
+
|
72 |
+
def test_downcast_conversion_nan(float_numpy_dtype):
|
73 |
+
dtype = float_numpy_dtype
|
74 |
+
data = [1.0, 2.0, np.nan]
|
75 |
+
|
76 |
+
expected = np.array(data, dtype=dtype)
|
77 |
+
arr = np.array(data, dtype=dtype)
|
78 |
+
|
79 |
+
result = maybe_downcast_to_dtype(arr, "infer")
|
80 |
+
tm.assert_almost_equal(result, expected)
|
81 |
+
|
82 |
+
|
83 |
+
def test_downcast_conversion_empty(any_real_numpy_dtype):
|
84 |
+
dtype = any_real_numpy_dtype
|
85 |
+
arr = np.array([], dtype=dtype)
|
86 |
+
result = maybe_downcast_to_dtype(arr, np.dtype("int64"))
|
87 |
+
tm.assert_numpy_array_equal(result, np.array([], dtype=np.int64))
|
88 |
+
|
89 |
+
|
90 |
+
@pytest.mark.parametrize("klass", [np.datetime64, np.timedelta64])
|
91 |
+
def test_datetime_likes_nan(klass):
|
92 |
+
dtype = klass.__name__ + "[ns]"
|
93 |
+
arr = np.array([1, 2, np.nan])
|
94 |
+
|
95 |
+
exp = np.array([1, 2, klass("NaT")], dtype)
|
96 |
+
res = maybe_downcast_to_dtype(arr, dtype)
|
97 |
+
tm.assert_numpy_array_equal(res, exp)
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_find_common_type.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas.core.dtypes.cast import find_common_type
|
5 |
+
from pandas.core.dtypes.common import pandas_dtype
|
6 |
+
from pandas.core.dtypes.dtypes import (
|
7 |
+
CategoricalDtype,
|
8 |
+
DatetimeTZDtype,
|
9 |
+
IntervalDtype,
|
10 |
+
PeriodDtype,
|
11 |
+
)
|
12 |
+
|
13 |
+
from pandas import (
|
14 |
+
Categorical,
|
15 |
+
Index,
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
@pytest.mark.parametrize(
|
20 |
+
"source_dtypes,expected_common_dtype",
|
21 |
+
[
|
22 |
+
((np.int64,), np.int64),
|
23 |
+
((np.uint64,), np.uint64),
|
24 |
+
((np.float32,), np.float32),
|
25 |
+
((object,), object),
|
26 |
+
# Into ints.
|
27 |
+
((np.int16, np.int64), np.int64),
|
28 |
+
((np.int32, np.uint32), np.int64),
|
29 |
+
((np.uint16, np.uint64), np.uint64),
|
30 |
+
# Into floats.
|
31 |
+
((np.float16, np.float32), np.float32),
|
32 |
+
((np.float16, np.int16), np.float32),
|
33 |
+
((np.float32, np.int16), np.float32),
|
34 |
+
((np.uint64, np.int64), np.float64),
|
35 |
+
((np.int16, np.float64), np.float64),
|
36 |
+
((np.float16, np.int64), np.float64),
|
37 |
+
# Into others.
|
38 |
+
((np.complex128, np.int32), np.complex128),
|
39 |
+
((object, np.float32), object),
|
40 |
+
((object, np.int16), object),
|
41 |
+
# Bool with int.
|
42 |
+
((np.dtype("bool"), np.int64), object),
|
43 |
+
((np.dtype("bool"), np.int32), object),
|
44 |
+
((np.dtype("bool"), np.int16), object),
|
45 |
+
((np.dtype("bool"), np.int8), object),
|
46 |
+
((np.dtype("bool"), np.uint64), object),
|
47 |
+
((np.dtype("bool"), np.uint32), object),
|
48 |
+
((np.dtype("bool"), np.uint16), object),
|
49 |
+
((np.dtype("bool"), np.uint8), object),
|
50 |
+
# Bool with float.
|
51 |
+
((np.dtype("bool"), np.float64), object),
|
52 |
+
((np.dtype("bool"), np.float32), object),
|
53 |
+
(
|
54 |
+
(np.dtype("datetime64[ns]"), np.dtype("datetime64[ns]")),
|
55 |
+
np.dtype("datetime64[ns]"),
|
56 |
+
),
|
57 |
+
(
|
58 |
+
(np.dtype("timedelta64[ns]"), np.dtype("timedelta64[ns]")),
|
59 |
+
np.dtype("timedelta64[ns]"),
|
60 |
+
),
|
61 |
+
(
|
62 |
+
(np.dtype("datetime64[ns]"), np.dtype("datetime64[ms]")),
|
63 |
+
np.dtype("datetime64[ns]"),
|
64 |
+
),
|
65 |
+
(
|
66 |
+
(np.dtype("timedelta64[ms]"), np.dtype("timedelta64[ns]")),
|
67 |
+
np.dtype("timedelta64[ns]"),
|
68 |
+
),
|
69 |
+
((np.dtype("datetime64[ns]"), np.dtype("timedelta64[ns]")), object),
|
70 |
+
((np.dtype("datetime64[ns]"), np.int64), object),
|
71 |
+
],
|
72 |
+
)
|
73 |
+
def test_numpy_dtypes(source_dtypes, expected_common_dtype):
|
74 |
+
source_dtypes = [pandas_dtype(x) for x in source_dtypes]
|
75 |
+
assert find_common_type(source_dtypes) == expected_common_dtype
|
76 |
+
|
77 |
+
|
78 |
+
def test_raises_empty_input():
|
79 |
+
with pytest.raises(ValueError, match="no types given"):
|
80 |
+
find_common_type([])
|
81 |
+
|
82 |
+
|
83 |
+
@pytest.mark.parametrize(
|
84 |
+
"dtypes,exp_type",
|
85 |
+
[
|
86 |
+
([CategoricalDtype()], "category"),
|
87 |
+
([object, CategoricalDtype()], object),
|
88 |
+
([CategoricalDtype(), CategoricalDtype()], "category"),
|
89 |
+
],
|
90 |
+
)
|
91 |
+
def test_categorical_dtype(dtypes, exp_type):
|
92 |
+
assert find_common_type(dtypes) == exp_type
|
93 |
+
|
94 |
+
|
95 |
+
def test_datetimetz_dtype_match():
|
96 |
+
dtype = DatetimeTZDtype(unit="ns", tz="US/Eastern")
|
97 |
+
assert find_common_type([dtype, dtype]) == "datetime64[ns, US/Eastern]"
|
98 |
+
|
99 |
+
|
100 |
+
@pytest.mark.parametrize(
|
101 |
+
"dtype2",
|
102 |
+
[
|
103 |
+
DatetimeTZDtype(unit="ns", tz="Asia/Tokyo"),
|
104 |
+
np.dtype("datetime64[ns]"),
|
105 |
+
object,
|
106 |
+
np.int64,
|
107 |
+
],
|
108 |
+
)
|
109 |
+
def test_datetimetz_dtype_mismatch(dtype2):
|
110 |
+
dtype = DatetimeTZDtype(unit="ns", tz="US/Eastern")
|
111 |
+
assert find_common_type([dtype, dtype2]) == object
|
112 |
+
assert find_common_type([dtype2, dtype]) == object
|
113 |
+
|
114 |
+
|
115 |
+
def test_period_dtype_match():
|
116 |
+
dtype = PeriodDtype(freq="D")
|
117 |
+
assert find_common_type([dtype, dtype]) == "period[D]"
|
118 |
+
|
119 |
+
|
120 |
+
@pytest.mark.parametrize(
|
121 |
+
"dtype2",
|
122 |
+
[
|
123 |
+
DatetimeTZDtype(unit="ns", tz="Asia/Tokyo"),
|
124 |
+
PeriodDtype(freq="2D"),
|
125 |
+
PeriodDtype(freq="h"),
|
126 |
+
np.dtype("datetime64[ns]"),
|
127 |
+
object,
|
128 |
+
np.int64,
|
129 |
+
],
|
130 |
+
)
|
131 |
+
def test_period_dtype_mismatch(dtype2):
|
132 |
+
dtype = PeriodDtype(freq="D")
|
133 |
+
assert find_common_type([dtype, dtype2]) == object
|
134 |
+
assert find_common_type([dtype2, dtype]) == object
|
135 |
+
|
136 |
+
|
137 |
+
interval_dtypes = [
|
138 |
+
IntervalDtype(np.int64, "right"),
|
139 |
+
IntervalDtype(np.float64, "right"),
|
140 |
+
IntervalDtype(np.uint64, "right"),
|
141 |
+
IntervalDtype(DatetimeTZDtype(unit="ns", tz="US/Eastern"), "right"),
|
142 |
+
IntervalDtype("M8[ns]", "right"),
|
143 |
+
IntervalDtype("m8[ns]", "right"),
|
144 |
+
]
|
145 |
+
|
146 |
+
|
147 |
+
@pytest.mark.parametrize("left", interval_dtypes)
|
148 |
+
@pytest.mark.parametrize("right", interval_dtypes)
|
149 |
+
def test_interval_dtype(left, right):
|
150 |
+
result = find_common_type([left, right])
|
151 |
+
|
152 |
+
if left is right:
|
153 |
+
assert result is left
|
154 |
+
|
155 |
+
elif left.subtype.kind in ["i", "u", "f"]:
|
156 |
+
# i.e. numeric
|
157 |
+
if right.subtype.kind in ["i", "u", "f"]:
|
158 |
+
# both numeric -> common numeric subtype
|
159 |
+
expected = IntervalDtype(np.float64, "right")
|
160 |
+
assert result == expected
|
161 |
+
else:
|
162 |
+
assert result == object
|
163 |
+
|
164 |
+
else:
|
165 |
+
assert result == object
|
166 |
+
|
167 |
+
|
168 |
+
@pytest.mark.parametrize("dtype", interval_dtypes)
|
169 |
+
def test_interval_dtype_with_categorical(dtype):
|
170 |
+
obj = Index([], dtype=dtype)
|
171 |
+
|
172 |
+
cat = Categorical([], categories=obj)
|
173 |
+
|
174 |
+
result = find_common_type([dtype, cat.dtype])
|
175 |
+
assert result == dtype
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_infer_datetimelike.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas import (
|
5 |
+
DataFrame,
|
6 |
+
NaT,
|
7 |
+
Series,
|
8 |
+
Timestamp,
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
@pytest.mark.parametrize(
|
13 |
+
"data,exp_size",
|
14 |
+
[
|
15 |
+
# see gh-16362.
|
16 |
+
([[NaT, "a", "b", 0], [NaT, "b", "c", 1]], 8),
|
17 |
+
([[NaT, "a", 0], [NaT, "b", 1]], 6),
|
18 |
+
],
|
19 |
+
)
|
20 |
+
def test_maybe_infer_to_datetimelike_df_construct(data, exp_size):
|
21 |
+
result = DataFrame(np.array(data))
|
22 |
+
assert result.size == exp_size
|
23 |
+
|
24 |
+
|
25 |
+
def test_maybe_infer_to_datetimelike_ser_construct():
|
26 |
+
# see gh-19671.
|
27 |
+
result = Series(["M1701", Timestamp("20130101")])
|
28 |
+
assert result.dtype.kind == "O"
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_infer_dtype.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
date,
|
3 |
+
datetime,
|
4 |
+
timedelta,
|
5 |
+
)
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pytest
|
9 |
+
|
10 |
+
from pandas.core.dtypes.cast import (
|
11 |
+
infer_dtype_from,
|
12 |
+
infer_dtype_from_array,
|
13 |
+
infer_dtype_from_scalar,
|
14 |
+
)
|
15 |
+
from pandas.core.dtypes.common import is_dtype_equal
|
16 |
+
|
17 |
+
from pandas import (
|
18 |
+
Categorical,
|
19 |
+
Interval,
|
20 |
+
Period,
|
21 |
+
Series,
|
22 |
+
Timedelta,
|
23 |
+
Timestamp,
|
24 |
+
date_range,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
def test_infer_dtype_from_int_scalar(any_int_numpy_dtype):
|
29 |
+
# Test that infer_dtype_from_scalar is
|
30 |
+
# returning correct dtype for int and float.
|
31 |
+
data = np.dtype(any_int_numpy_dtype).type(12)
|
32 |
+
dtype, val = infer_dtype_from_scalar(data)
|
33 |
+
assert dtype == type(data)
|
34 |
+
|
35 |
+
|
36 |
+
def test_infer_dtype_from_float_scalar(float_numpy_dtype):
|
37 |
+
float_numpy_dtype = np.dtype(float_numpy_dtype).type
|
38 |
+
data = float_numpy_dtype(12)
|
39 |
+
|
40 |
+
dtype, val = infer_dtype_from_scalar(data)
|
41 |
+
assert dtype == float_numpy_dtype
|
42 |
+
|
43 |
+
|
44 |
+
@pytest.mark.parametrize(
|
45 |
+
"data,exp_dtype", [(12, np.int64), (np.float64(12), np.float64)]
|
46 |
+
)
|
47 |
+
def test_infer_dtype_from_python_scalar(data, exp_dtype):
|
48 |
+
dtype, val = infer_dtype_from_scalar(data)
|
49 |
+
assert dtype == exp_dtype
|
50 |
+
|
51 |
+
|
52 |
+
@pytest.mark.parametrize("bool_val", [True, False])
|
53 |
+
def test_infer_dtype_from_boolean(bool_val):
|
54 |
+
dtype, val = infer_dtype_from_scalar(bool_val)
|
55 |
+
assert dtype == np.bool_
|
56 |
+
|
57 |
+
|
58 |
+
def test_infer_dtype_from_complex(complex_dtype):
|
59 |
+
data = np.dtype(complex_dtype).type(1)
|
60 |
+
dtype, val = infer_dtype_from_scalar(data)
|
61 |
+
assert dtype == np.complex128
|
62 |
+
|
63 |
+
|
64 |
+
def test_infer_dtype_from_datetime():
|
65 |
+
dt64 = np.datetime64(1, "ns")
|
66 |
+
dtype, val = infer_dtype_from_scalar(dt64)
|
67 |
+
assert dtype == "M8[ns]"
|
68 |
+
|
69 |
+
ts = Timestamp(1)
|
70 |
+
dtype, val = infer_dtype_from_scalar(ts)
|
71 |
+
assert dtype == "M8[ns]"
|
72 |
+
|
73 |
+
dt = datetime(2000, 1, 1, 0, 0)
|
74 |
+
dtype, val = infer_dtype_from_scalar(dt)
|
75 |
+
assert dtype == "M8[us]"
|
76 |
+
|
77 |
+
|
78 |
+
def test_infer_dtype_from_timedelta():
|
79 |
+
td64 = np.timedelta64(1, "ns")
|
80 |
+
dtype, val = infer_dtype_from_scalar(td64)
|
81 |
+
assert dtype == "m8[ns]"
|
82 |
+
|
83 |
+
pytd = timedelta(1)
|
84 |
+
dtype, val = infer_dtype_from_scalar(pytd)
|
85 |
+
assert dtype == "m8[us]"
|
86 |
+
|
87 |
+
td = Timedelta(1)
|
88 |
+
dtype, val = infer_dtype_from_scalar(td)
|
89 |
+
assert dtype == "m8[ns]"
|
90 |
+
|
91 |
+
|
92 |
+
@pytest.mark.parametrize("freq", ["M", "D"])
|
93 |
+
def test_infer_dtype_from_period(freq):
|
94 |
+
p = Period("2011-01-01", freq=freq)
|
95 |
+
dtype, val = infer_dtype_from_scalar(p)
|
96 |
+
|
97 |
+
exp_dtype = f"period[{freq}]"
|
98 |
+
|
99 |
+
assert dtype == exp_dtype
|
100 |
+
assert val == p
|
101 |
+
|
102 |
+
|
103 |
+
def test_infer_dtype_misc():
|
104 |
+
dt = date(2000, 1, 1)
|
105 |
+
dtype, val = infer_dtype_from_scalar(dt)
|
106 |
+
assert dtype == np.object_
|
107 |
+
|
108 |
+
ts = Timestamp(1, tz="US/Eastern")
|
109 |
+
dtype, val = infer_dtype_from_scalar(ts)
|
110 |
+
assert dtype == "datetime64[ns, US/Eastern]"
|
111 |
+
|
112 |
+
|
113 |
+
@pytest.mark.parametrize("tz", ["UTC", "US/Eastern", "Asia/Tokyo"])
|
114 |
+
def test_infer_from_scalar_tz(tz):
|
115 |
+
dt = Timestamp(1, tz=tz)
|
116 |
+
dtype, val = infer_dtype_from_scalar(dt)
|
117 |
+
|
118 |
+
exp_dtype = f"datetime64[ns, {tz}]"
|
119 |
+
|
120 |
+
assert dtype == exp_dtype
|
121 |
+
assert val == dt
|
122 |
+
|
123 |
+
|
124 |
+
@pytest.mark.parametrize(
|
125 |
+
"left, right, subtype",
|
126 |
+
[
|
127 |
+
(0, 1, "int64"),
|
128 |
+
(0.0, 1.0, "float64"),
|
129 |
+
(Timestamp(0), Timestamp(1), "datetime64[ns]"),
|
130 |
+
(Timestamp(0, tz="UTC"), Timestamp(1, tz="UTC"), "datetime64[ns, UTC]"),
|
131 |
+
(Timedelta(0), Timedelta(1), "timedelta64[ns]"),
|
132 |
+
],
|
133 |
+
)
|
134 |
+
def test_infer_from_interval(left, right, subtype, closed):
|
135 |
+
# GH 30337
|
136 |
+
interval = Interval(left, right, closed)
|
137 |
+
result_dtype, result_value = infer_dtype_from_scalar(interval)
|
138 |
+
expected_dtype = f"interval[{subtype}, {closed}]"
|
139 |
+
assert result_dtype == expected_dtype
|
140 |
+
assert result_value == interval
|
141 |
+
|
142 |
+
|
143 |
+
def test_infer_dtype_from_scalar_errors():
|
144 |
+
msg = "invalid ndarray passed to infer_dtype_from_scalar"
|
145 |
+
|
146 |
+
with pytest.raises(ValueError, match=msg):
|
147 |
+
infer_dtype_from_scalar(np.array([1]))
|
148 |
+
|
149 |
+
|
150 |
+
@pytest.mark.parametrize(
|
151 |
+
"value, expected",
|
152 |
+
[
|
153 |
+
("foo", np.object_),
|
154 |
+
(b"foo", np.object_),
|
155 |
+
(1, np.int64),
|
156 |
+
(1.5, np.float64),
|
157 |
+
(np.datetime64("2016-01-01"), np.dtype("M8[s]")),
|
158 |
+
(Timestamp("20160101"), np.dtype("M8[s]")),
|
159 |
+
(Timestamp("20160101", tz="UTC"), "datetime64[s, UTC]"),
|
160 |
+
],
|
161 |
+
)
|
162 |
+
def test_infer_dtype_from_scalar(value, expected, using_infer_string):
|
163 |
+
dtype, _ = infer_dtype_from_scalar(value)
|
164 |
+
if using_infer_string and value == "foo":
|
165 |
+
expected = "string"
|
166 |
+
assert is_dtype_equal(dtype, expected)
|
167 |
+
|
168 |
+
with pytest.raises(TypeError, match="must be list-like"):
|
169 |
+
infer_dtype_from_array(value)
|
170 |
+
|
171 |
+
|
172 |
+
@pytest.mark.parametrize(
|
173 |
+
"arr, expected",
|
174 |
+
[
|
175 |
+
([1], np.dtype(int)),
|
176 |
+
(np.array([1], dtype=np.int64), np.int64),
|
177 |
+
([np.nan, 1, ""], np.object_),
|
178 |
+
(np.array([[1.0, 2.0]]), np.float64),
|
179 |
+
(Categorical(list("aabc")), "category"),
|
180 |
+
(Categorical([1, 2, 3]), "category"),
|
181 |
+
(date_range("20160101", periods=3), np.dtype("=M8[ns]")),
|
182 |
+
(
|
183 |
+
date_range("20160101", periods=3, tz="US/Eastern"),
|
184 |
+
"datetime64[ns, US/Eastern]",
|
185 |
+
),
|
186 |
+
(Series([1.0, 2, 3]), np.float64),
|
187 |
+
(Series(list("abc")), np.object_),
|
188 |
+
(
|
189 |
+
Series(date_range("20160101", periods=3, tz="US/Eastern")),
|
190 |
+
"datetime64[ns, US/Eastern]",
|
191 |
+
),
|
192 |
+
],
|
193 |
+
)
|
194 |
+
def test_infer_dtype_from_array(arr, expected, using_infer_string):
|
195 |
+
dtype, _ = infer_dtype_from_array(arr)
|
196 |
+
if (
|
197 |
+
using_infer_string
|
198 |
+
and isinstance(arr, Series)
|
199 |
+
and arr.tolist() == ["a", "b", "c"]
|
200 |
+
):
|
201 |
+
expected = "string"
|
202 |
+
assert is_dtype_equal(dtype, expected)
|
203 |
+
|
204 |
+
|
205 |
+
@pytest.mark.parametrize("cls", [np.datetime64, np.timedelta64])
|
206 |
+
def test_infer_dtype_from_scalar_zerodim_datetimelike(cls):
|
207 |
+
# ndarray.item() can incorrectly return int instead of td64/dt64
|
208 |
+
val = cls(1234, "ns")
|
209 |
+
arr = np.array(val)
|
210 |
+
|
211 |
+
dtype, res = infer_dtype_from_scalar(arr)
|
212 |
+
assert dtype.type is cls
|
213 |
+
assert isinstance(res, cls)
|
214 |
+
|
215 |
+
dtype, res = infer_dtype_from(arr)
|
216 |
+
assert dtype.type is cls
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_maybe_box_native.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas.core.dtypes.cast import maybe_box_native
|
7 |
+
|
8 |
+
from pandas import (
|
9 |
+
Interval,
|
10 |
+
Period,
|
11 |
+
Timedelta,
|
12 |
+
Timestamp,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
@pytest.mark.parametrize(
|
17 |
+
"obj,expected_dtype",
|
18 |
+
[
|
19 |
+
(b"\x00\x10", bytes),
|
20 |
+
(int(4), int),
|
21 |
+
(np.uint(4), int),
|
22 |
+
(np.int32(-4), int),
|
23 |
+
(np.uint8(4), int),
|
24 |
+
(float(454.98), float),
|
25 |
+
(np.float16(0.4), float),
|
26 |
+
(np.float64(1.4), float),
|
27 |
+
(np.bool_(False), bool),
|
28 |
+
(datetime(2005, 2, 25), datetime),
|
29 |
+
(np.datetime64("2005-02-25"), Timestamp),
|
30 |
+
(Timestamp("2005-02-25"), Timestamp),
|
31 |
+
(np.timedelta64(1, "D"), Timedelta),
|
32 |
+
(Timedelta(1, "D"), Timedelta),
|
33 |
+
(Interval(0, 1), Interval),
|
34 |
+
(Period("4Q2005"), Period),
|
35 |
+
],
|
36 |
+
)
|
37 |
+
def test_maybe_box_native(obj, expected_dtype):
|
38 |
+
boxed_obj = maybe_box_native(obj)
|
39 |
+
result_dtype = type(boxed_obj)
|
40 |
+
assert result_dtype is expected_dtype
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/cast/test_promote.py
ADDED
@@ -0,0 +1,530 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
These test the method maybe_promote from core/dtypes/cast.py
|
3 |
+
"""
|
4 |
+
|
5 |
+
import datetime
|
6 |
+
from decimal import Decimal
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pytest
|
10 |
+
|
11 |
+
from pandas._libs.tslibs import NaT
|
12 |
+
|
13 |
+
from pandas.core.dtypes.cast import maybe_promote
|
14 |
+
from pandas.core.dtypes.common import is_scalar
|
15 |
+
from pandas.core.dtypes.dtypes import DatetimeTZDtype
|
16 |
+
from pandas.core.dtypes.missing import isna
|
17 |
+
|
18 |
+
import pandas as pd
|
19 |
+
|
20 |
+
|
21 |
+
def _check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar=None):
|
22 |
+
"""
|
23 |
+
Auxiliary function to unify testing of scalar/array promotion.
|
24 |
+
|
25 |
+
Parameters
|
26 |
+
----------
|
27 |
+
dtype : dtype
|
28 |
+
The value to pass on as the first argument to maybe_promote.
|
29 |
+
fill_value : scalar
|
30 |
+
The value to pass on as the second argument to maybe_promote as
|
31 |
+
a scalar.
|
32 |
+
expected_dtype : dtype
|
33 |
+
The expected dtype returned by maybe_promote (by design this is the
|
34 |
+
same regardless of whether fill_value was passed as a scalar or in an
|
35 |
+
array!).
|
36 |
+
exp_val_for_scalar : scalar
|
37 |
+
The expected value for the (potentially upcast) fill_value returned by
|
38 |
+
maybe_promote.
|
39 |
+
"""
|
40 |
+
assert is_scalar(fill_value)
|
41 |
+
|
42 |
+
# here, we pass on fill_value as a scalar directly; the expected value
|
43 |
+
# returned from maybe_promote is fill_value, potentially upcast to the
|
44 |
+
# returned dtype.
|
45 |
+
result_dtype, result_fill_value = maybe_promote(dtype, fill_value)
|
46 |
+
expected_fill_value = exp_val_for_scalar
|
47 |
+
|
48 |
+
assert result_dtype == expected_dtype
|
49 |
+
_assert_match(result_fill_value, expected_fill_value)
|
50 |
+
|
51 |
+
|
52 |
+
def _assert_match(result_fill_value, expected_fill_value):
|
53 |
+
# GH#23982/25425 require the same type in addition to equality/NA-ness
|
54 |
+
res_type = type(result_fill_value)
|
55 |
+
ex_type = type(expected_fill_value)
|
56 |
+
|
57 |
+
if hasattr(result_fill_value, "dtype"):
|
58 |
+
# Compare types in a way that is robust to platform-specific
|
59 |
+
# idiosyncrasies where e.g. sometimes we get "ulonglong" as an alias
|
60 |
+
# for "uint64" or "intc" as an alias for "int32"
|
61 |
+
assert result_fill_value.dtype.kind == expected_fill_value.dtype.kind
|
62 |
+
assert result_fill_value.dtype.itemsize == expected_fill_value.dtype.itemsize
|
63 |
+
else:
|
64 |
+
# On some builds, type comparison fails, e.g. np.int32 != np.int32
|
65 |
+
assert res_type == ex_type or res_type.__name__ == ex_type.__name__
|
66 |
+
|
67 |
+
match_value = result_fill_value == expected_fill_value
|
68 |
+
if match_value is pd.NA:
|
69 |
+
match_value = False
|
70 |
+
|
71 |
+
# Note: type check above ensures that we have the _same_ NA value
|
72 |
+
# for missing values, None == None (which is checked
|
73 |
+
# through match_value above), but np.nan != np.nan and pd.NaT != pd.NaT
|
74 |
+
match_missing = isna(result_fill_value) and isna(expected_fill_value)
|
75 |
+
|
76 |
+
assert match_value or match_missing
|
77 |
+
|
78 |
+
|
79 |
+
@pytest.mark.parametrize(
|
80 |
+
"dtype, fill_value, expected_dtype",
|
81 |
+
[
|
82 |
+
# size 8
|
83 |
+
("int8", 1, "int8"),
|
84 |
+
("int8", np.iinfo("int8").max + 1, "int16"),
|
85 |
+
("int8", np.iinfo("int16").max + 1, "int32"),
|
86 |
+
("int8", np.iinfo("int32").max + 1, "int64"),
|
87 |
+
("int8", np.iinfo("int64").max + 1, "object"),
|
88 |
+
("int8", -1, "int8"),
|
89 |
+
("int8", np.iinfo("int8").min - 1, "int16"),
|
90 |
+
("int8", np.iinfo("int16").min - 1, "int32"),
|
91 |
+
("int8", np.iinfo("int32").min - 1, "int64"),
|
92 |
+
("int8", np.iinfo("int64").min - 1, "object"),
|
93 |
+
# keep signed-ness as long as possible
|
94 |
+
("uint8", 1, "uint8"),
|
95 |
+
("uint8", np.iinfo("int8").max + 1, "uint8"),
|
96 |
+
("uint8", np.iinfo("uint8").max + 1, "uint16"),
|
97 |
+
("uint8", np.iinfo("int16").max + 1, "uint16"),
|
98 |
+
("uint8", np.iinfo("uint16").max + 1, "uint32"),
|
99 |
+
("uint8", np.iinfo("int32").max + 1, "uint32"),
|
100 |
+
("uint8", np.iinfo("uint32").max + 1, "uint64"),
|
101 |
+
("uint8", np.iinfo("int64").max + 1, "uint64"),
|
102 |
+
("uint8", np.iinfo("uint64").max + 1, "object"),
|
103 |
+
# max of uint8 cannot be contained in int8
|
104 |
+
("uint8", -1, "int16"),
|
105 |
+
("uint8", np.iinfo("int8").min - 1, "int16"),
|
106 |
+
("uint8", np.iinfo("int16").min - 1, "int32"),
|
107 |
+
("uint8", np.iinfo("int32").min - 1, "int64"),
|
108 |
+
("uint8", np.iinfo("int64").min - 1, "object"),
|
109 |
+
# size 16
|
110 |
+
("int16", 1, "int16"),
|
111 |
+
("int16", np.iinfo("int8").max + 1, "int16"),
|
112 |
+
("int16", np.iinfo("int16").max + 1, "int32"),
|
113 |
+
("int16", np.iinfo("int32").max + 1, "int64"),
|
114 |
+
("int16", np.iinfo("int64").max + 1, "object"),
|
115 |
+
("int16", -1, "int16"),
|
116 |
+
("int16", np.iinfo("int8").min - 1, "int16"),
|
117 |
+
("int16", np.iinfo("int16").min - 1, "int32"),
|
118 |
+
("int16", np.iinfo("int32").min - 1, "int64"),
|
119 |
+
("int16", np.iinfo("int64").min - 1, "object"),
|
120 |
+
("uint16", 1, "uint16"),
|
121 |
+
("uint16", np.iinfo("int8").max + 1, "uint16"),
|
122 |
+
("uint16", np.iinfo("uint8").max + 1, "uint16"),
|
123 |
+
("uint16", np.iinfo("int16").max + 1, "uint16"),
|
124 |
+
("uint16", np.iinfo("uint16").max + 1, "uint32"),
|
125 |
+
("uint16", np.iinfo("int32").max + 1, "uint32"),
|
126 |
+
("uint16", np.iinfo("uint32").max + 1, "uint64"),
|
127 |
+
("uint16", np.iinfo("int64").max + 1, "uint64"),
|
128 |
+
("uint16", np.iinfo("uint64").max + 1, "object"),
|
129 |
+
("uint16", -1, "int32"),
|
130 |
+
("uint16", np.iinfo("int8").min - 1, "int32"),
|
131 |
+
("uint16", np.iinfo("int16").min - 1, "int32"),
|
132 |
+
("uint16", np.iinfo("int32").min - 1, "int64"),
|
133 |
+
("uint16", np.iinfo("int64").min - 1, "object"),
|
134 |
+
# size 32
|
135 |
+
("int32", 1, "int32"),
|
136 |
+
("int32", np.iinfo("int8").max + 1, "int32"),
|
137 |
+
("int32", np.iinfo("int16").max + 1, "int32"),
|
138 |
+
("int32", np.iinfo("int32").max + 1, "int64"),
|
139 |
+
("int32", np.iinfo("int64").max + 1, "object"),
|
140 |
+
("int32", -1, "int32"),
|
141 |
+
("int32", np.iinfo("int8").min - 1, "int32"),
|
142 |
+
("int32", np.iinfo("int16").min - 1, "int32"),
|
143 |
+
("int32", np.iinfo("int32").min - 1, "int64"),
|
144 |
+
("int32", np.iinfo("int64").min - 1, "object"),
|
145 |
+
("uint32", 1, "uint32"),
|
146 |
+
("uint32", np.iinfo("int8").max + 1, "uint32"),
|
147 |
+
("uint32", np.iinfo("uint8").max + 1, "uint32"),
|
148 |
+
("uint32", np.iinfo("int16").max + 1, "uint32"),
|
149 |
+
("uint32", np.iinfo("uint16").max + 1, "uint32"),
|
150 |
+
("uint32", np.iinfo("int32").max + 1, "uint32"),
|
151 |
+
("uint32", np.iinfo("uint32").max + 1, "uint64"),
|
152 |
+
("uint32", np.iinfo("int64").max + 1, "uint64"),
|
153 |
+
("uint32", np.iinfo("uint64").max + 1, "object"),
|
154 |
+
("uint32", -1, "int64"),
|
155 |
+
("uint32", np.iinfo("int8").min - 1, "int64"),
|
156 |
+
("uint32", np.iinfo("int16").min - 1, "int64"),
|
157 |
+
("uint32", np.iinfo("int32").min - 1, "int64"),
|
158 |
+
("uint32", np.iinfo("int64").min - 1, "object"),
|
159 |
+
# size 64
|
160 |
+
("int64", 1, "int64"),
|
161 |
+
("int64", np.iinfo("int8").max + 1, "int64"),
|
162 |
+
("int64", np.iinfo("int16").max + 1, "int64"),
|
163 |
+
("int64", np.iinfo("int32").max + 1, "int64"),
|
164 |
+
("int64", np.iinfo("int64").max + 1, "object"),
|
165 |
+
("int64", -1, "int64"),
|
166 |
+
("int64", np.iinfo("int8").min - 1, "int64"),
|
167 |
+
("int64", np.iinfo("int16").min - 1, "int64"),
|
168 |
+
("int64", np.iinfo("int32").min - 1, "int64"),
|
169 |
+
("int64", np.iinfo("int64").min - 1, "object"),
|
170 |
+
("uint64", 1, "uint64"),
|
171 |
+
("uint64", np.iinfo("int8").max + 1, "uint64"),
|
172 |
+
("uint64", np.iinfo("uint8").max + 1, "uint64"),
|
173 |
+
("uint64", np.iinfo("int16").max + 1, "uint64"),
|
174 |
+
("uint64", np.iinfo("uint16").max + 1, "uint64"),
|
175 |
+
("uint64", np.iinfo("int32").max + 1, "uint64"),
|
176 |
+
("uint64", np.iinfo("uint32").max + 1, "uint64"),
|
177 |
+
("uint64", np.iinfo("int64").max + 1, "uint64"),
|
178 |
+
("uint64", np.iinfo("uint64").max + 1, "object"),
|
179 |
+
("uint64", -1, "object"),
|
180 |
+
("uint64", np.iinfo("int8").min - 1, "object"),
|
181 |
+
("uint64", np.iinfo("int16").min - 1, "object"),
|
182 |
+
("uint64", np.iinfo("int32").min - 1, "object"),
|
183 |
+
("uint64", np.iinfo("int64").min - 1, "object"),
|
184 |
+
],
|
185 |
+
)
|
186 |
+
def test_maybe_promote_int_with_int(dtype, fill_value, expected_dtype):
|
187 |
+
dtype = np.dtype(dtype)
|
188 |
+
expected_dtype = np.dtype(expected_dtype)
|
189 |
+
|
190 |
+
# output is not a generic int, but corresponds to expected_dtype
|
191 |
+
exp_val_for_scalar = np.array([fill_value], dtype=expected_dtype)[0]
|
192 |
+
|
193 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
194 |
+
|
195 |
+
|
196 |
+
def test_maybe_promote_int_with_float(any_int_numpy_dtype, float_numpy_dtype):
|
197 |
+
dtype = np.dtype(any_int_numpy_dtype)
|
198 |
+
fill_dtype = np.dtype(float_numpy_dtype)
|
199 |
+
|
200 |
+
# create array of given dtype; casts "1" to correct dtype
|
201 |
+
fill_value = np.array([1], dtype=fill_dtype)[0]
|
202 |
+
|
203 |
+
# filling int with float always upcasts to float64
|
204 |
+
expected_dtype = np.float64
|
205 |
+
# fill_value can be different float type
|
206 |
+
exp_val_for_scalar = np.float64(fill_value)
|
207 |
+
|
208 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
209 |
+
|
210 |
+
|
211 |
+
def test_maybe_promote_float_with_int(float_numpy_dtype, any_int_numpy_dtype):
|
212 |
+
dtype = np.dtype(float_numpy_dtype)
|
213 |
+
fill_dtype = np.dtype(any_int_numpy_dtype)
|
214 |
+
|
215 |
+
# create array of given dtype; casts "1" to correct dtype
|
216 |
+
fill_value = np.array([1], dtype=fill_dtype)[0]
|
217 |
+
|
218 |
+
# filling float with int always keeps float dtype
|
219 |
+
# because: np.finfo('float32').max > np.iinfo('uint64').max
|
220 |
+
expected_dtype = dtype
|
221 |
+
# output is not a generic float, but corresponds to expected_dtype
|
222 |
+
exp_val_for_scalar = np.array([fill_value], dtype=expected_dtype)[0]
|
223 |
+
|
224 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
225 |
+
|
226 |
+
|
227 |
+
@pytest.mark.parametrize(
|
228 |
+
"dtype, fill_value, expected_dtype",
|
229 |
+
[
|
230 |
+
# float filled with float
|
231 |
+
("float32", 1, "float32"),
|
232 |
+
("float32", float(np.finfo("float32").max) * 1.1, "float64"),
|
233 |
+
("float64", 1, "float64"),
|
234 |
+
("float64", float(np.finfo("float32").max) * 1.1, "float64"),
|
235 |
+
# complex filled with float
|
236 |
+
("complex64", 1, "complex64"),
|
237 |
+
("complex64", float(np.finfo("float32").max) * 1.1, "complex128"),
|
238 |
+
("complex128", 1, "complex128"),
|
239 |
+
("complex128", float(np.finfo("float32").max) * 1.1, "complex128"),
|
240 |
+
# float filled with complex
|
241 |
+
("float32", 1 + 1j, "complex64"),
|
242 |
+
("float32", float(np.finfo("float32").max) * (1.1 + 1j), "complex128"),
|
243 |
+
("float64", 1 + 1j, "complex128"),
|
244 |
+
("float64", float(np.finfo("float32").max) * (1.1 + 1j), "complex128"),
|
245 |
+
# complex filled with complex
|
246 |
+
("complex64", 1 + 1j, "complex64"),
|
247 |
+
("complex64", float(np.finfo("float32").max) * (1.1 + 1j), "complex128"),
|
248 |
+
("complex128", 1 + 1j, "complex128"),
|
249 |
+
("complex128", float(np.finfo("float32").max) * (1.1 + 1j), "complex128"),
|
250 |
+
],
|
251 |
+
)
|
252 |
+
def test_maybe_promote_float_with_float(dtype, fill_value, expected_dtype):
|
253 |
+
dtype = np.dtype(dtype)
|
254 |
+
expected_dtype = np.dtype(expected_dtype)
|
255 |
+
|
256 |
+
# output is not a generic float, but corresponds to expected_dtype
|
257 |
+
exp_val_for_scalar = np.array([fill_value], dtype=expected_dtype)[0]
|
258 |
+
|
259 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
260 |
+
|
261 |
+
|
262 |
+
def test_maybe_promote_bool_with_any(any_numpy_dtype):
|
263 |
+
dtype = np.dtype(bool)
|
264 |
+
fill_dtype = np.dtype(any_numpy_dtype)
|
265 |
+
|
266 |
+
# create array of given dtype; casts "1" to correct dtype
|
267 |
+
fill_value = np.array([1], dtype=fill_dtype)[0]
|
268 |
+
|
269 |
+
# filling bool with anything but bool casts to object
|
270 |
+
expected_dtype = np.dtype(object) if fill_dtype != bool else fill_dtype
|
271 |
+
exp_val_for_scalar = fill_value
|
272 |
+
|
273 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
274 |
+
|
275 |
+
|
276 |
+
def test_maybe_promote_any_with_bool(any_numpy_dtype):
|
277 |
+
dtype = np.dtype(any_numpy_dtype)
|
278 |
+
fill_value = True
|
279 |
+
|
280 |
+
# filling anything but bool with bool casts to object
|
281 |
+
expected_dtype = np.dtype(object) if dtype != bool else dtype
|
282 |
+
# output is not a generic bool, but corresponds to expected_dtype
|
283 |
+
exp_val_for_scalar = np.array([fill_value], dtype=expected_dtype)[0]
|
284 |
+
|
285 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
286 |
+
|
287 |
+
|
288 |
+
def test_maybe_promote_bytes_with_any(bytes_dtype, any_numpy_dtype):
|
289 |
+
dtype = np.dtype(bytes_dtype)
|
290 |
+
fill_dtype = np.dtype(any_numpy_dtype)
|
291 |
+
|
292 |
+
# create array of given dtype; casts "1" to correct dtype
|
293 |
+
fill_value = np.array([1], dtype=fill_dtype)[0]
|
294 |
+
|
295 |
+
# we never use bytes dtype internally, always promote to object
|
296 |
+
expected_dtype = np.dtype(np.object_)
|
297 |
+
exp_val_for_scalar = fill_value
|
298 |
+
|
299 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
300 |
+
|
301 |
+
|
302 |
+
def test_maybe_promote_any_with_bytes(any_numpy_dtype):
|
303 |
+
dtype = np.dtype(any_numpy_dtype)
|
304 |
+
|
305 |
+
# create array of given dtype
|
306 |
+
fill_value = b"abc"
|
307 |
+
|
308 |
+
# we never use bytes dtype internally, always promote to object
|
309 |
+
expected_dtype = np.dtype(np.object_)
|
310 |
+
# output is not a generic bytes, but corresponds to expected_dtype
|
311 |
+
exp_val_for_scalar = np.array([fill_value], dtype=expected_dtype)[0]
|
312 |
+
|
313 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
314 |
+
|
315 |
+
|
316 |
+
def test_maybe_promote_datetime64_with_any(datetime64_dtype, any_numpy_dtype):
|
317 |
+
dtype = np.dtype(datetime64_dtype)
|
318 |
+
fill_dtype = np.dtype(any_numpy_dtype)
|
319 |
+
|
320 |
+
# create array of given dtype; casts "1" to correct dtype
|
321 |
+
fill_value = np.array([1], dtype=fill_dtype)[0]
|
322 |
+
|
323 |
+
# filling datetime with anything but datetime casts to object
|
324 |
+
if fill_dtype.kind == "M":
|
325 |
+
expected_dtype = dtype
|
326 |
+
# for datetime dtypes, scalar values get cast to to_datetime64
|
327 |
+
exp_val_for_scalar = pd.Timestamp(fill_value).to_datetime64()
|
328 |
+
else:
|
329 |
+
expected_dtype = np.dtype(object)
|
330 |
+
exp_val_for_scalar = fill_value
|
331 |
+
|
332 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
333 |
+
|
334 |
+
|
335 |
+
@pytest.mark.parametrize(
|
336 |
+
"fill_value",
|
337 |
+
[
|
338 |
+
pd.Timestamp("now"),
|
339 |
+
np.datetime64("now"),
|
340 |
+
datetime.datetime.now(),
|
341 |
+
datetime.date.today(),
|
342 |
+
],
|
343 |
+
ids=["pd.Timestamp", "np.datetime64", "datetime.datetime", "datetime.date"],
|
344 |
+
)
|
345 |
+
def test_maybe_promote_any_with_datetime64(any_numpy_dtype, fill_value):
|
346 |
+
dtype = np.dtype(any_numpy_dtype)
|
347 |
+
|
348 |
+
# filling datetime with anything but datetime casts to object
|
349 |
+
if dtype.kind == "M":
|
350 |
+
expected_dtype = dtype
|
351 |
+
# for datetime dtypes, scalar values get cast to pd.Timestamp.value
|
352 |
+
exp_val_for_scalar = pd.Timestamp(fill_value).to_datetime64()
|
353 |
+
else:
|
354 |
+
expected_dtype = np.dtype(object)
|
355 |
+
exp_val_for_scalar = fill_value
|
356 |
+
|
357 |
+
if type(fill_value) is datetime.date and dtype.kind == "M":
|
358 |
+
# Casting date to dt64 is deprecated, in 2.0 enforced to cast to object
|
359 |
+
expected_dtype = np.dtype(object)
|
360 |
+
exp_val_for_scalar = fill_value
|
361 |
+
|
362 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
363 |
+
|
364 |
+
|
365 |
+
@pytest.mark.parametrize(
|
366 |
+
"fill_value",
|
367 |
+
[
|
368 |
+
pd.Timestamp(2023, 1, 1),
|
369 |
+
np.datetime64("2023-01-01"),
|
370 |
+
datetime.datetime(2023, 1, 1),
|
371 |
+
datetime.date(2023, 1, 1),
|
372 |
+
],
|
373 |
+
ids=["pd.Timestamp", "np.datetime64", "datetime.datetime", "datetime.date"],
|
374 |
+
)
|
375 |
+
def test_maybe_promote_any_numpy_dtype_with_datetimetz(
|
376 |
+
any_numpy_dtype, tz_aware_fixture, fill_value
|
377 |
+
):
|
378 |
+
dtype = np.dtype(any_numpy_dtype)
|
379 |
+
fill_dtype = DatetimeTZDtype(tz=tz_aware_fixture)
|
380 |
+
|
381 |
+
fill_value = pd.Series([fill_value], dtype=fill_dtype)[0]
|
382 |
+
|
383 |
+
# filling any numpy dtype with datetimetz casts to object
|
384 |
+
expected_dtype = np.dtype(object)
|
385 |
+
exp_val_for_scalar = fill_value
|
386 |
+
|
387 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
388 |
+
|
389 |
+
|
390 |
+
def test_maybe_promote_timedelta64_with_any(timedelta64_dtype, any_numpy_dtype):
|
391 |
+
dtype = np.dtype(timedelta64_dtype)
|
392 |
+
fill_dtype = np.dtype(any_numpy_dtype)
|
393 |
+
|
394 |
+
# create array of given dtype; casts "1" to correct dtype
|
395 |
+
fill_value = np.array([1], dtype=fill_dtype)[0]
|
396 |
+
|
397 |
+
# filling timedelta with anything but timedelta casts to object
|
398 |
+
if fill_dtype.kind == "m":
|
399 |
+
expected_dtype = dtype
|
400 |
+
# for timedelta dtypes, scalar values get cast to pd.Timedelta.value
|
401 |
+
exp_val_for_scalar = pd.Timedelta(fill_value).to_timedelta64()
|
402 |
+
else:
|
403 |
+
expected_dtype = np.dtype(object)
|
404 |
+
exp_val_for_scalar = fill_value
|
405 |
+
|
406 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
407 |
+
|
408 |
+
|
409 |
+
@pytest.mark.parametrize(
|
410 |
+
"fill_value",
|
411 |
+
[pd.Timedelta(days=1), np.timedelta64(24, "h"), datetime.timedelta(1)],
|
412 |
+
ids=["pd.Timedelta", "np.timedelta64", "datetime.timedelta"],
|
413 |
+
)
|
414 |
+
def test_maybe_promote_any_with_timedelta64(any_numpy_dtype, fill_value):
|
415 |
+
dtype = np.dtype(any_numpy_dtype)
|
416 |
+
|
417 |
+
# filling anything but timedelta with timedelta casts to object
|
418 |
+
if dtype.kind == "m":
|
419 |
+
expected_dtype = dtype
|
420 |
+
# for timedelta dtypes, scalar values get cast to pd.Timedelta.value
|
421 |
+
exp_val_for_scalar = pd.Timedelta(fill_value).to_timedelta64()
|
422 |
+
else:
|
423 |
+
expected_dtype = np.dtype(object)
|
424 |
+
exp_val_for_scalar = fill_value
|
425 |
+
|
426 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
427 |
+
|
428 |
+
|
429 |
+
def test_maybe_promote_string_with_any(string_dtype, any_numpy_dtype):
|
430 |
+
dtype = np.dtype(string_dtype)
|
431 |
+
fill_dtype = np.dtype(any_numpy_dtype)
|
432 |
+
|
433 |
+
# create array of given dtype; casts "1" to correct dtype
|
434 |
+
fill_value = np.array([1], dtype=fill_dtype)[0]
|
435 |
+
|
436 |
+
# filling string with anything casts to object
|
437 |
+
expected_dtype = np.dtype(object)
|
438 |
+
exp_val_for_scalar = fill_value
|
439 |
+
|
440 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
441 |
+
|
442 |
+
|
443 |
+
def test_maybe_promote_any_with_string(any_numpy_dtype):
|
444 |
+
dtype = np.dtype(any_numpy_dtype)
|
445 |
+
|
446 |
+
# create array of given dtype
|
447 |
+
fill_value = "abc"
|
448 |
+
|
449 |
+
# filling anything with a string casts to object
|
450 |
+
expected_dtype = np.dtype(object)
|
451 |
+
exp_val_for_scalar = fill_value
|
452 |
+
|
453 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
454 |
+
|
455 |
+
|
456 |
+
def test_maybe_promote_object_with_any(object_dtype, any_numpy_dtype):
|
457 |
+
dtype = np.dtype(object_dtype)
|
458 |
+
fill_dtype = np.dtype(any_numpy_dtype)
|
459 |
+
|
460 |
+
# create array of given dtype; casts "1" to correct dtype
|
461 |
+
fill_value = np.array([1], dtype=fill_dtype)[0]
|
462 |
+
|
463 |
+
# filling object with anything stays object
|
464 |
+
expected_dtype = np.dtype(object)
|
465 |
+
exp_val_for_scalar = fill_value
|
466 |
+
|
467 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
468 |
+
|
469 |
+
|
470 |
+
def test_maybe_promote_any_with_object(any_numpy_dtype):
|
471 |
+
dtype = np.dtype(any_numpy_dtype)
|
472 |
+
|
473 |
+
# create array of object dtype from a scalar value (i.e. passing
|
474 |
+
# dtypes.common.is_scalar), which can however not be cast to int/float etc.
|
475 |
+
fill_value = pd.DateOffset(1)
|
476 |
+
|
477 |
+
# filling object with anything stays object
|
478 |
+
expected_dtype = np.dtype(object)
|
479 |
+
exp_val_for_scalar = fill_value
|
480 |
+
|
481 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
482 |
+
|
483 |
+
|
484 |
+
def test_maybe_promote_any_numpy_dtype_with_na(any_numpy_dtype, nulls_fixture):
|
485 |
+
fill_value = nulls_fixture
|
486 |
+
dtype = np.dtype(any_numpy_dtype)
|
487 |
+
|
488 |
+
if isinstance(fill_value, Decimal):
|
489 |
+
# Subject to change, but ATM (When Decimal(NAN) is being added to nulls_fixture)
|
490 |
+
# this is the existing behavior in maybe_promote,
|
491 |
+
# hinges on is_valid_na_for_dtype
|
492 |
+
if dtype.kind in "iufc":
|
493 |
+
if dtype.kind in "iu":
|
494 |
+
expected_dtype = np.dtype(np.float64)
|
495 |
+
else:
|
496 |
+
expected_dtype = dtype
|
497 |
+
exp_val_for_scalar = np.nan
|
498 |
+
else:
|
499 |
+
expected_dtype = np.dtype(object)
|
500 |
+
exp_val_for_scalar = fill_value
|
501 |
+
elif dtype.kind in "iu" and fill_value is not NaT:
|
502 |
+
# integer + other missing value (np.nan / None) casts to float
|
503 |
+
expected_dtype = np.float64
|
504 |
+
exp_val_for_scalar = np.nan
|
505 |
+
elif dtype == object and fill_value is NaT:
|
506 |
+
# inserting into object does not cast the value
|
507 |
+
# but *does* cast None to np.nan
|
508 |
+
expected_dtype = np.dtype(object)
|
509 |
+
exp_val_for_scalar = fill_value
|
510 |
+
elif dtype.kind in "mM":
|
511 |
+
# datetime / timedelta cast all missing values to dtyped-NaT
|
512 |
+
expected_dtype = dtype
|
513 |
+
exp_val_for_scalar = dtype.type("NaT", "ns")
|
514 |
+
elif fill_value is NaT:
|
515 |
+
# NaT upcasts everything that's not datetime/timedelta to object
|
516 |
+
expected_dtype = np.dtype(object)
|
517 |
+
exp_val_for_scalar = NaT
|
518 |
+
elif dtype.kind in "fc":
|
519 |
+
# float / complex + missing value (!= NaT) stays the same
|
520 |
+
expected_dtype = dtype
|
521 |
+
exp_val_for_scalar = np.nan
|
522 |
+
else:
|
523 |
+
# all other cases cast to object, and use np.nan as missing value
|
524 |
+
expected_dtype = np.dtype(object)
|
525 |
+
if fill_value is pd.NA:
|
526 |
+
exp_val_for_scalar = pd.NA
|
527 |
+
else:
|
528 |
+
exp_val_for_scalar = np.nan
|
529 |
+
|
530 |
+
_check_promote(dtype, fill_value, expected_dtype, exp_val_for_scalar)
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/test_common.py
ADDED
@@ -0,0 +1,801 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import pandas.util._test_decorators as td
|
7 |
+
|
8 |
+
from pandas.core.dtypes.astype import astype_array
|
9 |
+
import pandas.core.dtypes.common as com
|
10 |
+
from pandas.core.dtypes.dtypes import (
|
11 |
+
CategoricalDtype,
|
12 |
+
CategoricalDtypeType,
|
13 |
+
DatetimeTZDtype,
|
14 |
+
ExtensionDtype,
|
15 |
+
IntervalDtype,
|
16 |
+
PeriodDtype,
|
17 |
+
)
|
18 |
+
from pandas.core.dtypes.missing import isna
|
19 |
+
|
20 |
+
import pandas as pd
|
21 |
+
import pandas._testing as tm
|
22 |
+
from pandas.api.types import pandas_dtype
|
23 |
+
from pandas.arrays import SparseArray
|
24 |
+
|
25 |
+
|
26 |
+
# EA & Actual Dtypes
|
27 |
+
def to_ea_dtypes(dtypes):
|
28 |
+
"""convert list of string dtypes to EA dtype"""
|
29 |
+
return [getattr(pd, dt + "Dtype") for dt in dtypes]
|
30 |
+
|
31 |
+
|
32 |
+
def to_numpy_dtypes(dtypes):
|
33 |
+
"""convert list of string dtypes to numpy dtype"""
|
34 |
+
return [getattr(np, dt) for dt in dtypes if isinstance(dt, str)]
|
35 |
+
|
36 |
+
|
37 |
+
class TestNumpyEADtype:
|
38 |
+
# Passing invalid dtype, both as a string or object, must raise TypeError
|
39 |
+
# Per issue GH15520
|
40 |
+
@pytest.mark.parametrize("box", [pd.Timestamp, "pd.Timestamp", list])
|
41 |
+
def test_invalid_dtype_error(self, box):
|
42 |
+
with pytest.raises(TypeError, match="not understood"):
|
43 |
+
com.pandas_dtype(box)
|
44 |
+
|
45 |
+
@pytest.mark.parametrize(
|
46 |
+
"dtype",
|
47 |
+
[
|
48 |
+
object,
|
49 |
+
"float64",
|
50 |
+
np.object_,
|
51 |
+
np.dtype("object"),
|
52 |
+
"O",
|
53 |
+
np.float64,
|
54 |
+
float,
|
55 |
+
np.dtype("float64"),
|
56 |
+
"object_",
|
57 |
+
],
|
58 |
+
)
|
59 |
+
def test_pandas_dtype_valid(self, dtype):
|
60 |
+
assert com.pandas_dtype(dtype) == dtype
|
61 |
+
|
62 |
+
@pytest.mark.parametrize(
|
63 |
+
"dtype", ["M8[ns]", "m8[ns]", "object", "float64", "int64"]
|
64 |
+
)
|
65 |
+
def test_numpy_dtype(self, dtype):
|
66 |
+
assert com.pandas_dtype(dtype) == np.dtype(dtype)
|
67 |
+
|
68 |
+
def test_numpy_string_dtype(self):
|
69 |
+
# do not parse freq-like string as period dtype
|
70 |
+
assert com.pandas_dtype("U") == np.dtype("U")
|
71 |
+
assert com.pandas_dtype("S") == np.dtype("S")
|
72 |
+
|
73 |
+
@pytest.mark.parametrize(
|
74 |
+
"dtype",
|
75 |
+
[
|
76 |
+
"datetime64[ns, US/Eastern]",
|
77 |
+
"datetime64[ns, Asia/Tokyo]",
|
78 |
+
"datetime64[ns, UTC]",
|
79 |
+
# GH#33885 check that the M8 alias is understood
|
80 |
+
"M8[ns, US/Eastern]",
|
81 |
+
"M8[ns, Asia/Tokyo]",
|
82 |
+
"M8[ns, UTC]",
|
83 |
+
],
|
84 |
+
)
|
85 |
+
def test_datetimetz_dtype(self, dtype):
|
86 |
+
assert com.pandas_dtype(dtype) == DatetimeTZDtype.construct_from_string(dtype)
|
87 |
+
assert com.pandas_dtype(dtype) == dtype
|
88 |
+
|
89 |
+
def test_categorical_dtype(self):
|
90 |
+
assert com.pandas_dtype("category") == CategoricalDtype()
|
91 |
+
|
92 |
+
@pytest.mark.parametrize(
|
93 |
+
"dtype",
|
94 |
+
[
|
95 |
+
"period[D]",
|
96 |
+
"period[3M]",
|
97 |
+
"period[us]",
|
98 |
+
"Period[D]",
|
99 |
+
"Period[3M]",
|
100 |
+
"Period[us]",
|
101 |
+
],
|
102 |
+
)
|
103 |
+
def test_period_dtype(self, dtype):
|
104 |
+
assert com.pandas_dtype(dtype) is not PeriodDtype(dtype)
|
105 |
+
assert com.pandas_dtype(dtype) == PeriodDtype(dtype)
|
106 |
+
assert com.pandas_dtype(dtype) == dtype
|
107 |
+
|
108 |
+
|
109 |
+
dtypes = {
|
110 |
+
"datetime_tz": com.pandas_dtype("datetime64[ns, US/Eastern]"),
|
111 |
+
"datetime": com.pandas_dtype("datetime64[ns]"),
|
112 |
+
"timedelta": com.pandas_dtype("timedelta64[ns]"),
|
113 |
+
"period": PeriodDtype("D"),
|
114 |
+
"integer": np.dtype(np.int64),
|
115 |
+
"float": np.dtype(np.float64),
|
116 |
+
"object": np.dtype(object),
|
117 |
+
"category": com.pandas_dtype("category"),
|
118 |
+
"string": pd.StringDtype(),
|
119 |
+
}
|
120 |
+
|
121 |
+
|
122 |
+
@pytest.mark.parametrize("name1,dtype1", list(dtypes.items()), ids=lambda x: str(x))
|
123 |
+
@pytest.mark.parametrize("name2,dtype2", list(dtypes.items()), ids=lambda x: str(x))
|
124 |
+
def test_dtype_equal(name1, dtype1, name2, dtype2):
|
125 |
+
# match equal to self, but not equal to other
|
126 |
+
assert com.is_dtype_equal(dtype1, dtype1)
|
127 |
+
if name1 != name2:
|
128 |
+
assert not com.is_dtype_equal(dtype1, dtype2)
|
129 |
+
|
130 |
+
|
131 |
+
@pytest.mark.parametrize("name,dtype", list(dtypes.items()), ids=lambda x: str(x))
|
132 |
+
def test_pyarrow_string_import_error(name, dtype):
|
133 |
+
# GH-44276
|
134 |
+
assert not com.is_dtype_equal(dtype, "string[pyarrow]")
|
135 |
+
|
136 |
+
|
137 |
+
@pytest.mark.parametrize(
|
138 |
+
"dtype1,dtype2",
|
139 |
+
[
|
140 |
+
(np.int8, np.int64),
|
141 |
+
(np.int16, np.int64),
|
142 |
+
(np.int32, np.int64),
|
143 |
+
(np.float32, np.float64),
|
144 |
+
(PeriodDtype("D"), PeriodDtype("2D")), # PeriodType
|
145 |
+
(
|
146 |
+
com.pandas_dtype("datetime64[ns, US/Eastern]"),
|
147 |
+
com.pandas_dtype("datetime64[ns, CET]"),
|
148 |
+
), # Datetime
|
149 |
+
(None, None), # gh-15941: no exception should be raised.
|
150 |
+
],
|
151 |
+
)
|
152 |
+
def test_dtype_equal_strict(dtype1, dtype2):
|
153 |
+
assert not com.is_dtype_equal(dtype1, dtype2)
|
154 |
+
|
155 |
+
|
156 |
+
def get_is_dtype_funcs():
|
157 |
+
"""
|
158 |
+
Get all functions in pandas.core.dtypes.common that
|
159 |
+
begin with 'is_' and end with 'dtype'
|
160 |
+
|
161 |
+
"""
|
162 |
+
fnames = [f for f in dir(com) if (f.startswith("is_") and f.endswith("dtype"))]
|
163 |
+
fnames.remove("is_string_or_object_np_dtype") # fastpath requires np.dtype obj
|
164 |
+
return [getattr(com, fname) for fname in fnames]
|
165 |
+
|
166 |
+
|
167 |
+
@pytest.mark.filterwarnings(
|
168 |
+
"ignore:is_categorical_dtype is deprecated:DeprecationWarning"
|
169 |
+
)
|
170 |
+
@pytest.mark.parametrize("func", get_is_dtype_funcs(), ids=lambda x: x.__name__)
|
171 |
+
def test_get_dtype_error_catch(func):
|
172 |
+
# see gh-15941
|
173 |
+
#
|
174 |
+
# No exception should be raised.
|
175 |
+
|
176 |
+
msg = f"{func.__name__} is deprecated"
|
177 |
+
warn = None
|
178 |
+
if (
|
179 |
+
func is com.is_int64_dtype
|
180 |
+
or func is com.is_interval_dtype
|
181 |
+
or func is com.is_datetime64tz_dtype
|
182 |
+
or func is com.is_categorical_dtype
|
183 |
+
or func is com.is_period_dtype
|
184 |
+
):
|
185 |
+
warn = DeprecationWarning
|
186 |
+
|
187 |
+
with tm.assert_produces_warning(warn, match=msg):
|
188 |
+
assert not func(None)
|
189 |
+
|
190 |
+
|
191 |
+
def test_is_object():
|
192 |
+
assert com.is_object_dtype(object)
|
193 |
+
assert com.is_object_dtype(np.array([], dtype=object))
|
194 |
+
|
195 |
+
assert not com.is_object_dtype(int)
|
196 |
+
assert not com.is_object_dtype(np.array([], dtype=int))
|
197 |
+
assert not com.is_object_dtype([1, 2, 3])
|
198 |
+
|
199 |
+
|
200 |
+
@pytest.mark.parametrize(
|
201 |
+
"check_scipy", [False, pytest.param(True, marks=td.skip_if_no("scipy"))]
|
202 |
+
)
|
203 |
+
def test_is_sparse(check_scipy):
|
204 |
+
msg = "is_sparse is deprecated"
|
205 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
206 |
+
assert com.is_sparse(SparseArray([1, 2, 3]))
|
207 |
+
|
208 |
+
assert not com.is_sparse(np.array([1, 2, 3]))
|
209 |
+
|
210 |
+
if check_scipy:
|
211 |
+
import scipy.sparse
|
212 |
+
|
213 |
+
assert not com.is_sparse(scipy.sparse.bsr_matrix([1, 2, 3]))
|
214 |
+
|
215 |
+
|
216 |
+
def test_is_scipy_sparse():
|
217 |
+
sp_sparse = pytest.importorskip("scipy.sparse")
|
218 |
+
|
219 |
+
assert com.is_scipy_sparse(sp_sparse.bsr_matrix([1, 2, 3]))
|
220 |
+
|
221 |
+
assert not com.is_scipy_sparse(SparseArray([1, 2, 3]))
|
222 |
+
|
223 |
+
|
224 |
+
def test_is_datetime64_dtype():
|
225 |
+
assert not com.is_datetime64_dtype(object)
|
226 |
+
assert not com.is_datetime64_dtype([1, 2, 3])
|
227 |
+
assert not com.is_datetime64_dtype(np.array([], dtype=int))
|
228 |
+
|
229 |
+
assert com.is_datetime64_dtype(np.datetime64)
|
230 |
+
assert com.is_datetime64_dtype(np.array([], dtype=np.datetime64))
|
231 |
+
|
232 |
+
|
233 |
+
def test_is_datetime64tz_dtype():
|
234 |
+
msg = "is_datetime64tz_dtype is deprecated"
|
235 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
236 |
+
assert not com.is_datetime64tz_dtype(object)
|
237 |
+
assert not com.is_datetime64tz_dtype([1, 2, 3])
|
238 |
+
assert not com.is_datetime64tz_dtype(pd.DatetimeIndex([1, 2, 3]))
|
239 |
+
assert com.is_datetime64tz_dtype(pd.DatetimeIndex(["2000"], tz="US/Eastern"))
|
240 |
+
|
241 |
+
|
242 |
+
def test_custom_ea_kind_M_not_datetime64tz():
|
243 |
+
# GH 34986
|
244 |
+
class NotTZDtype(ExtensionDtype):
|
245 |
+
@property
|
246 |
+
def kind(self) -> str:
|
247 |
+
return "M"
|
248 |
+
|
249 |
+
not_tz_dtype = NotTZDtype()
|
250 |
+
msg = "is_datetime64tz_dtype is deprecated"
|
251 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
252 |
+
assert not com.is_datetime64tz_dtype(not_tz_dtype)
|
253 |
+
assert not com.needs_i8_conversion(not_tz_dtype)
|
254 |
+
|
255 |
+
|
256 |
+
def test_is_timedelta64_dtype():
|
257 |
+
assert not com.is_timedelta64_dtype(object)
|
258 |
+
assert not com.is_timedelta64_dtype(None)
|
259 |
+
assert not com.is_timedelta64_dtype([1, 2, 3])
|
260 |
+
assert not com.is_timedelta64_dtype(np.array([], dtype=np.datetime64))
|
261 |
+
assert not com.is_timedelta64_dtype("0 days")
|
262 |
+
assert not com.is_timedelta64_dtype("0 days 00:00:00")
|
263 |
+
assert not com.is_timedelta64_dtype(["0 days 00:00:00"])
|
264 |
+
assert not com.is_timedelta64_dtype("NO DATE")
|
265 |
+
|
266 |
+
assert com.is_timedelta64_dtype(np.timedelta64)
|
267 |
+
assert com.is_timedelta64_dtype(pd.Series([], dtype="timedelta64[ns]"))
|
268 |
+
assert com.is_timedelta64_dtype(pd.to_timedelta(["0 days", "1 days"]))
|
269 |
+
|
270 |
+
|
271 |
+
def test_is_period_dtype():
|
272 |
+
msg = "is_period_dtype is deprecated"
|
273 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
274 |
+
assert not com.is_period_dtype(object)
|
275 |
+
assert not com.is_period_dtype([1, 2, 3])
|
276 |
+
assert not com.is_period_dtype(pd.Period("2017-01-01"))
|
277 |
+
|
278 |
+
assert com.is_period_dtype(PeriodDtype(freq="D"))
|
279 |
+
assert com.is_period_dtype(pd.PeriodIndex([], freq="Y"))
|
280 |
+
|
281 |
+
|
282 |
+
def test_is_interval_dtype():
|
283 |
+
msg = "is_interval_dtype is deprecated"
|
284 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
285 |
+
assert not com.is_interval_dtype(object)
|
286 |
+
assert not com.is_interval_dtype([1, 2, 3])
|
287 |
+
|
288 |
+
assert com.is_interval_dtype(IntervalDtype())
|
289 |
+
|
290 |
+
interval = pd.Interval(1, 2, closed="right")
|
291 |
+
assert not com.is_interval_dtype(interval)
|
292 |
+
assert com.is_interval_dtype(pd.IntervalIndex([interval]))
|
293 |
+
|
294 |
+
|
295 |
+
def test_is_categorical_dtype():
|
296 |
+
msg = "is_categorical_dtype is deprecated"
|
297 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
298 |
+
assert not com.is_categorical_dtype(object)
|
299 |
+
assert not com.is_categorical_dtype([1, 2, 3])
|
300 |
+
|
301 |
+
assert com.is_categorical_dtype(CategoricalDtype())
|
302 |
+
assert com.is_categorical_dtype(pd.Categorical([1, 2, 3]))
|
303 |
+
assert com.is_categorical_dtype(pd.CategoricalIndex([1, 2, 3]))
|
304 |
+
|
305 |
+
|
306 |
+
@pytest.mark.parametrize(
|
307 |
+
"dtype, expected",
|
308 |
+
[
|
309 |
+
(int, False),
|
310 |
+
(pd.Series([1, 2]), False),
|
311 |
+
(str, True),
|
312 |
+
(object, True),
|
313 |
+
(np.array(["a", "b"]), True),
|
314 |
+
(pd.StringDtype(), True),
|
315 |
+
(pd.Index([], dtype="O"), True),
|
316 |
+
],
|
317 |
+
)
|
318 |
+
def test_is_string_dtype(dtype, expected):
|
319 |
+
# GH#54661
|
320 |
+
|
321 |
+
result = com.is_string_dtype(dtype)
|
322 |
+
assert result is expected
|
323 |
+
|
324 |
+
|
325 |
+
@pytest.mark.parametrize(
|
326 |
+
"data",
|
327 |
+
[[(0, 1), (1, 1)], pd.Categorical([1, 2, 3]), np.array([1, 2], dtype=object)],
|
328 |
+
)
|
329 |
+
def test_is_string_dtype_arraylike_with_object_elements_not_strings(data):
|
330 |
+
# GH 15585
|
331 |
+
assert not com.is_string_dtype(pd.Series(data))
|
332 |
+
|
333 |
+
|
334 |
+
def test_is_string_dtype_nullable(nullable_string_dtype):
|
335 |
+
assert com.is_string_dtype(pd.array(["a", "b"], dtype=nullable_string_dtype))
|
336 |
+
|
337 |
+
|
338 |
+
integer_dtypes: list = []
|
339 |
+
|
340 |
+
|
341 |
+
@pytest.mark.parametrize(
|
342 |
+
"dtype",
|
343 |
+
integer_dtypes
|
344 |
+
+ [pd.Series([1, 2])]
|
345 |
+
+ tm.ALL_INT_NUMPY_DTYPES
|
346 |
+
+ to_numpy_dtypes(tm.ALL_INT_NUMPY_DTYPES)
|
347 |
+
+ tm.ALL_INT_EA_DTYPES
|
348 |
+
+ to_ea_dtypes(tm.ALL_INT_EA_DTYPES),
|
349 |
+
)
|
350 |
+
def test_is_integer_dtype(dtype):
|
351 |
+
assert com.is_integer_dtype(dtype)
|
352 |
+
|
353 |
+
|
354 |
+
@pytest.mark.parametrize(
|
355 |
+
"dtype",
|
356 |
+
[
|
357 |
+
str,
|
358 |
+
float,
|
359 |
+
np.datetime64,
|
360 |
+
np.timedelta64,
|
361 |
+
pd.Index([1, 2.0]),
|
362 |
+
np.array(["a", "b"]),
|
363 |
+
np.array([], dtype=np.timedelta64),
|
364 |
+
],
|
365 |
+
)
|
366 |
+
def test_is_not_integer_dtype(dtype):
|
367 |
+
assert not com.is_integer_dtype(dtype)
|
368 |
+
|
369 |
+
|
370 |
+
signed_integer_dtypes: list = []
|
371 |
+
|
372 |
+
|
373 |
+
@pytest.mark.parametrize(
|
374 |
+
"dtype",
|
375 |
+
signed_integer_dtypes
|
376 |
+
+ [pd.Series([1, 2])]
|
377 |
+
+ tm.SIGNED_INT_NUMPY_DTYPES
|
378 |
+
+ to_numpy_dtypes(tm.SIGNED_INT_NUMPY_DTYPES)
|
379 |
+
+ tm.SIGNED_INT_EA_DTYPES
|
380 |
+
+ to_ea_dtypes(tm.SIGNED_INT_EA_DTYPES),
|
381 |
+
)
|
382 |
+
def test_is_signed_integer_dtype(dtype):
|
383 |
+
assert com.is_integer_dtype(dtype)
|
384 |
+
|
385 |
+
|
386 |
+
@pytest.mark.parametrize(
|
387 |
+
"dtype",
|
388 |
+
[
|
389 |
+
str,
|
390 |
+
float,
|
391 |
+
np.datetime64,
|
392 |
+
np.timedelta64,
|
393 |
+
pd.Index([1, 2.0]),
|
394 |
+
np.array(["a", "b"]),
|
395 |
+
np.array([], dtype=np.timedelta64),
|
396 |
+
]
|
397 |
+
+ tm.UNSIGNED_INT_NUMPY_DTYPES
|
398 |
+
+ to_numpy_dtypes(tm.UNSIGNED_INT_NUMPY_DTYPES)
|
399 |
+
+ tm.UNSIGNED_INT_EA_DTYPES
|
400 |
+
+ to_ea_dtypes(tm.UNSIGNED_INT_EA_DTYPES),
|
401 |
+
)
|
402 |
+
def test_is_not_signed_integer_dtype(dtype):
|
403 |
+
assert not com.is_signed_integer_dtype(dtype)
|
404 |
+
|
405 |
+
|
406 |
+
unsigned_integer_dtypes: list = []
|
407 |
+
|
408 |
+
|
409 |
+
@pytest.mark.parametrize(
|
410 |
+
"dtype",
|
411 |
+
unsigned_integer_dtypes
|
412 |
+
+ [pd.Series([1, 2], dtype=np.uint32)]
|
413 |
+
+ tm.UNSIGNED_INT_NUMPY_DTYPES
|
414 |
+
+ to_numpy_dtypes(tm.UNSIGNED_INT_NUMPY_DTYPES)
|
415 |
+
+ tm.UNSIGNED_INT_EA_DTYPES
|
416 |
+
+ to_ea_dtypes(tm.UNSIGNED_INT_EA_DTYPES),
|
417 |
+
)
|
418 |
+
def test_is_unsigned_integer_dtype(dtype):
|
419 |
+
assert com.is_unsigned_integer_dtype(dtype)
|
420 |
+
|
421 |
+
|
422 |
+
@pytest.mark.parametrize(
|
423 |
+
"dtype",
|
424 |
+
[
|
425 |
+
str,
|
426 |
+
float,
|
427 |
+
np.datetime64,
|
428 |
+
np.timedelta64,
|
429 |
+
pd.Index([1, 2.0]),
|
430 |
+
np.array(["a", "b"]),
|
431 |
+
np.array([], dtype=np.timedelta64),
|
432 |
+
]
|
433 |
+
+ tm.SIGNED_INT_NUMPY_DTYPES
|
434 |
+
+ to_numpy_dtypes(tm.SIGNED_INT_NUMPY_DTYPES)
|
435 |
+
+ tm.SIGNED_INT_EA_DTYPES
|
436 |
+
+ to_ea_dtypes(tm.SIGNED_INT_EA_DTYPES),
|
437 |
+
)
|
438 |
+
def test_is_not_unsigned_integer_dtype(dtype):
|
439 |
+
assert not com.is_unsigned_integer_dtype(dtype)
|
440 |
+
|
441 |
+
|
442 |
+
@pytest.mark.parametrize(
|
443 |
+
"dtype", [np.int64, np.array([1, 2], dtype=np.int64), "Int64", pd.Int64Dtype]
|
444 |
+
)
|
445 |
+
def test_is_int64_dtype(dtype):
|
446 |
+
msg = "is_int64_dtype is deprecated"
|
447 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
448 |
+
assert com.is_int64_dtype(dtype)
|
449 |
+
|
450 |
+
|
451 |
+
def test_type_comparison_with_numeric_ea_dtype(any_numeric_ea_dtype):
|
452 |
+
# GH#43038
|
453 |
+
assert pandas_dtype(any_numeric_ea_dtype) == any_numeric_ea_dtype
|
454 |
+
|
455 |
+
|
456 |
+
def test_type_comparison_with_real_numpy_dtype(any_real_numpy_dtype):
|
457 |
+
# GH#43038
|
458 |
+
assert pandas_dtype(any_real_numpy_dtype) == any_real_numpy_dtype
|
459 |
+
|
460 |
+
|
461 |
+
def test_type_comparison_with_signed_int_ea_dtype_and_signed_int_numpy_dtype(
|
462 |
+
any_signed_int_ea_dtype, any_signed_int_numpy_dtype
|
463 |
+
):
|
464 |
+
# GH#43038
|
465 |
+
assert not pandas_dtype(any_signed_int_ea_dtype) == any_signed_int_numpy_dtype
|
466 |
+
|
467 |
+
|
468 |
+
@pytest.mark.parametrize(
|
469 |
+
"dtype",
|
470 |
+
[
|
471 |
+
str,
|
472 |
+
float,
|
473 |
+
np.int32,
|
474 |
+
np.uint64,
|
475 |
+
pd.Index([1, 2.0]),
|
476 |
+
np.array(["a", "b"]),
|
477 |
+
np.array([1, 2], dtype=np.uint32),
|
478 |
+
"int8",
|
479 |
+
"Int8",
|
480 |
+
pd.Int8Dtype,
|
481 |
+
],
|
482 |
+
)
|
483 |
+
def test_is_not_int64_dtype(dtype):
|
484 |
+
msg = "is_int64_dtype is deprecated"
|
485 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
486 |
+
assert not com.is_int64_dtype(dtype)
|
487 |
+
|
488 |
+
|
489 |
+
def test_is_datetime64_any_dtype():
|
490 |
+
assert not com.is_datetime64_any_dtype(int)
|
491 |
+
assert not com.is_datetime64_any_dtype(str)
|
492 |
+
assert not com.is_datetime64_any_dtype(np.array([1, 2]))
|
493 |
+
assert not com.is_datetime64_any_dtype(np.array(["a", "b"]))
|
494 |
+
|
495 |
+
assert com.is_datetime64_any_dtype(np.datetime64)
|
496 |
+
assert com.is_datetime64_any_dtype(np.array([], dtype=np.datetime64))
|
497 |
+
assert com.is_datetime64_any_dtype(DatetimeTZDtype("ns", "US/Eastern"))
|
498 |
+
assert com.is_datetime64_any_dtype(
|
499 |
+
pd.DatetimeIndex([1, 2, 3], dtype="datetime64[ns]")
|
500 |
+
)
|
501 |
+
|
502 |
+
|
503 |
+
def test_is_datetime64_ns_dtype():
|
504 |
+
assert not com.is_datetime64_ns_dtype(int)
|
505 |
+
assert not com.is_datetime64_ns_dtype(str)
|
506 |
+
assert not com.is_datetime64_ns_dtype(np.datetime64)
|
507 |
+
assert not com.is_datetime64_ns_dtype(np.array([1, 2]))
|
508 |
+
assert not com.is_datetime64_ns_dtype(np.array(["a", "b"]))
|
509 |
+
assert not com.is_datetime64_ns_dtype(np.array([], dtype=np.datetime64))
|
510 |
+
|
511 |
+
# This datetime array has the wrong unit (ps instead of ns)
|
512 |
+
assert not com.is_datetime64_ns_dtype(np.array([], dtype="datetime64[ps]"))
|
513 |
+
|
514 |
+
assert com.is_datetime64_ns_dtype(DatetimeTZDtype("ns", "US/Eastern"))
|
515 |
+
assert com.is_datetime64_ns_dtype(
|
516 |
+
pd.DatetimeIndex([1, 2, 3], dtype=np.dtype("datetime64[ns]"))
|
517 |
+
)
|
518 |
+
|
519 |
+
# non-nano dt64tz
|
520 |
+
assert not com.is_datetime64_ns_dtype(DatetimeTZDtype("us", "US/Eastern"))
|
521 |
+
|
522 |
+
|
523 |
+
def test_is_timedelta64_ns_dtype():
|
524 |
+
assert not com.is_timedelta64_ns_dtype(np.dtype("m8[ps]"))
|
525 |
+
assert not com.is_timedelta64_ns_dtype(np.array([1, 2], dtype=np.timedelta64))
|
526 |
+
|
527 |
+
assert com.is_timedelta64_ns_dtype(np.dtype("m8[ns]"))
|
528 |
+
assert com.is_timedelta64_ns_dtype(np.array([1, 2], dtype="m8[ns]"))
|
529 |
+
|
530 |
+
|
531 |
+
def test_is_numeric_v_string_like():
|
532 |
+
assert not com.is_numeric_v_string_like(np.array([1]), 1)
|
533 |
+
assert not com.is_numeric_v_string_like(np.array([1]), np.array([2]))
|
534 |
+
assert not com.is_numeric_v_string_like(np.array(["foo"]), np.array(["foo"]))
|
535 |
+
|
536 |
+
assert com.is_numeric_v_string_like(np.array([1]), "foo")
|
537 |
+
assert com.is_numeric_v_string_like(np.array([1, 2]), np.array(["foo"]))
|
538 |
+
assert com.is_numeric_v_string_like(np.array(["foo"]), np.array([1, 2]))
|
539 |
+
|
540 |
+
|
541 |
+
def test_needs_i8_conversion():
|
542 |
+
assert not com.needs_i8_conversion(str)
|
543 |
+
assert not com.needs_i8_conversion(np.int64)
|
544 |
+
assert not com.needs_i8_conversion(pd.Series([1, 2]))
|
545 |
+
assert not com.needs_i8_conversion(np.array(["a", "b"]))
|
546 |
+
|
547 |
+
assert not com.needs_i8_conversion(np.datetime64)
|
548 |
+
assert com.needs_i8_conversion(np.dtype(np.datetime64))
|
549 |
+
assert not com.needs_i8_conversion(pd.Series([], dtype="timedelta64[ns]"))
|
550 |
+
assert com.needs_i8_conversion(pd.Series([], dtype="timedelta64[ns]").dtype)
|
551 |
+
assert not com.needs_i8_conversion(pd.DatetimeIndex(["2000"], tz="US/Eastern"))
|
552 |
+
assert com.needs_i8_conversion(pd.DatetimeIndex(["2000"], tz="US/Eastern").dtype)
|
553 |
+
|
554 |
+
|
555 |
+
def test_is_numeric_dtype():
|
556 |
+
assert not com.is_numeric_dtype(str)
|
557 |
+
assert not com.is_numeric_dtype(np.datetime64)
|
558 |
+
assert not com.is_numeric_dtype(np.timedelta64)
|
559 |
+
assert not com.is_numeric_dtype(np.array(["a", "b"]))
|
560 |
+
assert not com.is_numeric_dtype(np.array([], dtype=np.timedelta64))
|
561 |
+
|
562 |
+
assert com.is_numeric_dtype(int)
|
563 |
+
assert com.is_numeric_dtype(float)
|
564 |
+
assert com.is_numeric_dtype(np.uint64)
|
565 |
+
assert com.is_numeric_dtype(pd.Series([1, 2]))
|
566 |
+
assert com.is_numeric_dtype(pd.Index([1, 2.0]))
|
567 |
+
|
568 |
+
class MyNumericDType(ExtensionDtype):
|
569 |
+
@property
|
570 |
+
def type(self):
|
571 |
+
return str
|
572 |
+
|
573 |
+
@property
|
574 |
+
def name(self):
|
575 |
+
raise NotImplementedError
|
576 |
+
|
577 |
+
@classmethod
|
578 |
+
def construct_array_type(cls):
|
579 |
+
raise NotImplementedError
|
580 |
+
|
581 |
+
def _is_numeric(self) -> bool:
|
582 |
+
return True
|
583 |
+
|
584 |
+
assert com.is_numeric_dtype(MyNumericDType())
|
585 |
+
|
586 |
+
|
587 |
+
def test_is_any_real_numeric_dtype():
|
588 |
+
assert not com.is_any_real_numeric_dtype(str)
|
589 |
+
assert not com.is_any_real_numeric_dtype(bool)
|
590 |
+
assert not com.is_any_real_numeric_dtype(complex)
|
591 |
+
assert not com.is_any_real_numeric_dtype(object)
|
592 |
+
assert not com.is_any_real_numeric_dtype(np.datetime64)
|
593 |
+
assert not com.is_any_real_numeric_dtype(np.array(["a", "b", complex(1, 2)]))
|
594 |
+
assert not com.is_any_real_numeric_dtype(pd.DataFrame([complex(1, 2), True]))
|
595 |
+
|
596 |
+
assert com.is_any_real_numeric_dtype(int)
|
597 |
+
assert com.is_any_real_numeric_dtype(float)
|
598 |
+
assert com.is_any_real_numeric_dtype(np.array([1, 2.5]))
|
599 |
+
|
600 |
+
|
601 |
+
def test_is_float_dtype():
|
602 |
+
assert not com.is_float_dtype(str)
|
603 |
+
assert not com.is_float_dtype(int)
|
604 |
+
assert not com.is_float_dtype(pd.Series([1, 2]))
|
605 |
+
assert not com.is_float_dtype(np.array(["a", "b"]))
|
606 |
+
|
607 |
+
assert com.is_float_dtype(float)
|
608 |
+
assert com.is_float_dtype(pd.Index([1, 2.0]))
|
609 |
+
|
610 |
+
|
611 |
+
def test_is_bool_dtype():
|
612 |
+
assert not com.is_bool_dtype(int)
|
613 |
+
assert not com.is_bool_dtype(str)
|
614 |
+
assert not com.is_bool_dtype(pd.Series([1, 2]))
|
615 |
+
assert not com.is_bool_dtype(pd.Series(["a", "b"], dtype="category"))
|
616 |
+
assert not com.is_bool_dtype(np.array(["a", "b"]))
|
617 |
+
assert not com.is_bool_dtype(pd.Index(["a", "b"]))
|
618 |
+
assert not com.is_bool_dtype("Int64")
|
619 |
+
|
620 |
+
assert com.is_bool_dtype(bool)
|
621 |
+
assert com.is_bool_dtype(np.bool_)
|
622 |
+
assert com.is_bool_dtype(pd.Series([True, False], dtype="category"))
|
623 |
+
assert com.is_bool_dtype(np.array([True, False]))
|
624 |
+
assert com.is_bool_dtype(pd.Index([True, False]))
|
625 |
+
|
626 |
+
assert com.is_bool_dtype(pd.BooleanDtype())
|
627 |
+
assert com.is_bool_dtype(pd.array([True, False, None], dtype="boolean"))
|
628 |
+
assert com.is_bool_dtype("boolean")
|
629 |
+
|
630 |
+
|
631 |
+
def test_is_bool_dtype_numpy_error():
|
632 |
+
# GH39010
|
633 |
+
assert not com.is_bool_dtype("0 - Name")
|
634 |
+
|
635 |
+
|
636 |
+
@pytest.mark.parametrize(
|
637 |
+
"check_scipy", [False, pytest.param(True, marks=td.skip_if_no("scipy"))]
|
638 |
+
)
|
639 |
+
def test_is_extension_array_dtype(check_scipy):
|
640 |
+
assert not com.is_extension_array_dtype([1, 2, 3])
|
641 |
+
assert not com.is_extension_array_dtype(np.array([1, 2, 3]))
|
642 |
+
assert not com.is_extension_array_dtype(pd.DatetimeIndex([1, 2, 3]))
|
643 |
+
|
644 |
+
cat = pd.Categorical([1, 2, 3])
|
645 |
+
assert com.is_extension_array_dtype(cat)
|
646 |
+
assert com.is_extension_array_dtype(pd.Series(cat))
|
647 |
+
assert com.is_extension_array_dtype(SparseArray([1, 2, 3]))
|
648 |
+
assert com.is_extension_array_dtype(pd.DatetimeIndex(["2000"], tz="US/Eastern"))
|
649 |
+
|
650 |
+
dtype = DatetimeTZDtype("ns", tz="US/Eastern")
|
651 |
+
s = pd.Series([], dtype=dtype)
|
652 |
+
assert com.is_extension_array_dtype(s)
|
653 |
+
|
654 |
+
if check_scipy:
|
655 |
+
import scipy.sparse
|
656 |
+
|
657 |
+
assert not com.is_extension_array_dtype(scipy.sparse.bsr_matrix([1, 2, 3]))
|
658 |
+
|
659 |
+
|
660 |
+
def test_is_complex_dtype():
|
661 |
+
assert not com.is_complex_dtype(int)
|
662 |
+
assert not com.is_complex_dtype(str)
|
663 |
+
assert not com.is_complex_dtype(pd.Series([1, 2]))
|
664 |
+
assert not com.is_complex_dtype(np.array(["a", "b"]))
|
665 |
+
|
666 |
+
assert com.is_complex_dtype(np.complex128)
|
667 |
+
assert com.is_complex_dtype(complex)
|
668 |
+
assert com.is_complex_dtype(np.array([1 + 1j, 5]))
|
669 |
+
|
670 |
+
|
671 |
+
@pytest.mark.parametrize(
|
672 |
+
"input_param,result",
|
673 |
+
[
|
674 |
+
(int, np.dtype(int)),
|
675 |
+
("int32", np.dtype("int32")),
|
676 |
+
(float, np.dtype(float)),
|
677 |
+
("float64", np.dtype("float64")),
|
678 |
+
(np.dtype("float64"), np.dtype("float64")),
|
679 |
+
(str, np.dtype(str)),
|
680 |
+
(pd.Series([1, 2], dtype=np.dtype("int16")), np.dtype("int16")),
|
681 |
+
(pd.Series(["a", "b"], dtype=object), np.dtype(object)),
|
682 |
+
(pd.Index([1, 2]), np.dtype("int64")),
|
683 |
+
(pd.Index(["a", "b"], dtype=object), np.dtype(object)),
|
684 |
+
("category", "category"),
|
685 |
+
(pd.Categorical(["a", "b"]).dtype, CategoricalDtype(["a", "b"])),
|
686 |
+
(pd.Categorical(["a", "b"]), CategoricalDtype(["a", "b"])),
|
687 |
+
(pd.CategoricalIndex(["a", "b"]).dtype, CategoricalDtype(["a", "b"])),
|
688 |
+
(pd.CategoricalIndex(["a", "b"]), CategoricalDtype(["a", "b"])),
|
689 |
+
(CategoricalDtype(), CategoricalDtype()),
|
690 |
+
(pd.DatetimeIndex([1, 2]), np.dtype("=M8[ns]")),
|
691 |
+
(pd.DatetimeIndex([1, 2]).dtype, np.dtype("=M8[ns]")),
|
692 |
+
("<M8[ns]", np.dtype("<M8[ns]")),
|
693 |
+
("datetime64[ns, Europe/London]", DatetimeTZDtype("ns", "Europe/London")),
|
694 |
+
(PeriodDtype(freq="D"), PeriodDtype(freq="D")),
|
695 |
+
("period[D]", PeriodDtype(freq="D")),
|
696 |
+
(IntervalDtype(), IntervalDtype()),
|
697 |
+
],
|
698 |
+
)
|
699 |
+
def test_get_dtype(input_param, result):
|
700 |
+
assert com._get_dtype(input_param) == result
|
701 |
+
|
702 |
+
|
703 |
+
@pytest.mark.parametrize(
|
704 |
+
"input_param,expected_error_message",
|
705 |
+
[
|
706 |
+
(None, "Cannot deduce dtype from null object"),
|
707 |
+
(1, "data type not understood"),
|
708 |
+
(1.2, "data type not understood"),
|
709 |
+
# numpy dev changed from double-quotes to single quotes
|
710 |
+
("random string", "data type [\"']random string[\"'] not understood"),
|
711 |
+
(pd.DataFrame([1, 2]), "data type not understood"),
|
712 |
+
],
|
713 |
+
)
|
714 |
+
def test_get_dtype_fails(input_param, expected_error_message):
|
715 |
+
# python objects
|
716 |
+
# 2020-02-02 npdev changed error message
|
717 |
+
expected_error_message += f"|Cannot interpret '{input_param}' as a data type"
|
718 |
+
with pytest.raises(TypeError, match=expected_error_message):
|
719 |
+
com._get_dtype(input_param)
|
720 |
+
|
721 |
+
|
722 |
+
@pytest.mark.parametrize(
|
723 |
+
"input_param,result",
|
724 |
+
[
|
725 |
+
(int, np.dtype(int).type),
|
726 |
+
("int32", np.int32),
|
727 |
+
(float, np.dtype(float).type),
|
728 |
+
("float64", np.float64),
|
729 |
+
(np.dtype("float64"), np.float64),
|
730 |
+
(str, np.dtype(str).type),
|
731 |
+
(pd.Series([1, 2], dtype=np.dtype("int16")), np.int16),
|
732 |
+
(pd.Series(["a", "b"], dtype=object), np.object_),
|
733 |
+
(pd.Index([1, 2], dtype="int64"), np.int64),
|
734 |
+
(pd.Index(["a", "b"], dtype=object), np.object_),
|
735 |
+
("category", CategoricalDtypeType),
|
736 |
+
(pd.Categorical(["a", "b"]).dtype, CategoricalDtypeType),
|
737 |
+
(pd.Categorical(["a", "b"]), CategoricalDtypeType),
|
738 |
+
(pd.CategoricalIndex(["a", "b"]).dtype, CategoricalDtypeType),
|
739 |
+
(pd.CategoricalIndex(["a", "b"]), CategoricalDtypeType),
|
740 |
+
(pd.DatetimeIndex([1, 2]), np.datetime64),
|
741 |
+
(pd.DatetimeIndex([1, 2]).dtype, np.datetime64),
|
742 |
+
("<M8[ns]", np.datetime64),
|
743 |
+
(pd.DatetimeIndex(["2000"], tz="Europe/London"), pd.Timestamp),
|
744 |
+
(pd.DatetimeIndex(["2000"], tz="Europe/London").dtype, pd.Timestamp),
|
745 |
+
("datetime64[ns, Europe/London]", pd.Timestamp),
|
746 |
+
(PeriodDtype(freq="D"), pd.Period),
|
747 |
+
("period[D]", pd.Period),
|
748 |
+
(IntervalDtype(), pd.Interval),
|
749 |
+
(None, type(None)),
|
750 |
+
(1, type(None)),
|
751 |
+
(1.2, type(None)),
|
752 |
+
(pd.DataFrame([1, 2]), type(None)), # composite dtype
|
753 |
+
],
|
754 |
+
)
|
755 |
+
def test__is_dtype_type(input_param, result):
|
756 |
+
assert com._is_dtype_type(input_param, lambda tipo: tipo == result)
|
757 |
+
|
758 |
+
|
759 |
+
def test_astype_nansafe_copy_false(any_int_numpy_dtype):
|
760 |
+
# GH#34457 use astype, not view
|
761 |
+
arr = np.array([1, 2, 3], dtype=any_int_numpy_dtype)
|
762 |
+
|
763 |
+
dtype = np.dtype("float64")
|
764 |
+
result = astype_array(arr, dtype, copy=False)
|
765 |
+
|
766 |
+
expected = np.array([1.0, 2.0, 3.0], dtype=dtype)
|
767 |
+
tm.assert_numpy_array_equal(result, expected)
|
768 |
+
|
769 |
+
|
770 |
+
@pytest.mark.parametrize("from_type", [np.datetime64, np.timedelta64])
|
771 |
+
def test_astype_object_preserves_datetime_na(from_type):
|
772 |
+
arr = np.array([from_type("NaT", "ns")])
|
773 |
+
result = astype_array(arr, dtype=np.dtype("object"))
|
774 |
+
|
775 |
+
assert isna(result)[0]
|
776 |
+
|
777 |
+
|
778 |
+
def test_validate_allhashable():
|
779 |
+
assert com.validate_all_hashable(1, "a") is None
|
780 |
+
|
781 |
+
with pytest.raises(TypeError, match="All elements must be hashable"):
|
782 |
+
com.validate_all_hashable([])
|
783 |
+
|
784 |
+
with pytest.raises(TypeError, match="list must be a hashable type"):
|
785 |
+
com.validate_all_hashable([], error_name="list")
|
786 |
+
|
787 |
+
|
788 |
+
def test_pandas_dtype_numpy_warning():
|
789 |
+
# GH#51523
|
790 |
+
with tm.assert_produces_warning(
|
791 |
+
DeprecationWarning,
|
792 |
+
check_stacklevel=False,
|
793 |
+
match="Converting `np.integer` or `np.signedinteger` to a dtype is deprecated",
|
794 |
+
):
|
795 |
+
pandas_dtype(np.integer)
|
796 |
+
|
797 |
+
|
798 |
+
def test_pandas_dtype_ea_not_instance():
|
799 |
+
# GH 31356 GH 54592
|
800 |
+
with tm.assert_produces_warning(UserWarning):
|
801 |
+
assert pandas_dtype(CategoricalDtype) == CategoricalDtype()
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/test_concat.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import pandas.core.dtypes.concat as _concat
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
from pandas import Series
|
7 |
+
import pandas._testing as tm
|
8 |
+
|
9 |
+
|
10 |
+
def test_concat_mismatched_categoricals_with_empty():
|
11 |
+
# concat_compat behavior on series._values should match pd.concat on series
|
12 |
+
ser1 = Series(["a", "b", "c"], dtype="category")
|
13 |
+
ser2 = Series([], dtype="category")
|
14 |
+
|
15 |
+
msg = "The behavior of array concatenation with empty entries is deprecated"
|
16 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
17 |
+
result = _concat.concat_compat([ser1._values, ser2._values])
|
18 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
19 |
+
expected = pd.concat([ser1, ser2])._values
|
20 |
+
tm.assert_categorical_equal(result, expected)
|
21 |
+
|
22 |
+
|
23 |
+
@pytest.mark.parametrize("copy", [True, False])
|
24 |
+
def test_concat_single_dataframe_tz_aware(copy):
|
25 |
+
# https://github.com/pandas-dev/pandas/issues/25257
|
26 |
+
df = pd.DataFrame(
|
27 |
+
{"timestamp": [pd.Timestamp("2020-04-08 09:00:00.709949+0000", tz="UTC")]}
|
28 |
+
)
|
29 |
+
expected = df.copy()
|
30 |
+
result = pd.concat([df], copy=copy)
|
31 |
+
tm.assert_frame_equal(result, expected)
|
32 |
+
|
33 |
+
|
34 |
+
def test_concat_periodarray_2d():
|
35 |
+
pi = pd.period_range("2016-01-01", periods=36, freq="D")
|
36 |
+
arr = pi._data.reshape(6, 6)
|
37 |
+
|
38 |
+
result = _concat.concat_compat([arr[:2], arr[2:]], axis=0)
|
39 |
+
tm.assert_period_array_equal(result, arr)
|
40 |
+
|
41 |
+
result = _concat.concat_compat([arr[:, :2], arr[:, 2:]], axis=1)
|
42 |
+
tm.assert_period_array_equal(result, arr)
|
43 |
+
|
44 |
+
msg = (
|
45 |
+
"all the input array dimensions.* for the concatenation axis must match exactly"
|
46 |
+
)
|
47 |
+
with pytest.raises(ValueError, match=msg):
|
48 |
+
_concat.concat_compat([arr[:, :2], arr[:, 2:]], axis=0)
|
49 |
+
|
50 |
+
with pytest.raises(ValueError, match=msg):
|
51 |
+
_concat.concat_compat([arr[:2], arr[2:]], axis=1)
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/test_dtypes.py
ADDED
@@ -0,0 +1,1234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import weakref
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
import pytz
|
7 |
+
|
8 |
+
from pandas._libs.tslibs.dtypes import NpyDatetimeUnit
|
9 |
+
|
10 |
+
from pandas.core.dtypes.base import _registry as registry
|
11 |
+
from pandas.core.dtypes.common import (
|
12 |
+
is_bool_dtype,
|
13 |
+
is_categorical_dtype,
|
14 |
+
is_datetime64_any_dtype,
|
15 |
+
is_datetime64_dtype,
|
16 |
+
is_datetime64_ns_dtype,
|
17 |
+
is_datetime64tz_dtype,
|
18 |
+
is_dtype_equal,
|
19 |
+
is_interval_dtype,
|
20 |
+
is_period_dtype,
|
21 |
+
is_string_dtype,
|
22 |
+
)
|
23 |
+
from pandas.core.dtypes.dtypes import (
|
24 |
+
CategoricalDtype,
|
25 |
+
DatetimeTZDtype,
|
26 |
+
IntervalDtype,
|
27 |
+
PeriodDtype,
|
28 |
+
)
|
29 |
+
|
30 |
+
import pandas as pd
|
31 |
+
from pandas import (
|
32 |
+
Categorical,
|
33 |
+
CategoricalIndex,
|
34 |
+
DatetimeIndex,
|
35 |
+
IntervalIndex,
|
36 |
+
Series,
|
37 |
+
SparseDtype,
|
38 |
+
date_range,
|
39 |
+
)
|
40 |
+
import pandas._testing as tm
|
41 |
+
from pandas.core.arrays.sparse import SparseArray
|
42 |
+
|
43 |
+
|
44 |
+
class Base:
|
45 |
+
def test_hash(self, dtype):
|
46 |
+
hash(dtype)
|
47 |
+
|
48 |
+
def test_equality_invalid(self, dtype):
|
49 |
+
assert not dtype == "foo"
|
50 |
+
assert not is_dtype_equal(dtype, np.int64)
|
51 |
+
|
52 |
+
def test_numpy_informed(self, dtype):
|
53 |
+
# npdev 2020-02-02 changed from "data type not understood" to
|
54 |
+
# "Cannot interpret 'foo' as a data type"
|
55 |
+
msg = "|".join(
|
56 |
+
["data type not understood", "Cannot interpret '.*' as a data type"]
|
57 |
+
)
|
58 |
+
with pytest.raises(TypeError, match=msg):
|
59 |
+
np.dtype(dtype)
|
60 |
+
|
61 |
+
assert not dtype == np.str_
|
62 |
+
assert not np.str_ == dtype
|
63 |
+
|
64 |
+
def test_pickle(self, dtype):
|
65 |
+
# make sure our cache is NOT pickled
|
66 |
+
|
67 |
+
# clear the cache
|
68 |
+
type(dtype).reset_cache()
|
69 |
+
assert not len(dtype._cache_dtypes)
|
70 |
+
|
71 |
+
# force back to the cache
|
72 |
+
result = tm.round_trip_pickle(dtype)
|
73 |
+
if not isinstance(dtype, PeriodDtype):
|
74 |
+
# Because PeriodDtype has a cython class as a base class,
|
75 |
+
# it has different pickle semantics, and its cache is re-populated
|
76 |
+
# on un-pickling.
|
77 |
+
assert not len(dtype._cache_dtypes)
|
78 |
+
assert result == dtype
|
79 |
+
|
80 |
+
|
81 |
+
class TestCategoricalDtype(Base):
|
82 |
+
@pytest.fixture
|
83 |
+
def dtype(self):
|
84 |
+
"""
|
85 |
+
Class level fixture of dtype for TestCategoricalDtype
|
86 |
+
"""
|
87 |
+
return CategoricalDtype()
|
88 |
+
|
89 |
+
def test_hash_vs_equality(self, dtype):
|
90 |
+
dtype2 = CategoricalDtype()
|
91 |
+
assert dtype == dtype2
|
92 |
+
assert dtype2 == dtype
|
93 |
+
assert hash(dtype) == hash(dtype2)
|
94 |
+
|
95 |
+
def test_equality(self, dtype):
|
96 |
+
assert dtype == "category"
|
97 |
+
assert is_dtype_equal(dtype, "category")
|
98 |
+
assert "category" == dtype
|
99 |
+
assert is_dtype_equal("category", dtype)
|
100 |
+
|
101 |
+
assert dtype == CategoricalDtype()
|
102 |
+
assert is_dtype_equal(dtype, CategoricalDtype())
|
103 |
+
assert CategoricalDtype() == dtype
|
104 |
+
assert is_dtype_equal(CategoricalDtype(), dtype)
|
105 |
+
|
106 |
+
assert dtype != "foo"
|
107 |
+
assert not is_dtype_equal(dtype, "foo")
|
108 |
+
assert "foo" != dtype
|
109 |
+
assert not is_dtype_equal("foo", dtype)
|
110 |
+
|
111 |
+
def test_construction_from_string(self, dtype):
|
112 |
+
result = CategoricalDtype.construct_from_string("category")
|
113 |
+
assert is_dtype_equal(dtype, result)
|
114 |
+
msg = "Cannot construct a 'CategoricalDtype' from 'foo'"
|
115 |
+
with pytest.raises(TypeError, match=msg):
|
116 |
+
CategoricalDtype.construct_from_string("foo")
|
117 |
+
|
118 |
+
def test_constructor_invalid(self):
|
119 |
+
msg = "Parameter 'categories' must be list-like"
|
120 |
+
with pytest.raises(TypeError, match=msg):
|
121 |
+
CategoricalDtype("category")
|
122 |
+
|
123 |
+
dtype1 = CategoricalDtype(["a", "b"], ordered=True)
|
124 |
+
dtype2 = CategoricalDtype(["x", "y"], ordered=False)
|
125 |
+
c = Categorical([0, 1], dtype=dtype1)
|
126 |
+
|
127 |
+
@pytest.mark.parametrize(
|
128 |
+
"values, categories, ordered, dtype, expected",
|
129 |
+
[
|
130 |
+
[None, None, None, None, CategoricalDtype()],
|
131 |
+
[None, ["a", "b"], True, None, dtype1],
|
132 |
+
[c, None, None, dtype2, dtype2],
|
133 |
+
[c, ["x", "y"], False, None, dtype2],
|
134 |
+
],
|
135 |
+
)
|
136 |
+
def test_from_values_or_dtype(self, values, categories, ordered, dtype, expected):
|
137 |
+
result = CategoricalDtype._from_values_or_dtype(
|
138 |
+
values, categories, ordered, dtype
|
139 |
+
)
|
140 |
+
assert result == expected
|
141 |
+
|
142 |
+
@pytest.mark.parametrize(
|
143 |
+
"values, categories, ordered, dtype",
|
144 |
+
[
|
145 |
+
[None, ["a", "b"], True, dtype2],
|
146 |
+
[None, ["a", "b"], None, dtype2],
|
147 |
+
[None, None, True, dtype2],
|
148 |
+
],
|
149 |
+
)
|
150 |
+
def test_from_values_or_dtype_raises(self, values, categories, ordered, dtype):
|
151 |
+
msg = "Cannot specify `categories` or `ordered` together with `dtype`."
|
152 |
+
with pytest.raises(ValueError, match=msg):
|
153 |
+
CategoricalDtype._from_values_or_dtype(values, categories, ordered, dtype)
|
154 |
+
|
155 |
+
def test_from_values_or_dtype_invalid_dtype(self):
|
156 |
+
msg = "Cannot not construct CategoricalDtype from <class 'object'>"
|
157 |
+
with pytest.raises(ValueError, match=msg):
|
158 |
+
CategoricalDtype._from_values_or_dtype(None, None, None, object)
|
159 |
+
|
160 |
+
def test_is_dtype(self, dtype):
|
161 |
+
assert CategoricalDtype.is_dtype(dtype)
|
162 |
+
assert CategoricalDtype.is_dtype("category")
|
163 |
+
assert CategoricalDtype.is_dtype(CategoricalDtype())
|
164 |
+
assert not CategoricalDtype.is_dtype("foo")
|
165 |
+
assert not CategoricalDtype.is_dtype(np.float64)
|
166 |
+
|
167 |
+
def test_basic(self, dtype):
|
168 |
+
msg = "is_categorical_dtype is deprecated"
|
169 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
170 |
+
assert is_categorical_dtype(dtype)
|
171 |
+
|
172 |
+
factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"])
|
173 |
+
|
174 |
+
s = Series(factor, name="A")
|
175 |
+
|
176 |
+
# dtypes
|
177 |
+
assert is_categorical_dtype(s.dtype)
|
178 |
+
assert is_categorical_dtype(s)
|
179 |
+
assert not is_categorical_dtype(np.dtype("float64"))
|
180 |
+
|
181 |
+
def test_tuple_categories(self):
|
182 |
+
categories = [(1, "a"), (2, "b"), (3, "c")]
|
183 |
+
result = CategoricalDtype(categories)
|
184 |
+
assert all(result.categories == categories)
|
185 |
+
|
186 |
+
@pytest.mark.parametrize(
|
187 |
+
"categories, expected",
|
188 |
+
[
|
189 |
+
([True, False], True),
|
190 |
+
([True, False, None], True),
|
191 |
+
([True, False, "a", "b'"], False),
|
192 |
+
([0, 1], False),
|
193 |
+
],
|
194 |
+
)
|
195 |
+
def test_is_boolean(self, categories, expected):
|
196 |
+
cat = Categorical(categories)
|
197 |
+
assert cat.dtype._is_boolean is expected
|
198 |
+
assert is_bool_dtype(cat) is expected
|
199 |
+
assert is_bool_dtype(cat.dtype) is expected
|
200 |
+
|
201 |
+
def test_dtype_specific_categorical_dtype(self):
|
202 |
+
expected = "datetime64[ns]"
|
203 |
+
dti = DatetimeIndex([], dtype=expected)
|
204 |
+
result = str(Categorical(dti).categories.dtype)
|
205 |
+
assert result == expected
|
206 |
+
|
207 |
+
def test_not_string(self):
|
208 |
+
# though CategoricalDtype has object kind, it cannot be string
|
209 |
+
assert not is_string_dtype(CategoricalDtype())
|
210 |
+
|
211 |
+
def test_repr_range_categories(self):
|
212 |
+
rng = pd.Index(range(3))
|
213 |
+
dtype = CategoricalDtype(categories=rng, ordered=False)
|
214 |
+
result = repr(dtype)
|
215 |
+
|
216 |
+
expected = (
|
217 |
+
"CategoricalDtype(categories=range(0, 3), ordered=False, "
|
218 |
+
"categories_dtype=int64)"
|
219 |
+
)
|
220 |
+
assert result == expected
|
221 |
+
|
222 |
+
def test_update_dtype(self):
|
223 |
+
# GH 27338
|
224 |
+
result = CategoricalDtype(["a"]).update_dtype(Categorical(["b"], ordered=True))
|
225 |
+
expected = CategoricalDtype(["b"], ordered=True)
|
226 |
+
assert result == expected
|
227 |
+
|
228 |
+
def test_repr(self):
|
229 |
+
cat = Categorical(pd.Index([1, 2, 3], dtype="int32"))
|
230 |
+
result = cat.dtype.__repr__()
|
231 |
+
expected = (
|
232 |
+
"CategoricalDtype(categories=[1, 2, 3], ordered=False, "
|
233 |
+
"categories_dtype=int32)"
|
234 |
+
)
|
235 |
+
assert result == expected
|
236 |
+
|
237 |
+
|
238 |
+
class TestDatetimeTZDtype(Base):
|
239 |
+
@pytest.fixture
|
240 |
+
def dtype(self):
|
241 |
+
"""
|
242 |
+
Class level fixture of dtype for TestDatetimeTZDtype
|
243 |
+
"""
|
244 |
+
return DatetimeTZDtype("ns", "US/Eastern")
|
245 |
+
|
246 |
+
def test_alias_to_unit_raises(self):
|
247 |
+
# 23990
|
248 |
+
with pytest.raises(ValueError, match="Passing a dtype alias"):
|
249 |
+
DatetimeTZDtype("datetime64[ns, US/Central]")
|
250 |
+
|
251 |
+
def test_alias_to_unit_bad_alias_raises(self):
|
252 |
+
# 23990
|
253 |
+
with pytest.raises(TypeError, match=""):
|
254 |
+
DatetimeTZDtype("this is a bad string")
|
255 |
+
|
256 |
+
with pytest.raises(TypeError, match=""):
|
257 |
+
DatetimeTZDtype("datetime64[ns, US/NotATZ]")
|
258 |
+
|
259 |
+
def test_hash_vs_equality(self, dtype):
|
260 |
+
# make sure that we satisfy is semantics
|
261 |
+
dtype2 = DatetimeTZDtype("ns", "US/Eastern")
|
262 |
+
dtype3 = DatetimeTZDtype(dtype2)
|
263 |
+
assert dtype == dtype2
|
264 |
+
assert dtype2 == dtype
|
265 |
+
assert dtype3 == dtype
|
266 |
+
assert hash(dtype) == hash(dtype2)
|
267 |
+
assert hash(dtype) == hash(dtype3)
|
268 |
+
|
269 |
+
dtype4 = DatetimeTZDtype("ns", "US/Central")
|
270 |
+
assert dtype2 != dtype4
|
271 |
+
assert hash(dtype2) != hash(dtype4)
|
272 |
+
|
273 |
+
def test_construction_non_nanosecond(self):
|
274 |
+
res = DatetimeTZDtype("ms", "US/Eastern")
|
275 |
+
assert res.unit == "ms"
|
276 |
+
assert res._creso == NpyDatetimeUnit.NPY_FR_ms.value
|
277 |
+
assert res.str == "|M8[ms]"
|
278 |
+
assert str(res) == "datetime64[ms, US/Eastern]"
|
279 |
+
assert res.base == np.dtype("M8[ms]")
|
280 |
+
|
281 |
+
def test_day_not_supported(self):
|
282 |
+
msg = "DatetimeTZDtype only supports s, ms, us, ns units"
|
283 |
+
with pytest.raises(ValueError, match=msg):
|
284 |
+
DatetimeTZDtype("D", "US/Eastern")
|
285 |
+
|
286 |
+
def test_subclass(self):
|
287 |
+
a = DatetimeTZDtype.construct_from_string("datetime64[ns, US/Eastern]")
|
288 |
+
b = DatetimeTZDtype.construct_from_string("datetime64[ns, CET]")
|
289 |
+
|
290 |
+
assert issubclass(type(a), type(a))
|
291 |
+
assert issubclass(type(a), type(b))
|
292 |
+
|
293 |
+
def test_compat(self, dtype):
|
294 |
+
msg = "is_datetime64tz_dtype is deprecated"
|
295 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
296 |
+
assert is_datetime64tz_dtype(dtype)
|
297 |
+
assert is_datetime64tz_dtype("datetime64[ns, US/Eastern]")
|
298 |
+
assert is_datetime64_any_dtype(dtype)
|
299 |
+
assert is_datetime64_any_dtype("datetime64[ns, US/Eastern]")
|
300 |
+
assert is_datetime64_ns_dtype(dtype)
|
301 |
+
assert is_datetime64_ns_dtype("datetime64[ns, US/Eastern]")
|
302 |
+
assert not is_datetime64_dtype(dtype)
|
303 |
+
assert not is_datetime64_dtype("datetime64[ns, US/Eastern]")
|
304 |
+
|
305 |
+
def test_construction_from_string(self, dtype):
|
306 |
+
result = DatetimeTZDtype.construct_from_string("datetime64[ns, US/Eastern]")
|
307 |
+
assert is_dtype_equal(dtype, result)
|
308 |
+
|
309 |
+
@pytest.mark.parametrize(
|
310 |
+
"string",
|
311 |
+
[
|
312 |
+
"foo",
|
313 |
+
"datetime64[ns, notatz]",
|
314 |
+
# non-nano unit
|
315 |
+
"datetime64[ps, UTC]",
|
316 |
+
# dateutil str that returns None from gettz
|
317 |
+
"datetime64[ns, dateutil/invalid]",
|
318 |
+
],
|
319 |
+
)
|
320 |
+
def test_construct_from_string_invalid_raises(self, string):
|
321 |
+
msg = f"Cannot construct a 'DatetimeTZDtype' from '{string}'"
|
322 |
+
with pytest.raises(TypeError, match=re.escape(msg)):
|
323 |
+
DatetimeTZDtype.construct_from_string(string)
|
324 |
+
|
325 |
+
def test_construct_from_string_wrong_type_raises(self):
|
326 |
+
msg = "'construct_from_string' expects a string, got <class 'list'>"
|
327 |
+
with pytest.raises(TypeError, match=msg):
|
328 |
+
DatetimeTZDtype.construct_from_string(["datetime64[ns, notatz]"])
|
329 |
+
|
330 |
+
def test_is_dtype(self, dtype):
|
331 |
+
assert not DatetimeTZDtype.is_dtype(None)
|
332 |
+
assert DatetimeTZDtype.is_dtype(dtype)
|
333 |
+
assert DatetimeTZDtype.is_dtype("datetime64[ns, US/Eastern]")
|
334 |
+
assert DatetimeTZDtype.is_dtype("M8[ns, US/Eastern]")
|
335 |
+
assert not DatetimeTZDtype.is_dtype("foo")
|
336 |
+
assert DatetimeTZDtype.is_dtype(DatetimeTZDtype("ns", "US/Pacific"))
|
337 |
+
assert not DatetimeTZDtype.is_dtype(np.float64)
|
338 |
+
|
339 |
+
def test_equality(self, dtype):
|
340 |
+
assert is_dtype_equal(dtype, "datetime64[ns, US/Eastern]")
|
341 |
+
assert is_dtype_equal(dtype, "M8[ns, US/Eastern]")
|
342 |
+
assert is_dtype_equal(dtype, DatetimeTZDtype("ns", "US/Eastern"))
|
343 |
+
assert not is_dtype_equal(dtype, "foo")
|
344 |
+
assert not is_dtype_equal(dtype, DatetimeTZDtype("ns", "CET"))
|
345 |
+
assert not is_dtype_equal(
|
346 |
+
DatetimeTZDtype("ns", "US/Eastern"), DatetimeTZDtype("ns", "US/Pacific")
|
347 |
+
)
|
348 |
+
|
349 |
+
# numpy compat
|
350 |
+
assert is_dtype_equal(np.dtype("M8[ns]"), "datetime64[ns]")
|
351 |
+
|
352 |
+
assert dtype == "M8[ns, US/Eastern]"
|
353 |
+
|
354 |
+
def test_basic(self, dtype):
|
355 |
+
msg = "is_datetime64tz_dtype is deprecated"
|
356 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
357 |
+
assert is_datetime64tz_dtype(dtype)
|
358 |
+
|
359 |
+
dr = date_range("20130101", periods=3, tz="US/Eastern")
|
360 |
+
s = Series(dr, name="A")
|
361 |
+
|
362 |
+
# dtypes
|
363 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
364 |
+
assert is_datetime64tz_dtype(s.dtype)
|
365 |
+
assert is_datetime64tz_dtype(s)
|
366 |
+
assert not is_datetime64tz_dtype(np.dtype("float64"))
|
367 |
+
assert not is_datetime64tz_dtype(1.0)
|
368 |
+
|
369 |
+
def test_dst(self):
|
370 |
+
dr1 = date_range("2013-01-01", periods=3, tz="US/Eastern")
|
371 |
+
s1 = Series(dr1, name="A")
|
372 |
+
assert isinstance(s1.dtype, DatetimeTZDtype)
|
373 |
+
|
374 |
+
dr2 = date_range("2013-08-01", periods=3, tz="US/Eastern")
|
375 |
+
s2 = Series(dr2, name="A")
|
376 |
+
assert isinstance(s2.dtype, DatetimeTZDtype)
|
377 |
+
assert s1.dtype == s2.dtype
|
378 |
+
|
379 |
+
@pytest.mark.parametrize("tz", ["UTC", "US/Eastern"])
|
380 |
+
@pytest.mark.parametrize("constructor", ["M8", "datetime64"])
|
381 |
+
def test_parser(self, tz, constructor):
|
382 |
+
# pr #11245
|
383 |
+
dtz_str = f"{constructor}[ns, {tz}]"
|
384 |
+
result = DatetimeTZDtype.construct_from_string(dtz_str)
|
385 |
+
expected = DatetimeTZDtype("ns", tz)
|
386 |
+
assert result == expected
|
387 |
+
|
388 |
+
def test_empty(self):
|
389 |
+
with pytest.raises(TypeError, match="A 'tz' is required."):
|
390 |
+
DatetimeTZDtype()
|
391 |
+
|
392 |
+
def test_tz_standardize(self):
|
393 |
+
# GH 24713
|
394 |
+
tz = pytz.timezone("US/Eastern")
|
395 |
+
dr = date_range("2013-01-01", periods=3, tz="US/Eastern")
|
396 |
+
dtype = DatetimeTZDtype("ns", dr.tz)
|
397 |
+
assert dtype.tz == tz
|
398 |
+
dtype = DatetimeTZDtype("ns", dr[0].tz)
|
399 |
+
assert dtype.tz == tz
|
400 |
+
|
401 |
+
|
402 |
+
class TestPeriodDtype(Base):
|
403 |
+
@pytest.fixture
|
404 |
+
def dtype(self):
|
405 |
+
"""
|
406 |
+
Class level fixture of dtype for TestPeriodDtype
|
407 |
+
"""
|
408 |
+
return PeriodDtype("D")
|
409 |
+
|
410 |
+
def test_hash_vs_equality(self, dtype):
|
411 |
+
# make sure that we satisfy is semantics
|
412 |
+
dtype2 = PeriodDtype("D")
|
413 |
+
dtype3 = PeriodDtype(dtype2)
|
414 |
+
assert dtype == dtype2
|
415 |
+
assert dtype2 == dtype
|
416 |
+
assert dtype3 == dtype
|
417 |
+
assert dtype is not dtype2
|
418 |
+
assert dtype2 is not dtype
|
419 |
+
assert dtype3 is not dtype
|
420 |
+
assert hash(dtype) == hash(dtype2)
|
421 |
+
assert hash(dtype) == hash(dtype3)
|
422 |
+
|
423 |
+
def test_construction(self):
|
424 |
+
with pytest.raises(ValueError, match="Invalid frequency: xx"):
|
425 |
+
PeriodDtype("xx")
|
426 |
+
|
427 |
+
for s in ["period[D]", "Period[D]", "D"]:
|
428 |
+
dt = PeriodDtype(s)
|
429 |
+
assert dt.freq == pd.tseries.offsets.Day()
|
430 |
+
|
431 |
+
for s in ["period[3D]", "Period[3D]", "3D"]:
|
432 |
+
dt = PeriodDtype(s)
|
433 |
+
assert dt.freq == pd.tseries.offsets.Day(3)
|
434 |
+
|
435 |
+
for s in [
|
436 |
+
"period[26h]",
|
437 |
+
"Period[26h]",
|
438 |
+
"26h",
|
439 |
+
"period[1D2h]",
|
440 |
+
"Period[1D2h]",
|
441 |
+
"1D2h",
|
442 |
+
]:
|
443 |
+
dt = PeriodDtype(s)
|
444 |
+
assert dt.freq == pd.tseries.offsets.Hour(26)
|
445 |
+
|
446 |
+
def test_cannot_use_custom_businessday(self):
|
447 |
+
# GH#52534
|
448 |
+
msg = "C is not supported as period frequency"
|
449 |
+
msg1 = "<CustomBusinessDay> is not supported as period frequency"
|
450 |
+
msg2 = r"PeriodDtype\[B\] is deprecated"
|
451 |
+
with pytest.raises(ValueError, match=msg):
|
452 |
+
PeriodDtype("C")
|
453 |
+
with pytest.raises(ValueError, match=msg1):
|
454 |
+
with tm.assert_produces_warning(FutureWarning, match=msg2):
|
455 |
+
PeriodDtype(pd.offsets.CustomBusinessDay())
|
456 |
+
|
457 |
+
def test_subclass(self):
|
458 |
+
a = PeriodDtype("period[D]")
|
459 |
+
b = PeriodDtype("period[3D]")
|
460 |
+
|
461 |
+
assert issubclass(type(a), type(a))
|
462 |
+
assert issubclass(type(a), type(b))
|
463 |
+
|
464 |
+
def test_identity(self):
|
465 |
+
assert PeriodDtype("period[D]") == PeriodDtype("period[D]")
|
466 |
+
assert PeriodDtype("period[D]") is not PeriodDtype("period[D]")
|
467 |
+
|
468 |
+
assert PeriodDtype("period[3D]") == PeriodDtype("period[3D]")
|
469 |
+
assert PeriodDtype("period[3D]") is not PeriodDtype("period[3D]")
|
470 |
+
|
471 |
+
assert PeriodDtype("period[1s1us]") == PeriodDtype("period[1000001us]")
|
472 |
+
assert PeriodDtype("period[1s1us]") is not PeriodDtype("period[1000001us]")
|
473 |
+
|
474 |
+
def test_compat(self, dtype):
|
475 |
+
assert not is_datetime64_ns_dtype(dtype)
|
476 |
+
assert not is_datetime64_ns_dtype("period[D]")
|
477 |
+
assert not is_datetime64_dtype(dtype)
|
478 |
+
assert not is_datetime64_dtype("period[D]")
|
479 |
+
|
480 |
+
def test_construction_from_string(self, dtype):
|
481 |
+
result = PeriodDtype("period[D]")
|
482 |
+
assert is_dtype_equal(dtype, result)
|
483 |
+
result = PeriodDtype.construct_from_string("period[D]")
|
484 |
+
assert is_dtype_equal(dtype, result)
|
485 |
+
|
486 |
+
with pytest.raises(TypeError, match="list"):
|
487 |
+
PeriodDtype.construct_from_string([1, 2, 3])
|
488 |
+
|
489 |
+
@pytest.mark.parametrize(
|
490 |
+
"string",
|
491 |
+
[
|
492 |
+
"foo",
|
493 |
+
"period[foo]",
|
494 |
+
"foo[D]",
|
495 |
+
"datetime64[ns]",
|
496 |
+
"datetime64[ns, US/Eastern]",
|
497 |
+
],
|
498 |
+
)
|
499 |
+
def test_construct_dtype_from_string_invalid_raises(self, string):
|
500 |
+
msg = f"Cannot construct a 'PeriodDtype' from '{string}'"
|
501 |
+
with pytest.raises(TypeError, match=re.escape(msg)):
|
502 |
+
PeriodDtype.construct_from_string(string)
|
503 |
+
|
504 |
+
def test_is_dtype(self, dtype):
|
505 |
+
assert PeriodDtype.is_dtype(dtype)
|
506 |
+
assert PeriodDtype.is_dtype("period[D]")
|
507 |
+
assert PeriodDtype.is_dtype("period[3D]")
|
508 |
+
assert PeriodDtype.is_dtype(PeriodDtype("3D"))
|
509 |
+
assert PeriodDtype.is_dtype("period[us]")
|
510 |
+
assert PeriodDtype.is_dtype("period[s]")
|
511 |
+
assert PeriodDtype.is_dtype(PeriodDtype("us"))
|
512 |
+
assert PeriodDtype.is_dtype(PeriodDtype("s"))
|
513 |
+
|
514 |
+
assert not PeriodDtype.is_dtype("D")
|
515 |
+
assert not PeriodDtype.is_dtype("3D")
|
516 |
+
assert not PeriodDtype.is_dtype("U")
|
517 |
+
assert not PeriodDtype.is_dtype("s")
|
518 |
+
assert not PeriodDtype.is_dtype("foo")
|
519 |
+
assert not PeriodDtype.is_dtype(np.object_)
|
520 |
+
assert not PeriodDtype.is_dtype(np.int64)
|
521 |
+
assert not PeriodDtype.is_dtype(np.float64)
|
522 |
+
|
523 |
+
def test_equality(self, dtype):
|
524 |
+
assert is_dtype_equal(dtype, "period[D]")
|
525 |
+
assert is_dtype_equal(dtype, PeriodDtype("D"))
|
526 |
+
assert is_dtype_equal(dtype, PeriodDtype("D"))
|
527 |
+
assert is_dtype_equal(PeriodDtype("D"), PeriodDtype("D"))
|
528 |
+
|
529 |
+
assert not is_dtype_equal(dtype, "D")
|
530 |
+
assert not is_dtype_equal(PeriodDtype("D"), PeriodDtype("2D"))
|
531 |
+
|
532 |
+
def test_basic(self, dtype):
|
533 |
+
msg = "is_period_dtype is deprecated"
|
534 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
535 |
+
assert is_period_dtype(dtype)
|
536 |
+
|
537 |
+
pidx = pd.period_range("2013-01-01 09:00", periods=5, freq="h")
|
538 |
+
|
539 |
+
assert is_period_dtype(pidx.dtype)
|
540 |
+
assert is_period_dtype(pidx)
|
541 |
+
|
542 |
+
s = Series(pidx, name="A")
|
543 |
+
|
544 |
+
assert is_period_dtype(s.dtype)
|
545 |
+
assert is_period_dtype(s)
|
546 |
+
|
547 |
+
assert not is_period_dtype(np.dtype("float64"))
|
548 |
+
assert not is_period_dtype(1.0)
|
549 |
+
|
550 |
+
def test_freq_argument_required(self):
|
551 |
+
# GH#27388
|
552 |
+
msg = "missing 1 required positional argument: 'freq'"
|
553 |
+
with pytest.raises(TypeError, match=msg):
|
554 |
+
PeriodDtype()
|
555 |
+
|
556 |
+
msg = "PeriodDtype argument should be string or BaseOffset, got NoneType"
|
557 |
+
with pytest.raises(TypeError, match=msg):
|
558 |
+
# GH#51790
|
559 |
+
PeriodDtype(None)
|
560 |
+
|
561 |
+
def test_not_string(self):
|
562 |
+
# though PeriodDtype has object kind, it cannot be string
|
563 |
+
assert not is_string_dtype(PeriodDtype("D"))
|
564 |
+
|
565 |
+
def test_perioddtype_caching_dateoffset_normalize(self):
|
566 |
+
# GH 24121
|
567 |
+
per_d = PeriodDtype(pd.offsets.YearEnd(normalize=True))
|
568 |
+
assert per_d.freq.normalize
|
569 |
+
|
570 |
+
per_d2 = PeriodDtype(pd.offsets.YearEnd(normalize=False))
|
571 |
+
assert not per_d2.freq.normalize
|
572 |
+
|
573 |
+
def test_dont_keep_ref_after_del(self):
|
574 |
+
# GH 54184
|
575 |
+
dtype = PeriodDtype("D")
|
576 |
+
ref = weakref.ref(dtype)
|
577 |
+
del dtype
|
578 |
+
assert ref() is None
|
579 |
+
|
580 |
+
|
581 |
+
class TestIntervalDtype(Base):
|
582 |
+
@pytest.fixture
|
583 |
+
def dtype(self):
|
584 |
+
"""
|
585 |
+
Class level fixture of dtype for TestIntervalDtype
|
586 |
+
"""
|
587 |
+
return IntervalDtype("int64", "right")
|
588 |
+
|
589 |
+
def test_hash_vs_equality(self, dtype):
|
590 |
+
# make sure that we satisfy is semantics
|
591 |
+
dtype2 = IntervalDtype("int64", "right")
|
592 |
+
dtype3 = IntervalDtype(dtype2)
|
593 |
+
assert dtype == dtype2
|
594 |
+
assert dtype2 == dtype
|
595 |
+
assert dtype3 == dtype
|
596 |
+
assert dtype is not dtype2
|
597 |
+
assert dtype2 is not dtype3
|
598 |
+
assert dtype3 is not dtype
|
599 |
+
assert hash(dtype) == hash(dtype2)
|
600 |
+
assert hash(dtype) == hash(dtype3)
|
601 |
+
|
602 |
+
dtype1 = IntervalDtype("interval")
|
603 |
+
dtype2 = IntervalDtype(dtype1)
|
604 |
+
dtype3 = IntervalDtype("interval")
|
605 |
+
assert dtype2 == dtype1
|
606 |
+
assert dtype2 == dtype2
|
607 |
+
assert dtype2 == dtype3
|
608 |
+
assert dtype2 is not dtype1
|
609 |
+
assert dtype2 is dtype2
|
610 |
+
assert dtype2 is not dtype3
|
611 |
+
assert hash(dtype2) == hash(dtype1)
|
612 |
+
assert hash(dtype2) == hash(dtype2)
|
613 |
+
assert hash(dtype2) == hash(dtype3)
|
614 |
+
|
615 |
+
@pytest.mark.parametrize(
|
616 |
+
"subtype", ["interval[int64]", "Interval[int64]", "int64", np.dtype("int64")]
|
617 |
+
)
|
618 |
+
def test_construction(self, subtype):
|
619 |
+
i = IntervalDtype(subtype, closed="right")
|
620 |
+
assert i.subtype == np.dtype("int64")
|
621 |
+
msg = "is_interval_dtype is deprecated"
|
622 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
623 |
+
assert is_interval_dtype(i)
|
624 |
+
|
625 |
+
@pytest.mark.parametrize(
|
626 |
+
"subtype", ["interval[int64]", "Interval[int64]", "int64", np.dtype("int64")]
|
627 |
+
)
|
628 |
+
def test_construction_allows_closed_none(self, subtype):
|
629 |
+
# GH#38394
|
630 |
+
dtype = IntervalDtype(subtype)
|
631 |
+
|
632 |
+
assert dtype.closed is None
|
633 |
+
|
634 |
+
def test_closed_mismatch(self):
|
635 |
+
msg = "'closed' keyword does not match value specified in dtype string"
|
636 |
+
with pytest.raises(ValueError, match=msg):
|
637 |
+
IntervalDtype("interval[int64, left]", "right")
|
638 |
+
|
639 |
+
@pytest.mark.parametrize("subtype", [None, "interval", "Interval"])
|
640 |
+
def test_construction_generic(self, subtype):
|
641 |
+
# generic
|
642 |
+
i = IntervalDtype(subtype)
|
643 |
+
assert i.subtype is None
|
644 |
+
msg = "is_interval_dtype is deprecated"
|
645 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
646 |
+
assert is_interval_dtype(i)
|
647 |
+
|
648 |
+
@pytest.mark.parametrize(
|
649 |
+
"subtype",
|
650 |
+
[
|
651 |
+
CategoricalDtype(list("abc"), False),
|
652 |
+
CategoricalDtype(list("wxyz"), True),
|
653 |
+
object,
|
654 |
+
str,
|
655 |
+
"<U10",
|
656 |
+
"interval[category]",
|
657 |
+
"interval[object]",
|
658 |
+
],
|
659 |
+
)
|
660 |
+
def test_construction_not_supported(self, subtype):
|
661 |
+
# GH 19016
|
662 |
+
msg = (
|
663 |
+
"category, object, and string subtypes are not supported "
|
664 |
+
"for IntervalDtype"
|
665 |
+
)
|
666 |
+
with pytest.raises(TypeError, match=msg):
|
667 |
+
IntervalDtype(subtype)
|
668 |
+
|
669 |
+
@pytest.mark.parametrize("subtype", ["xx", "IntervalA", "Interval[foo]"])
|
670 |
+
def test_construction_errors(self, subtype):
|
671 |
+
msg = "could not construct IntervalDtype"
|
672 |
+
with pytest.raises(TypeError, match=msg):
|
673 |
+
IntervalDtype(subtype)
|
674 |
+
|
675 |
+
def test_closed_must_match(self):
|
676 |
+
# GH#37933
|
677 |
+
dtype = IntervalDtype(np.float64, "left")
|
678 |
+
|
679 |
+
msg = "dtype.closed and 'closed' do not match"
|
680 |
+
with pytest.raises(ValueError, match=msg):
|
681 |
+
IntervalDtype(dtype, closed="both")
|
682 |
+
|
683 |
+
def test_closed_invalid(self):
|
684 |
+
with pytest.raises(ValueError, match="closed must be one of"):
|
685 |
+
IntervalDtype(np.float64, "foo")
|
686 |
+
|
687 |
+
def test_construction_from_string(self, dtype):
|
688 |
+
result = IntervalDtype("interval[int64, right]")
|
689 |
+
assert is_dtype_equal(dtype, result)
|
690 |
+
result = IntervalDtype.construct_from_string("interval[int64, right]")
|
691 |
+
assert is_dtype_equal(dtype, result)
|
692 |
+
|
693 |
+
@pytest.mark.parametrize("string", [0, 3.14, ("a", "b"), None])
|
694 |
+
def test_construction_from_string_errors(self, string):
|
695 |
+
# these are invalid entirely
|
696 |
+
msg = f"'construct_from_string' expects a string, got {type(string)}"
|
697 |
+
|
698 |
+
with pytest.raises(TypeError, match=re.escape(msg)):
|
699 |
+
IntervalDtype.construct_from_string(string)
|
700 |
+
|
701 |
+
@pytest.mark.parametrize("string", ["foo", "foo[int64]", "IntervalA"])
|
702 |
+
def test_construction_from_string_error_subtype(self, string):
|
703 |
+
# this is an invalid subtype
|
704 |
+
msg = (
|
705 |
+
"Incorrectly formatted string passed to constructor. "
|
706 |
+
r"Valid formats include Interval or Interval\[dtype\] "
|
707 |
+
"where dtype is numeric, datetime, or timedelta"
|
708 |
+
)
|
709 |
+
|
710 |
+
with pytest.raises(TypeError, match=msg):
|
711 |
+
IntervalDtype.construct_from_string(string)
|
712 |
+
|
713 |
+
def test_subclass(self):
|
714 |
+
a = IntervalDtype("interval[int64, right]")
|
715 |
+
b = IntervalDtype("interval[int64, right]")
|
716 |
+
|
717 |
+
assert issubclass(type(a), type(a))
|
718 |
+
assert issubclass(type(a), type(b))
|
719 |
+
|
720 |
+
def test_is_dtype(self, dtype):
|
721 |
+
assert IntervalDtype.is_dtype(dtype)
|
722 |
+
assert IntervalDtype.is_dtype("interval")
|
723 |
+
assert IntervalDtype.is_dtype(IntervalDtype("float64"))
|
724 |
+
assert IntervalDtype.is_dtype(IntervalDtype("int64"))
|
725 |
+
assert IntervalDtype.is_dtype(IntervalDtype(np.int64))
|
726 |
+
assert IntervalDtype.is_dtype(IntervalDtype("float64", "left"))
|
727 |
+
assert IntervalDtype.is_dtype(IntervalDtype("int64", "right"))
|
728 |
+
assert IntervalDtype.is_dtype(IntervalDtype(np.int64, "both"))
|
729 |
+
|
730 |
+
assert not IntervalDtype.is_dtype("D")
|
731 |
+
assert not IntervalDtype.is_dtype("3D")
|
732 |
+
assert not IntervalDtype.is_dtype("us")
|
733 |
+
assert not IntervalDtype.is_dtype("S")
|
734 |
+
assert not IntervalDtype.is_dtype("foo")
|
735 |
+
assert not IntervalDtype.is_dtype("IntervalA")
|
736 |
+
assert not IntervalDtype.is_dtype(np.object_)
|
737 |
+
assert not IntervalDtype.is_dtype(np.int64)
|
738 |
+
assert not IntervalDtype.is_dtype(np.float64)
|
739 |
+
|
740 |
+
def test_equality(self, dtype):
|
741 |
+
assert is_dtype_equal(dtype, "interval[int64, right]")
|
742 |
+
assert is_dtype_equal(dtype, IntervalDtype("int64", "right"))
|
743 |
+
assert is_dtype_equal(
|
744 |
+
IntervalDtype("int64", "right"), IntervalDtype("int64", "right")
|
745 |
+
)
|
746 |
+
|
747 |
+
assert not is_dtype_equal(dtype, "interval[int64]")
|
748 |
+
assert not is_dtype_equal(dtype, IntervalDtype("int64"))
|
749 |
+
assert not is_dtype_equal(
|
750 |
+
IntervalDtype("int64", "right"), IntervalDtype("int64")
|
751 |
+
)
|
752 |
+
|
753 |
+
assert not is_dtype_equal(dtype, "int64")
|
754 |
+
assert not is_dtype_equal(
|
755 |
+
IntervalDtype("int64", "neither"), IntervalDtype("float64", "right")
|
756 |
+
)
|
757 |
+
assert not is_dtype_equal(
|
758 |
+
IntervalDtype("int64", "both"), IntervalDtype("int64", "left")
|
759 |
+
)
|
760 |
+
|
761 |
+
# invalid subtype comparisons do not raise when directly compared
|
762 |
+
dtype1 = IntervalDtype("float64", "left")
|
763 |
+
dtype2 = IntervalDtype("datetime64[ns, US/Eastern]", "left")
|
764 |
+
assert dtype1 != dtype2
|
765 |
+
assert dtype2 != dtype1
|
766 |
+
|
767 |
+
@pytest.mark.parametrize(
|
768 |
+
"subtype",
|
769 |
+
[
|
770 |
+
None,
|
771 |
+
"interval",
|
772 |
+
"Interval",
|
773 |
+
"int64",
|
774 |
+
"uint64",
|
775 |
+
"float64",
|
776 |
+
"complex128",
|
777 |
+
"datetime64",
|
778 |
+
"timedelta64",
|
779 |
+
PeriodDtype("Q"),
|
780 |
+
],
|
781 |
+
)
|
782 |
+
def test_equality_generic(self, subtype):
|
783 |
+
# GH 18980
|
784 |
+
closed = "right" if subtype is not None else None
|
785 |
+
dtype = IntervalDtype(subtype, closed=closed)
|
786 |
+
assert is_dtype_equal(dtype, "interval")
|
787 |
+
assert is_dtype_equal(dtype, IntervalDtype())
|
788 |
+
|
789 |
+
@pytest.mark.parametrize(
|
790 |
+
"subtype",
|
791 |
+
[
|
792 |
+
"int64",
|
793 |
+
"uint64",
|
794 |
+
"float64",
|
795 |
+
"complex128",
|
796 |
+
"datetime64",
|
797 |
+
"timedelta64",
|
798 |
+
PeriodDtype("Q"),
|
799 |
+
],
|
800 |
+
)
|
801 |
+
def test_name_repr(self, subtype):
|
802 |
+
# GH 18980
|
803 |
+
closed = "right" if subtype is not None else None
|
804 |
+
dtype = IntervalDtype(subtype, closed=closed)
|
805 |
+
expected = f"interval[{subtype}, {closed}]"
|
806 |
+
assert str(dtype) == expected
|
807 |
+
assert dtype.name == "interval"
|
808 |
+
|
809 |
+
@pytest.mark.parametrize("subtype", [None, "interval", "Interval"])
|
810 |
+
def test_name_repr_generic(self, subtype):
|
811 |
+
# GH 18980
|
812 |
+
dtype = IntervalDtype(subtype)
|
813 |
+
assert str(dtype) == "interval"
|
814 |
+
assert dtype.name == "interval"
|
815 |
+
|
816 |
+
def test_basic(self, dtype):
|
817 |
+
msg = "is_interval_dtype is deprecated"
|
818 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
819 |
+
assert is_interval_dtype(dtype)
|
820 |
+
|
821 |
+
ii = IntervalIndex.from_breaks(range(3))
|
822 |
+
|
823 |
+
assert is_interval_dtype(ii.dtype)
|
824 |
+
assert is_interval_dtype(ii)
|
825 |
+
|
826 |
+
s = Series(ii, name="A")
|
827 |
+
|
828 |
+
assert is_interval_dtype(s.dtype)
|
829 |
+
assert is_interval_dtype(s)
|
830 |
+
|
831 |
+
def test_basic_dtype(self):
|
832 |
+
msg = "is_interval_dtype is deprecated"
|
833 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
834 |
+
assert is_interval_dtype("interval[int64, both]")
|
835 |
+
assert is_interval_dtype(IntervalIndex.from_tuples([(0, 1)]))
|
836 |
+
assert is_interval_dtype(IntervalIndex.from_breaks(np.arange(4)))
|
837 |
+
assert is_interval_dtype(
|
838 |
+
IntervalIndex.from_breaks(date_range("20130101", periods=3))
|
839 |
+
)
|
840 |
+
assert not is_interval_dtype("U")
|
841 |
+
assert not is_interval_dtype("S")
|
842 |
+
assert not is_interval_dtype("foo")
|
843 |
+
assert not is_interval_dtype(np.object_)
|
844 |
+
assert not is_interval_dtype(np.int64)
|
845 |
+
assert not is_interval_dtype(np.float64)
|
846 |
+
|
847 |
+
def test_caching(self):
|
848 |
+
# GH 54184: Caching not shown to improve performance
|
849 |
+
IntervalDtype.reset_cache()
|
850 |
+
dtype = IntervalDtype("int64", "right")
|
851 |
+
assert len(IntervalDtype._cache_dtypes) == 0
|
852 |
+
|
853 |
+
IntervalDtype("interval")
|
854 |
+
assert len(IntervalDtype._cache_dtypes) == 0
|
855 |
+
|
856 |
+
IntervalDtype.reset_cache()
|
857 |
+
tm.round_trip_pickle(dtype)
|
858 |
+
assert len(IntervalDtype._cache_dtypes) == 0
|
859 |
+
|
860 |
+
def test_not_string(self):
|
861 |
+
# GH30568: though IntervalDtype has object kind, it cannot be string
|
862 |
+
assert not is_string_dtype(IntervalDtype())
|
863 |
+
|
864 |
+
def test_unpickling_without_closed(self):
|
865 |
+
# GH#38394
|
866 |
+
dtype = IntervalDtype("interval")
|
867 |
+
|
868 |
+
assert dtype._closed is None
|
869 |
+
|
870 |
+
tm.round_trip_pickle(dtype)
|
871 |
+
|
872 |
+
def test_dont_keep_ref_after_del(self):
|
873 |
+
# GH 54184
|
874 |
+
dtype = IntervalDtype("int64", "right")
|
875 |
+
ref = weakref.ref(dtype)
|
876 |
+
del dtype
|
877 |
+
assert ref() is None
|
878 |
+
|
879 |
+
|
880 |
+
class TestCategoricalDtypeParametrized:
|
881 |
+
@pytest.mark.parametrize(
|
882 |
+
"categories",
|
883 |
+
[
|
884 |
+
list("abcd"),
|
885 |
+
np.arange(1000),
|
886 |
+
["a", "b", 10, 2, 1.3, True],
|
887 |
+
[True, False],
|
888 |
+
date_range("2017", periods=4),
|
889 |
+
],
|
890 |
+
)
|
891 |
+
def test_basic(self, categories, ordered):
|
892 |
+
c1 = CategoricalDtype(categories, ordered=ordered)
|
893 |
+
tm.assert_index_equal(c1.categories, pd.Index(categories))
|
894 |
+
assert c1.ordered is ordered
|
895 |
+
|
896 |
+
def test_order_matters(self):
|
897 |
+
categories = ["a", "b"]
|
898 |
+
c1 = CategoricalDtype(categories, ordered=True)
|
899 |
+
c2 = CategoricalDtype(categories, ordered=False)
|
900 |
+
c3 = CategoricalDtype(categories, ordered=None)
|
901 |
+
assert c1 is not c2
|
902 |
+
assert c1 is not c3
|
903 |
+
|
904 |
+
@pytest.mark.parametrize("ordered", [False, None])
|
905 |
+
def test_unordered_same(self, ordered):
|
906 |
+
c1 = CategoricalDtype(["a", "b"], ordered=ordered)
|
907 |
+
c2 = CategoricalDtype(["b", "a"], ordered=ordered)
|
908 |
+
assert hash(c1) == hash(c2)
|
909 |
+
|
910 |
+
def test_categories(self):
|
911 |
+
result = CategoricalDtype(["a", "b", "c"])
|
912 |
+
tm.assert_index_equal(result.categories, pd.Index(["a", "b", "c"]))
|
913 |
+
assert result.ordered is False
|
914 |
+
|
915 |
+
def test_equal_but_different(self):
|
916 |
+
c1 = CategoricalDtype([1, 2, 3])
|
917 |
+
c2 = CategoricalDtype([1.0, 2.0, 3.0])
|
918 |
+
assert c1 is not c2
|
919 |
+
assert c1 != c2
|
920 |
+
|
921 |
+
def test_equal_but_different_mixed_dtypes(self):
|
922 |
+
c1 = CategoricalDtype([1, 2, "3"])
|
923 |
+
c2 = CategoricalDtype(["3", 1, 2])
|
924 |
+
assert c1 is not c2
|
925 |
+
assert c1 == c2
|
926 |
+
|
927 |
+
def test_equal_empty_ordered(self):
|
928 |
+
c1 = CategoricalDtype([], ordered=True)
|
929 |
+
c2 = CategoricalDtype([], ordered=True)
|
930 |
+
assert c1 is not c2
|
931 |
+
assert c1 == c2
|
932 |
+
|
933 |
+
def test_equal_empty_unordered(self):
|
934 |
+
c1 = CategoricalDtype([])
|
935 |
+
c2 = CategoricalDtype([])
|
936 |
+
assert c1 is not c2
|
937 |
+
assert c1 == c2
|
938 |
+
|
939 |
+
@pytest.mark.parametrize("v1, v2", [([1, 2, 3], [1, 2, 3]), ([1, 2, 3], [3, 2, 1])])
|
940 |
+
def test_order_hashes_different(self, v1, v2):
|
941 |
+
c1 = CategoricalDtype(v1, ordered=False)
|
942 |
+
c2 = CategoricalDtype(v2, ordered=True)
|
943 |
+
c3 = CategoricalDtype(v1, ordered=None)
|
944 |
+
assert c1 is not c2
|
945 |
+
assert c1 is not c3
|
946 |
+
|
947 |
+
def test_nan_invalid(self):
|
948 |
+
msg = "Categorical categories cannot be null"
|
949 |
+
with pytest.raises(ValueError, match=msg):
|
950 |
+
CategoricalDtype([1, 2, np.nan])
|
951 |
+
|
952 |
+
def test_non_unique_invalid(self):
|
953 |
+
msg = "Categorical categories must be unique"
|
954 |
+
with pytest.raises(ValueError, match=msg):
|
955 |
+
CategoricalDtype([1, 2, 1])
|
956 |
+
|
957 |
+
def test_same_categories_different_order(self):
|
958 |
+
c1 = CategoricalDtype(["a", "b"], ordered=True)
|
959 |
+
c2 = CategoricalDtype(["b", "a"], ordered=True)
|
960 |
+
assert c1 is not c2
|
961 |
+
|
962 |
+
@pytest.mark.parametrize("ordered1", [True, False, None])
|
963 |
+
@pytest.mark.parametrize("ordered2", [True, False, None])
|
964 |
+
def test_categorical_equality(self, ordered1, ordered2):
|
965 |
+
# same categories, same order
|
966 |
+
# any combination of None/False are equal
|
967 |
+
# True/True is the only combination with True that are equal
|
968 |
+
c1 = CategoricalDtype(list("abc"), ordered1)
|
969 |
+
c2 = CategoricalDtype(list("abc"), ordered2)
|
970 |
+
result = c1 == c2
|
971 |
+
expected = bool(ordered1) is bool(ordered2)
|
972 |
+
assert result is expected
|
973 |
+
|
974 |
+
# same categories, different order
|
975 |
+
# any combination of None/False are equal (order doesn't matter)
|
976 |
+
# any combination with True are not equal (different order of cats)
|
977 |
+
c1 = CategoricalDtype(list("abc"), ordered1)
|
978 |
+
c2 = CategoricalDtype(list("cab"), ordered2)
|
979 |
+
result = c1 == c2
|
980 |
+
expected = (bool(ordered1) is False) and (bool(ordered2) is False)
|
981 |
+
assert result is expected
|
982 |
+
|
983 |
+
# different categories
|
984 |
+
c2 = CategoricalDtype([1, 2, 3], ordered2)
|
985 |
+
assert c1 != c2
|
986 |
+
|
987 |
+
# none categories
|
988 |
+
c1 = CategoricalDtype(list("abc"), ordered1)
|
989 |
+
c2 = CategoricalDtype(None, ordered2)
|
990 |
+
c3 = CategoricalDtype(None, ordered1)
|
991 |
+
assert c1 != c2
|
992 |
+
assert c2 != c1
|
993 |
+
assert c2 == c3
|
994 |
+
|
995 |
+
def test_categorical_dtype_equality_requires_categories(self):
|
996 |
+
# CategoricalDtype with categories=None is *not* equal to
|
997 |
+
# any fully-initialized CategoricalDtype
|
998 |
+
first = CategoricalDtype(["a", "b"])
|
999 |
+
second = CategoricalDtype()
|
1000 |
+
third = CategoricalDtype(ordered=True)
|
1001 |
+
|
1002 |
+
assert second == second
|
1003 |
+
assert third == third
|
1004 |
+
|
1005 |
+
assert first != second
|
1006 |
+
assert second != first
|
1007 |
+
assert first != third
|
1008 |
+
assert third != first
|
1009 |
+
assert second == third
|
1010 |
+
assert third == second
|
1011 |
+
|
1012 |
+
@pytest.mark.parametrize("categories", [list("abc"), None])
|
1013 |
+
@pytest.mark.parametrize("other", ["category", "not a category"])
|
1014 |
+
def test_categorical_equality_strings(self, categories, ordered, other):
|
1015 |
+
c1 = CategoricalDtype(categories, ordered)
|
1016 |
+
result = c1 == other
|
1017 |
+
expected = other == "category"
|
1018 |
+
assert result is expected
|
1019 |
+
|
1020 |
+
def test_invalid_raises(self):
|
1021 |
+
with pytest.raises(TypeError, match="ordered"):
|
1022 |
+
CategoricalDtype(["a", "b"], ordered="foo")
|
1023 |
+
|
1024 |
+
with pytest.raises(TypeError, match="'categories' must be list-like"):
|
1025 |
+
CategoricalDtype("category")
|
1026 |
+
|
1027 |
+
def test_mixed(self):
|
1028 |
+
a = CategoricalDtype(["a", "b", 1, 2])
|
1029 |
+
b = CategoricalDtype(["a", "b", "1", "2"])
|
1030 |
+
assert hash(a) != hash(b)
|
1031 |
+
|
1032 |
+
def test_from_categorical_dtype_identity(self):
|
1033 |
+
c1 = Categorical([1, 2], categories=[1, 2, 3], ordered=True)
|
1034 |
+
# Identity test for no changes
|
1035 |
+
c2 = CategoricalDtype._from_categorical_dtype(c1)
|
1036 |
+
assert c2 is c1
|
1037 |
+
|
1038 |
+
def test_from_categorical_dtype_categories(self):
|
1039 |
+
c1 = Categorical([1, 2], categories=[1, 2, 3], ordered=True)
|
1040 |
+
# override categories
|
1041 |
+
result = CategoricalDtype._from_categorical_dtype(c1, categories=[2, 3])
|
1042 |
+
assert result == CategoricalDtype([2, 3], ordered=True)
|
1043 |
+
|
1044 |
+
def test_from_categorical_dtype_ordered(self):
|
1045 |
+
c1 = Categorical([1, 2], categories=[1, 2, 3], ordered=True)
|
1046 |
+
# override ordered
|
1047 |
+
result = CategoricalDtype._from_categorical_dtype(c1, ordered=False)
|
1048 |
+
assert result == CategoricalDtype([1, 2, 3], ordered=False)
|
1049 |
+
|
1050 |
+
def test_from_categorical_dtype_both(self):
|
1051 |
+
c1 = Categorical([1, 2], categories=[1, 2, 3], ordered=True)
|
1052 |
+
# override ordered
|
1053 |
+
result = CategoricalDtype._from_categorical_dtype(
|
1054 |
+
c1, categories=[1, 2], ordered=False
|
1055 |
+
)
|
1056 |
+
assert result == CategoricalDtype([1, 2], ordered=False)
|
1057 |
+
|
1058 |
+
def test_str_vs_repr(self, ordered, using_infer_string):
|
1059 |
+
c1 = CategoricalDtype(["a", "b"], ordered=ordered)
|
1060 |
+
assert str(c1) == "category"
|
1061 |
+
# Py2 will have unicode prefixes
|
1062 |
+
dtype = "string" if using_infer_string else "object"
|
1063 |
+
pat = (
|
1064 |
+
r"CategoricalDtype\(categories=\[.*\], ordered={ordered}, "
|
1065 |
+
rf"categories_dtype={dtype}\)"
|
1066 |
+
)
|
1067 |
+
assert re.match(pat.format(ordered=ordered), repr(c1))
|
1068 |
+
|
1069 |
+
def test_categorical_categories(self):
|
1070 |
+
# GH17884
|
1071 |
+
c1 = CategoricalDtype(Categorical(["a", "b"]))
|
1072 |
+
tm.assert_index_equal(c1.categories, pd.Index(["a", "b"]))
|
1073 |
+
c1 = CategoricalDtype(CategoricalIndex(["a", "b"]))
|
1074 |
+
tm.assert_index_equal(c1.categories, pd.Index(["a", "b"]))
|
1075 |
+
|
1076 |
+
@pytest.mark.parametrize(
|
1077 |
+
"new_categories", [list("abc"), list("cba"), list("wxyz"), None]
|
1078 |
+
)
|
1079 |
+
@pytest.mark.parametrize("new_ordered", [True, False, None])
|
1080 |
+
def test_update_dtype(self, ordered, new_categories, new_ordered):
|
1081 |
+
original_categories = list("abc")
|
1082 |
+
dtype = CategoricalDtype(original_categories, ordered)
|
1083 |
+
new_dtype = CategoricalDtype(new_categories, new_ordered)
|
1084 |
+
|
1085 |
+
result = dtype.update_dtype(new_dtype)
|
1086 |
+
expected_categories = pd.Index(new_categories or original_categories)
|
1087 |
+
expected_ordered = new_ordered if new_ordered is not None else dtype.ordered
|
1088 |
+
|
1089 |
+
tm.assert_index_equal(result.categories, expected_categories)
|
1090 |
+
assert result.ordered is expected_ordered
|
1091 |
+
|
1092 |
+
def test_update_dtype_string(self, ordered):
|
1093 |
+
dtype = CategoricalDtype(list("abc"), ordered)
|
1094 |
+
expected_categories = dtype.categories
|
1095 |
+
expected_ordered = dtype.ordered
|
1096 |
+
result = dtype.update_dtype("category")
|
1097 |
+
tm.assert_index_equal(result.categories, expected_categories)
|
1098 |
+
assert result.ordered is expected_ordered
|
1099 |
+
|
1100 |
+
@pytest.mark.parametrize("bad_dtype", ["foo", object, np.int64, PeriodDtype("Q")])
|
1101 |
+
def test_update_dtype_errors(self, bad_dtype):
|
1102 |
+
dtype = CategoricalDtype(list("abc"), False)
|
1103 |
+
msg = "a CategoricalDtype must be passed to perform an update, "
|
1104 |
+
with pytest.raises(ValueError, match=msg):
|
1105 |
+
dtype.update_dtype(bad_dtype)
|
1106 |
+
|
1107 |
+
|
1108 |
+
@pytest.mark.parametrize(
|
1109 |
+
"dtype", [CategoricalDtype, IntervalDtype, DatetimeTZDtype, PeriodDtype]
|
1110 |
+
)
|
1111 |
+
def test_registry(dtype):
|
1112 |
+
assert dtype in registry.dtypes
|
1113 |
+
|
1114 |
+
|
1115 |
+
@pytest.mark.parametrize(
|
1116 |
+
"dtype, expected",
|
1117 |
+
[
|
1118 |
+
("int64", None),
|
1119 |
+
("interval", IntervalDtype()),
|
1120 |
+
("interval[int64, neither]", IntervalDtype()),
|
1121 |
+
("interval[datetime64[ns], left]", IntervalDtype("datetime64[ns]", "left")),
|
1122 |
+
("period[D]", PeriodDtype("D")),
|
1123 |
+
("category", CategoricalDtype()),
|
1124 |
+
("datetime64[ns, US/Eastern]", DatetimeTZDtype("ns", "US/Eastern")),
|
1125 |
+
],
|
1126 |
+
)
|
1127 |
+
def test_registry_find(dtype, expected):
|
1128 |
+
assert registry.find(dtype) == expected
|
1129 |
+
|
1130 |
+
|
1131 |
+
@pytest.mark.parametrize(
|
1132 |
+
"dtype, expected",
|
1133 |
+
[
|
1134 |
+
(str, False),
|
1135 |
+
(int, False),
|
1136 |
+
(bool, True),
|
1137 |
+
(np.bool_, True),
|
1138 |
+
(np.array(["a", "b"]), False),
|
1139 |
+
(Series([1, 2]), False),
|
1140 |
+
(np.array([True, False]), True),
|
1141 |
+
(Series([True, False]), True),
|
1142 |
+
(SparseArray([True, False]), True),
|
1143 |
+
(SparseDtype(bool), True),
|
1144 |
+
],
|
1145 |
+
)
|
1146 |
+
def test_is_bool_dtype(dtype, expected):
|
1147 |
+
result = is_bool_dtype(dtype)
|
1148 |
+
assert result is expected
|
1149 |
+
|
1150 |
+
|
1151 |
+
def test_is_bool_dtype_sparse():
|
1152 |
+
result = is_bool_dtype(Series(SparseArray([True, False])))
|
1153 |
+
assert result is True
|
1154 |
+
|
1155 |
+
|
1156 |
+
@pytest.mark.parametrize(
|
1157 |
+
"check",
|
1158 |
+
[
|
1159 |
+
is_categorical_dtype,
|
1160 |
+
is_datetime64tz_dtype,
|
1161 |
+
is_period_dtype,
|
1162 |
+
is_datetime64_ns_dtype,
|
1163 |
+
is_datetime64_dtype,
|
1164 |
+
is_interval_dtype,
|
1165 |
+
is_datetime64_any_dtype,
|
1166 |
+
is_string_dtype,
|
1167 |
+
is_bool_dtype,
|
1168 |
+
],
|
1169 |
+
)
|
1170 |
+
def test_is_dtype_no_warning(check):
|
1171 |
+
data = pd.DataFrame({"A": [1, 2]})
|
1172 |
+
|
1173 |
+
warn = None
|
1174 |
+
msg = f"{check.__name__} is deprecated"
|
1175 |
+
if (
|
1176 |
+
check is is_categorical_dtype
|
1177 |
+
or check is is_interval_dtype
|
1178 |
+
or check is is_datetime64tz_dtype
|
1179 |
+
or check is is_period_dtype
|
1180 |
+
):
|
1181 |
+
warn = DeprecationWarning
|
1182 |
+
|
1183 |
+
with tm.assert_produces_warning(warn, match=msg):
|
1184 |
+
check(data)
|
1185 |
+
|
1186 |
+
with tm.assert_produces_warning(warn, match=msg):
|
1187 |
+
check(data["A"])
|
1188 |
+
|
1189 |
+
|
1190 |
+
def test_period_dtype_compare_to_string():
|
1191 |
+
# https://github.com/pandas-dev/pandas/issues/37265
|
1192 |
+
dtype = PeriodDtype(freq="M")
|
1193 |
+
assert (dtype == "period[M]") is True
|
1194 |
+
assert (dtype != "period[M]") is False
|
1195 |
+
|
1196 |
+
|
1197 |
+
def test_compare_complex_dtypes():
|
1198 |
+
# GH 28050
|
1199 |
+
df = pd.DataFrame(np.arange(5).astype(np.complex128))
|
1200 |
+
msg = "'<' not supported between instances of 'complex' and 'complex'"
|
1201 |
+
|
1202 |
+
with pytest.raises(TypeError, match=msg):
|
1203 |
+
df < df.astype(object)
|
1204 |
+
|
1205 |
+
with pytest.raises(TypeError, match=msg):
|
1206 |
+
df.lt(df.astype(object))
|
1207 |
+
|
1208 |
+
|
1209 |
+
def test_cast_string_to_complex():
|
1210 |
+
# GH 4895
|
1211 |
+
expected = pd.DataFrame(["1.0+5j", "1.5-3j"], dtype=complex)
|
1212 |
+
result = pd.DataFrame(["1.0+5j", "1.5-3j"]).astype(complex)
|
1213 |
+
tm.assert_frame_equal(result, expected)
|
1214 |
+
|
1215 |
+
|
1216 |
+
def test_categorical_complex():
|
1217 |
+
result = Categorical([1, 2 + 2j])
|
1218 |
+
expected = Categorical([1.0 + 0.0j, 2.0 + 2.0j])
|
1219 |
+
tm.assert_categorical_equal(result, expected)
|
1220 |
+
result = Categorical([1, 2, 2 + 2j])
|
1221 |
+
expected = Categorical([1.0 + 0.0j, 2.0 + 0.0j, 2.0 + 2.0j])
|
1222 |
+
tm.assert_categorical_equal(result, expected)
|
1223 |
+
|
1224 |
+
|
1225 |
+
def test_multi_column_dtype_assignment():
|
1226 |
+
# GH #27583
|
1227 |
+
df = pd.DataFrame({"a": [0.0], "b": 0.0})
|
1228 |
+
expected = pd.DataFrame({"a": [0], "b": 0})
|
1229 |
+
|
1230 |
+
df[["a", "b"]] = 0
|
1231 |
+
tm.assert_frame_equal(df, expected)
|
1232 |
+
|
1233 |
+
df["b"] = 0
|
1234 |
+
tm.assert_frame_equal(df, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/test_generic.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas.core.dtypes import generic as gt
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
import pandas._testing as tm
|
10 |
+
|
11 |
+
|
12 |
+
class TestABCClasses:
|
13 |
+
tuples = [[1, 2, 2], ["red", "blue", "red"]]
|
14 |
+
multi_index = pd.MultiIndex.from_arrays(tuples, names=("number", "color"))
|
15 |
+
datetime_index = pd.to_datetime(["2000/1/1", "2010/1/1"])
|
16 |
+
timedelta_index = pd.to_timedelta(np.arange(5), unit="s")
|
17 |
+
period_index = pd.period_range("2000/1/1", "2010/1/1/", freq="M")
|
18 |
+
categorical = pd.Categorical([1, 2, 3], categories=[2, 3, 1])
|
19 |
+
categorical_df = pd.DataFrame({"values": [1, 2, 3]}, index=categorical)
|
20 |
+
df = pd.DataFrame({"names": ["a", "b", "c"]}, index=multi_index)
|
21 |
+
sparse_array = pd.arrays.SparseArray(np.random.default_rng(2).standard_normal(10))
|
22 |
+
|
23 |
+
datetime_array = pd.core.arrays.DatetimeArray._from_sequence(datetime_index)
|
24 |
+
timedelta_array = pd.core.arrays.TimedeltaArray._from_sequence(timedelta_index)
|
25 |
+
|
26 |
+
abc_pairs = [
|
27 |
+
("ABCMultiIndex", multi_index),
|
28 |
+
("ABCDatetimeIndex", datetime_index),
|
29 |
+
("ABCRangeIndex", pd.RangeIndex(3)),
|
30 |
+
("ABCTimedeltaIndex", timedelta_index),
|
31 |
+
("ABCIntervalIndex", pd.interval_range(start=0, end=3)),
|
32 |
+
(
|
33 |
+
"ABCPeriodArray",
|
34 |
+
pd.arrays.PeriodArray([2000, 2001, 2002], dtype="period[D]"),
|
35 |
+
),
|
36 |
+
("ABCNumpyExtensionArray", pd.arrays.NumpyExtensionArray(np.array([0, 1, 2]))),
|
37 |
+
("ABCPeriodIndex", period_index),
|
38 |
+
("ABCCategoricalIndex", categorical_df.index),
|
39 |
+
("ABCSeries", pd.Series([1, 2, 3])),
|
40 |
+
("ABCDataFrame", df),
|
41 |
+
("ABCCategorical", categorical),
|
42 |
+
("ABCDatetimeArray", datetime_array),
|
43 |
+
("ABCTimedeltaArray", timedelta_array),
|
44 |
+
]
|
45 |
+
|
46 |
+
@pytest.mark.parametrize("abctype1, inst", abc_pairs)
|
47 |
+
@pytest.mark.parametrize("abctype2, _", abc_pairs)
|
48 |
+
def test_abc_pairs_instance_check(self, abctype1, abctype2, inst, _):
|
49 |
+
# GH 38588, 46719
|
50 |
+
if abctype1 == abctype2:
|
51 |
+
assert isinstance(inst, getattr(gt, abctype2))
|
52 |
+
assert not isinstance(type(inst), getattr(gt, abctype2))
|
53 |
+
else:
|
54 |
+
assert not isinstance(inst, getattr(gt, abctype2))
|
55 |
+
|
56 |
+
@pytest.mark.parametrize("abctype1, inst", abc_pairs)
|
57 |
+
@pytest.mark.parametrize("abctype2, _", abc_pairs)
|
58 |
+
def test_abc_pairs_subclass_check(self, abctype1, abctype2, inst, _):
|
59 |
+
# GH 38588, 46719
|
60 |
+
if abctype1 == abctype2:
|
61 |
+
assert issubclass(type(inst), getattr(gt, abctype2))
|
62 |
+
|
63 |
+
with pytest.raises(
|
64 |
+
TypeError, match=re.escape("issubclass() arg 1 must be a class")
|
65 |
+
):
|
66 |
+
issubclass(inst, getattr(gt, abctype2))
|
67 |
+
else:
|
68 |
+
assert not issubclass(type(inst), getattr(gt, abctype2))
|
69 |
+
|
70 |
+
abc_subclasses = {
|
71 |
+
"ABCIndex": [
|
72 |
+
abctype
|
73 |
+
for abctype, _ in abc_pairs
|
74 |
+
if "Index" in abctype and abctype != "ABCIndex"
|
75 |
+
],
|
76 |
+
"ABCNDFrame": ["ABCSeries", "ABCDataFrame"],
|
77 |
+
"ABCExtensionArray": [
|
78 |
+
"ABCCategorical",
|
79 |
+
"ABCDatetimeArray",
|
80 |
+
"ABCPeriodArray",
|
81 |
+
"ABCTimedeltaArray",
|
82 |
+
],
|
83 |
+
}
|
84 |
+
|
85 |
+
@pytest.mark.parametrize("parent, subs", abc_subclasses.items())
|
86 |
+
@pytest.mark.parametrize("abctype, inst", abc_pairs)
|
87 |
+
def test_abc_hierarchy(self, parent, subs, abctype, inst):
|
88 |
+
# GH 38588
|
89 |
+
if abctype in subs:
|
90 |
+
assert isinstance(inst, getattr(gt, parent))
|
91 |
+
else:
|
92 |
+
assert not isinstance(inst, getattr(gt, parent))
|
93 |
+
|
94 |
+
@pytest.mark.parametrize("abctype", [e for e in gt.__dict__ if e.startswith("ABC")])
|
95 |
+
def test_abc_coverage(self, abctype):
|
96 |
+
# GH 38588
|
97 |
+
assert (
|
98 |
+
abctype in (e for e, _ in self.abc_pairs) or abctype in self.abc_subclasses
|
99 |
+
)
|
100 |
+
|
101 |
+
|
102 |
+
def test_setattr_warnings():
|
103 |
+
# GH7175 - GOTCHA: You can't use dot notation to add a column...
|
104 |
+
d = {
|
105 |
+
"one": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]),
|
106 |
+
"two": pd.Series([1.0, 2.0, 3.0, 4.0], index=["a", "b", "c", "d"]),
|
107 |
+
}
|
108 |
+
df = pd.DataFrame(d)
|
109 |
+
|
110 |
+
with tm.assert_produces_warning(None):
|
111 |
+
# successfully add new column
|
112 |
+
# this should not raise a warning
|
113 |
+
df["three"] = df.two + 1
|
114 |
+
assert df.three.sum() > df.two.sum()
|
115 |
+
|
116 |
+
with tm.assert_produces_warning(None):
|
117 |
+
# successfully modify column in place
|
118 |
+
# this should not raise a warning
|
119 |
+
df.one += 1
|
120 |
+
assert df.one.iloc[0] == 2
|
121 |
+
|
122 |
+
with tm.assert_produces_warning(None):
|
123 |
+
# successfully add an attribute to a series
|
124 |
+
# this should not raise a warning
|
125 |
+
df.two.not_an_index = [1, 2]
|
126 |
+
|
127 |
+
with tm.assert_produces_warning(UserWarning):
|
128 |
+
# warn when setting column to nonexistent name
|
129 |
+
df.four = df.two + 2
|
130 |
+
assert df.four.sum() > df.two.sum()
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/test_inference.py
ADDED
@@ -0,0 +1,2047 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
These the test the public routines exposed in types/common.py
|
3 |
+
related to inference and not otherwise tested in types/test_common.py
|
4 |
+
|
5 |
+
"""
|
6 |
+
import collections
|
7 |
+
from collections import namedtuple
|
8 |
+
from collections.abc import Iterator
|
9 |
+
from datetime import (
|
10 |
+
date,
|
11 |
+
datetime,
|
12 |
+
time,
|
13 |
+
timedelta,
|
14 |
+
)
|
15 |
+
from decimal import Decimal
|
16 |
+
from fractions import Fraction
|
17 |
+
from io import StringIO
|
18 |
+
import itertools
|
19 |
+
from numbers import Number
|
20 |
+
import re
|
21 |
+
import sys
|
22 |
+
from typing import (
|
23 |
+
Generic,
|
24 |
+
TypeVar,
|
25 |
+
)
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
import pytest
|
29 |
+
import pytz
|
30 |
+
|
31 |
+
from pandas._libs import (
|
32 |
+
lib,
|
33 |
+
missing as libmissing,
|
34 |
+
ops as libops,
|
35 |
+
)
|
36 |
+
from pandas.compat.numpy import np_version_gt2
|
37 |
+
|
38 |
+
from pandas.core.dtypes import inference
|
39 |
+
from pandas.core.dtypes.cast import find_result_type
|
40 |
+
from pandas.core.dtypes.common import (
|
41 |
+
ensure_int32,
|
42 |
+
is_bool,
|
43 |
+
is_complex,
|
44 |
+
is_datetime64_any_dtype,
|
45 |
+
is_datetime64_dtype,
|
46 |
+
is_datetime64_ns_dtype,
|
47 |
+
is_datetime64tz_dtype,
|
48 |
+
is_float,
|
49 |
+
is_integer,
|
50 |
+
is_number,
|
51 |
+
is_scalar,
|
52 |
+
is_scipy_sparse,
|
53 |
+
is_timedelta64_dtype,
|
54 |
+
is_timedelta64_ns_dtype,
|
55 |
+
)
|
56 |
+
|
57 |
+
import pandas as pd
|
58 |
+
from pandas import (
|
59 |
+
Categorical,
|
60 |
+
DataFrame,
|
61 |
+
DateOffset,
|
62 |
+
DatetimeIndex,
|
63 |
+
Index,
|
64 |
+
Interval,
|
65 |
+
Period,
|
66 |
+
PeriodIndex,
|
67 |
+
Series,
|
68 |
+
Timedelta,
|
69 |
+
TimedeltaIndex,
|
70 |
+
Timestamp,
|
71 |
+
)
|
72 |
+
import pandas._testing as tm
|
73 |
+
from pandas.core.arrays import (
|
74 |
+
BooleanArray,
|
75 |
+
FloatingArray,
|
76 |
+
IntegerArray,
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
@pytest.fixture(params=[True, False], ids=str)
|
81 |
+
def coerce(request):
|
82 |
+
return request.param
|
83 |
+
|
84 |
+
|
85 |
+
class MockNumpyLikeArray:
|
86 |
+
"""
|
87 |
+
A class which is numpy-like (e.g. Pint's Quantity) but not actually numpy
|
88 |
+
|
89 |
+
The key is that it is not actually a numpy array so
|
90 |
+
``util.is_array(mock_numpy_like_array_instance)`` returns ``False``. Other
|
91 |
+
important properties are that the class defines a :meth:`__iter__` method
|
92 |
+
(so that ``isinstance(abc.Iterable)`` returns ``True``) and has a
|
93 |
+
:meth:`ndim` property, as pandas special-cases 0-dimensional arrays in some
|
94 |
+
cases.
|
95 |
+
|
96 |
+
We expect pandas to behave with respect to such duck arrays exactly as
|
97 |
+
with real numpy arrays. In particular, a 0-dimensional duck array is *NOT*
|
98 |
+
a scalar (`is_scalar(np.array(1)) == False`), but it is not list-like either.
|
99 |
+
"""
|
100 |
+
|
101 |
+
def __init__(self, values) -> None:
|
102 |
+
self._values = values
|
103 |
+
|
104 |
+
def __iter__(self) -> Iterator:
|
105 |
+
iter_values = iter(self._values)
|
106 |
+
|
107 |
+
def it_outer():
|
108 |
+
yield from iter_values
|
109 |
+
|
110 |
+
return it_outer()
|
111 |
+
|
112 |
+
def __len__(self) -> int:
|
113 |
+
return len(self._values)
|
114 |
+
|
115 |
+
def __array__(self, dtype=None, copy=None):
|
116 |
+
return np.asarray(self._values, dtype=dtype)
|
117 |
+
|
118 |
+
@property
|
119 |
+
def ndim(self):
|
120 |
+
return self._values.ndim
|
121 |
+
|
122 |
+
@property
|
123 |
+
def dtype(self):
|
124 |
+
return self._values.dtype
|
125 |
+
|
126 |
+
@property
|
127 |
+
def size(self):
|
128 |
+
return self._values.size
|
129 |
+
|
130 |
+
@property
|
131 |
+
def shape(self):
|
132 |
+
return self._values.shape
|
133 |
+
|
134 |
+
|
135 |
+
# collect all objects to be tested for list-like-ness; use tuples of objects,
|
136 |
+
# whether they are list-like or not (special casing for sets), and their ID
|
137 |
+
ll_params = [
|
138 |
+
([1], True, "list"),
|
139 |
+
([], True, "list-empty"),
|
140 |
+
((1,), True, "tuple"),
|
141 |
+
((), True, "tuple-empty"),
|
142 |
+
({"a": 1}, True, "dict"),
|
143 |
+
({}, True, "dict-empty"),
|
144 |
+
({"a", 1}, "set", "set"),
|
145 |
+
(set(), "set", "set-empty"),
|
146 |
+
(frozenset({"a", 1}), "set", "frozenset"),
|
147 |
+
(frozenset(), "set", "frozenset-empty"),
|
148 |
+
(iter([1, 2]), True, "iterator"),
|
149 |
+
(iter([]), True, "iterator-empty"),
|
150 |
+
((x for x in [1, 2]), True, "generator"),
|
151 |
+
((_ for _ in []), True, "generator-empty"),
|
152 |
+
(Series([1]), True, "Series"),
|
153 |
+
(Series([], dtype=object), True, "Series-empty"),
|
154 |
+
# Series.str will still raise a TypeError if iterated
|
155 |
+
(Series(["a"]).str, True, "StringMethods"),
|
156 |
+
(Series([], dtype="O").str, True, "StringMethods-empty"),
|
157 |
+
(Index([1]), True, "Index"),
|
158 |
+
(Index([]), True, "Index-empty"),
|
159 |
+
(DataFrame([[1]]), True, "DataFrame"),
|
160 |
+
(DataFrame(), True, "DataFrame-empty"),
|
161 |
+
(np.ndarray((2,) * 1), True, "ndarray-1d"),
|
162 |
+
(np.array([]), True, "ndarray-1d-empty"),
|
163 |
+
(np.ndarray((2,) * 2), True, "ndarray-2d"),
|
164 |
+
(np.array([[]]), True, "ndarray-2d-empty"),
|
165 |
+
(np.ndarray((2,) * 3), True, "ndarray-3d"),
|
166 |
+
(np.array([[[]]]), True, "ndarray-3d-empty"),
|
167 |
+
(np.ndarray((2,) * 4), True, "ndarray-4d"),
|
168 |
+
(np.array([[[[]]]]), True, "ndarray-4d-empty"),
|
169 |
+
(np.array(2), False, "ndarray-0d"),
|
170 |
+
(MockNumpyLikeArray(np.ndarray((2,) * 1)), True, "duck-ndarray-1d"),
|
171 |
+
(MockNumpyLikeArray(np.array([])), True, "duck-ndarray-1d-empty"),
|
172 |
+
(MockNumpyLikeArray(np.ndarray((2,) * 2)), True, "duck-ndarray-2d"),
|
173 |
+
(MockNumpyLikeArray(np.array([[]])), True, "duck-ndarray-2d-empty"),
|
174 |
+
(MockNumpyLikeArray(np.ndarray((2,) * 3)), True, "duck-ndarray-3d"),
|
175 |
+
(MockNumpyLikeArray(np.array([[[]]])), True, "duck-ndarray-3d-empty"),
|
176 |
+
(MockNumpyLikeArray(np.ndarray((2,) * 4)), True, "duck-ndarray-4d"),
|
177 |
+
(MockNumpyLikeArray(np.array([[[[]]]])), True, "duck-ndarray-4d-empty"),
|
178 |
+
(MockNumpyLikeArray(np.array(2)), False, "duck-ndarray-0d"),
|
179 |
+
(1, False, "int"),
|
180 |
+
(b"123", False, "bytes"),
|
181 |
+
(b"", False, "bytes-empty"),
|
182 |
+
("123", False, "string"),
|
183 |
+
("", False, "string-empty"),
|
184 |
+
(str, False, "string-type"),
|
185 |
+
(object(), False, "object"),
|
186 |
+
(np.nan, False, "NaN"),
|
187 |
+
(None, False, "None"),
|
188 |
+
]
|
189 |
+
objs, expected, ids = zip(*ll_params)
|
190 |
+
|
191 |
+
|
192 |
+
@pytest.fixture(params=zip(objs, expected), ids=ids)
|
193 |
+
def maybe_list_like(request):
|
194 |
+
return request.param
|
195 |
+
|
196 |
+
|
197 |
+
def test_is_list_like(maybe_list_like):
|
198 |
+
obj, expected = maybe_list_like
|
199 |
+
expected = True if expected == "set" else expected
|
200 |
+
assert inference.is_list_like(obj) == expected
|
201 |
+
|
202 |
+
|
203 |
+
def test_is_list_like_disallow_sets(maybe_list_like):
|
204 |
+
obj, expected = maybe_list_like
|
205 |
+
expected = False if expected == "set" else expected
|
206 |
+
assert inference.is_list_like(obj, allow_sets=False) == expected
|
207 |
+
|
208 |
+
|
209 |
+
def test_is_list_like_recursion():
|
210 |
+
# GH 33721
|
211 |
+
# interpreter would crash with SIGABRT
|
212 |
+
def list_like():
|
213 |
+
inference.is_list_like([])
|
214 |
+
list_like()
|
215 |
+
|
216 |
+
rec_limit = sys.getrecursionlimit()
|
217 |
+
try:
|
218 |
+
# Limit to avoid stack overflow on Windows CI
|
219 |
+
sys.setrecursionlimit(100)
|
220 |
+
with tm.external_error_raised(RecursionError):
|
221 |
+
list_like()
|
222 |
+
finally:
|
223 |
+
sys.setrecursionlimit(rec_limit)
|
224 |
+
|
225 |
+
|
226 |
+
def test_is_list_like_iter_is_none():
|
227 |
+
# GH 43373
|
228 |
+
# is_list_like was yielding false positives with __iter__ == None
|
229 |
+
class NotListLike:
|
230 |
+
def __getitem__(self, item):
|
231 |
+
return self
|
232 |
+
|
233 |
+
__iter__ = None
|
234 |
+
|
235 |
+
assert not inference.is_list_like(NotListLike())
|
236 |
+
|
237 |
+
|
238 |
+
def test_is_list_like_generic():
|
239 |
+
# GH 49649
|
240 |
+
# is_list_like was yielding false positives for Generic classes in python 3.11
|
241 |
+
T = TypeVar("T")
|
242 |
+
|
243 |
+
class MyDataFrame(DataFrame, Generic[T]):
|
244 |
+
...
|
245 |
+
|
246 |
+
tstc = MyDataFrame[int]
|
247 |
+
tst = MyDataFrame[int]({"x": [1, 2, 3]})
|
248 |
+
|
249 |
+
assert not inference.is_list_like(tstc)
|
250 |
+
assert isinstance(tst, DataFrame)
|
251 |
+
assert inference.is_list_like(tst)
|
252 |
+
|
253 |
+
|
254 |
+
def test_is_sequence():
|
255 |
+
is_seq = inference.is_sequence
|
256 |
+
assert is_seq((1, 2))
|
257 |
+
assert is_seq([1, 2])
|
258 |
+
assert not is_seq("abcd")
|
259 |
+
assert not is_seq(np.int64)
|
260 |
+
|
261 |
+
class A:
|
262 |
+
def __getitem__(self, item):
|
263 |
+
return 1
|
264 |
+
|
265 |
+
assert not is_seq(A())
|
266 |
+
|
267 |
+
|
268 |
+
def test_is_array_like():
|
269 |
+
assert inference.is_array_like(Series([], dtype=object))
|
270 |
+
assert inference.is_array_like(Series([1, 2]))
|
271 |
+
assert inference.is_array_like(np.array(["a", "b"]))
|
272 |
+
assert inference.is_array_like(Index(["2016-01-01"]))
|
273 |
+
assert inference.is_array_like(np.array([2, 3]))
|
274 |
+
assert inference.is_array_like(MockNumpyLikeArray(np.array([2, 3])))
|
275 |
+
|
276 |
+
class DtypeList(list):
|
277 |
+
dtype = "special"
|
278 |
+
|
279 |
+
assert inference.is_array_like(DtypeList())
|
280 |
+
|
281 |
+
assert not inference.is_array_like([1, 2, 3])
|
282 |
+
assert not inference.is_array_like(())
|
283 |
+
assert not inference.is_array_like("foo")
|
284 |
+
assert not inference.is_array_like(123)
|
285 |
+
|
286 |
+
|
287 |
+
@pytest.mark.parametrize(
|
288 |
+
"inner",
|
289 |
+
[
|
290 |
+
[],
|
291 |
+
[1],
|
292 |
+
(1,),
|
293 |
+
(1, 2),
|
294 |
+
{"a": 1},
|
295 |
+
{1, "a"},
|
296 |
+
Series([1]),
|
297 |
+
Series([], dtype=object),
|
298 |
+
Series(["a"]).str,
|
299 |
+
(x for x in range(5)),
|
300 |
+
],
|
301 |
+
)
|
302 |
+
@pytest.mark.parametrize("outer", [list, Series, np.array, tuple])
|
303 |
+
def test_is_nested_list_like_passes(inner, outer):
|
304 |
+
result = outer([inner for _ in range(5)])
|
305 |
+
assert inference.is_list_like(result)
|
306 |
+
|
307 |
+
|
308 |
+
@pytest.mark.parametrize(
|
309 |
+
"obj",
|
310 |
+
[
|
311 |
+
"abc",
|
312 |
+
[],
|
313 |
+
[1],
|
314 |
+
(1,),
|
315 |
+
["a"],
|
316 |
+
"a",
|
317 |
+
{"a"},
|
318 |
+
[1, 2, 3],
|
319 |
+
Series([1]),
|
320 |
+
DataFrame({"A": [1]}),
|
321 |
+
([1, 2] for _ in range(5)),
|
322 |
+
],
|
323 |
+
)
|
324 |
+
def test_is_nested_list_like_fails(obj):
|
325 |
+
assert not inference.is_nested_list_like(obj)
|
326 |
+
|
327 |
+
|
328 |
+
@pytest.mark.parametrize("ll", [{}, {"A": 1}, Series([1]), collections.defaultdict()])
|
329 |
+
def test_is_dict_like_passes(ll):
|
330 |
+
assert inference.is_dict_like(ll)
|
331 |
+
|
332 |
+
|
333 |
+
@pytest.mark.parametrize(
|
334 |
+
"ll",
|
335 |
+
[
|
336 |
+
"1",
|
337 |
+
1,
|
338 |
+
[1, 2],
|
339 |
+
(1, 2),
|
340 |
+
range(2),
|
341 |
+
Index([1]),
|
342 |
+
dict,
|
343 |
+
collections.defaultdict,
|
344 |
+
Series,
|
345 |
+
],
|
346 |
+
)
|
347 |
+
def test_is_dict_like_fails(ll):
|
348 |
+
assert not inference.is_dict_like(ll)
|
349 |
+
|
350 |
+
|
351 |
+
@pytest.mark.parametrize("has_keys", [True, False])
|
352 |
+
@pytest.mark.parametrize("has_getitem", [True, False])
|
353 |
+
@pytest.mark.parametrize("has_contains", [True, False])
|
354 |
+
def test_is_dict_like_duck_type(has_keys, has_getitem, has_contains):
|
355 |
+
class DictLike:
|
356 |
+
def __init__(self, d) -> None:
|
357 |
+
self.d = d
|
358 |
+
|
359 |
+
if has_keys:
|
360 |
+
|
361 |
+
def keys(self):
|
362 |
+
return self.d.keys()
|
363 |
+
|
364 |
+
if has_getitem:
|
365 |
+
|
366 |
+
def __getitem__(self, key):
|
367 |
+
return self.d.__getitem__(key)
|
368 |
+
|
369 |
+
if has_contains:
|
370 |
+
|
371 |
+
def __contains__(self, key) -> bool:
|
372 |
+
return self.d.__contains__(key)
|
373 |
+
|
374 |
+
d = DictLike({1: 2})
|
375 |
+
result = inference.is_dict_like(d)
|
376 |
+
expected = has_keys and has_getitem and has_contains
|
377 |
+
|
378 |
+
assert result is expected
|
379 |
+
|
380 |
+
|
381 |
+
def test_is_file_like():
|
382 |
+
class MockFile:
|
383 |
+
pass
|
384 |
+
|
385 |
+
is_file = inference.is_file_like
|
386 |
+
|
387 |
+
data = StringIO("data")
|
388 |
+
assert is_file(data)
|
389 |
+
|
390 |
+
# No read / write attributes
|
391 |
+
# No iterator attributes
|
392 |
+
m = MockFile()
|
393 |
+
assert not is_file(m)
|
394 |
+
|
395 |
+
MockFile.write = lambda self: 0
|
396 |
+
|
397 |
+
# Write attribute but not an iterator
|
398 |
+
m = MockFile()
|
399 |
+
assert not is_file(m)
|
400 |
+
|
401 |
+
# gh-16530: Valid iterator just means we have the
|
402 |
+
# __iter__ attribute for our purposes.
|
403 |
+
MockFile.__iter__ = lambda self: self
|
404 |
+
|
405 |
+
# Valid write-only file
|
406 |
+
m = MockFile()
|
407 |
+
assert is_file(m)
|
408 |
+
|
409 |
+
del MockFile.write
|
410 |
+
MockFile.read = lambda self: 0
|
411 |
+
|
412 |
+
# Valid read-only file
|
413 |
+
m = MockFile()
|
414 |
+
assert is_file(m)
|
415 |
+
|
416 |
+
# Iterator but no read / write attributes
|
417 |
+
data = [1, 2, 3]
|
418 |
+
assert not is_file(data)
|
419 |
+
|
420 |
+
|
421 |
+
test_tuple = collections.namedtuple("test_tuple", ["a", "b", "c"])
|
422 |
+
|
423 |
+
|
424 |
+
@pytest.mark.parametrize("ll", [test_tuple(1, 2, 3)])
|
425 |
+
def test_is_names_tuple_passes(ll):
|
426 |
+
assert inference.is_named_tuple(ll)
|
427 |
+
|
428 |
+
|
429 |
+
@pytest.mark.parametrize("ll", [(1, 2, 3), "a", Series({"pi": 3.14})])
|
430 |
+
def test_is_names_tuple_fails(ll):
|
431 |
+
assert not inference.is_named_tuple(ll)
|
432 |
+
|
433 |
+
|
434 |
+
def test_is_hashable():
|
435 |
+
# all new-style classes are hashable by default
|
436 |
+
class HashableClass:
|
437 |
+
pass
|
438 |
+
|
439 |
+
class UnhashableClass1:
|
440 |
+
__hash__ = None
|
441 |
+
|
442 |
+
class UnhashableClass2:
|
443 |
+
def __hash__(self):
|
444 |
+
raise TypeError("Not hashable")
|
445 |
+
|
446 |
+
hashable = (1, 3.14, np.float64(3.14), "a", (), (1,), HashableClass())
|
447 |
+
not_hashable = ([], UnhashableClass1())
|
448 |
+
abc_hashable_not_really_hashable = (([],), UnhashableClass2())
|
449 |
+
|
450 |
+
for i in hashable:
|
451 |
+
assert inference.is_hashable(i)
|
452 |
+
for i in not_hashable:
|
453 |
+
assert not inference.is_hashable(i)
|
454 |
+
for i in abc_hashable_not_really_hashable:
|
455 |
+
assert not inference.is_hashable(i)
|
456 |
+
|
457 |
+
# numpy.array is no longer collections.abc.Hashable as of
|
458 |
+
# https://github.com/numpy/numpy/pull/5326, just test
|
459 |
+
# is_hashable()
|
460 |
+
assert not inference.is_hashable(np.array([]))
|
461 |
+
|
462 |
+
|
463 |
+
@pytest.mark.parametrize("ll", [re.compile("ad")])
|
464 |
+
def test_is_re_passes(ll):
|
465 |
+
assert inference.is_re(ll)
|
466 |
+
|
467 |
+
|
468 |
+
@pytest.mark.parametrize("ll", ["x", 2, 3, object()])
|
469 |
+
def test_is_re_fails(ll):
|
470 |
+
assert not inference.is_re(ll)
|
471 |
+
|
472 |
+
|
473 |
+
@pytest.mark.parametrize(
|
474 |
+
"ll", [r"a", "x", r"asdf", re.compile("adsf"), r"\u2233\s*", re.compile(r"")]
|
475 |
+
)
|
476 |
+
def test_is_recompilable_passes(ll):
|
477 |
+
assert inference.is_re_compilable(ll)
|
478 |
+
|
479 |
+
|
480 |
+
@pytest.mark.parametrize("ll", [1, [], object()])
|
481 |
+
def test_is_recompilable_fails(ll):
|
482 |
+
assert not inference.is_re_compilable(ll)
|
483 |
+
|
484 |
+
|
485 |
+
class TestInference:
|
486 |
+
@pytest.mark.parametrize(
|
487 |
+
"arr",
|
488 |
+
[
|
489 |
+
np.array(list("abc"), dtype="S1"),
|
490 |
+
np.array(list("abc"), dtype="S1").astype(object),
|
491 |
+
[b"a", np.nan, b"c"],
|
492 |
+
],
|
493 |
+
)
|
494 |
+
def test_infer_dtype_bytes(self, arr):
|
495 |
+
result = lib.infer_dtype(arr, skipna=True)
|
496 |
+
assert result == "bytes"
|
497 |
+
|
498 |
+
@pytest.mark.parametrize(
|
499 |
+
"value, expected",
|
500 |
+
[
|
501 |
+
(float("inf"), True),
|
502 |
+
(np.inf, True),
|
503 |
+
(-np.inf, False),
|
504 |
+
(1, False),
|
505 |
+
("a", False),
|
506 |
+
],
|
507 |
+
)
|
508 |
+
def test_isposinf_scalar(self, value, expected):
|
509 |
+
# GH 11352
|
510 |
+
result = libmissing.isposinf_scalar(value)
|
511 |
+
assert result is expected
|
512 |
+
|
513 |
+
@pytest.mark.parametrize(
|
514 |
+
"value, expected",
|
515 |
+
[
|
516 |
+
(float("-inf"), True),
|
517 |
+
(-np.inf, True),
|
518 |
+
(np.inf, False),
|
519 |
+
(1, False),
|
520 |
+
("a", False),
|
521 |
+
],
|
522 |
+
)
|
523 |
+
def test_isneginf_scalar(self, value, expected):
|
524 |
+
result = libmissing.isneginf_scalar(value)
|
525 |
+
assert result is expected
|
526 |
+
|
527 |
+
@pytest.mark.parametrize(
|
528 |
+
"convert_to_masked_nullable, exp",
|
529 |
+
[
|
530 |
+
(
|
531 |
+
True,
|
532 |
+
BooleanArray(
|
533 |
+
np.array([True, False], dtype="bool"), np.array([False, True])
|
534 |
+
),
|
535 |
+
),
|
536 |
+
(False, np.array([True, np.nan], dtype="object")),
|
537 |
+
],
|
538 |
+
)
|
539 |
+
def test_maybe_convert_nullable_boolean(self, convert_to_masked_nullable, exp):
|
540 |
+
# GH 40687
|
541 |
+
arr = np.array([True, np.nan], dtype=object)
|
542 |
+
result = libops.maybe_convert_bool(
|
543 |
+
arr, set(), convert_to_masked_nullable=convert_to_masked_nullable
|
544 |
+
)
|
545 |
+
if convert_to_masked_nullable:
|
546 |
+
tm.assert_extension_array_equal(BooleanArray(*result), exp)
|
547 |
+
else:
|
548 |
+
result = result[0]
|
549 |
+
tm.assert_numpy_array_equal(result, exp)
|
550 |
+
|
551 |
+
@pytest.mark.parametrize("convert_to_masked_nullable", [True, False])
|
552 |
+
@pytest.mark.parametrize("coerce_numeric", [True, False])
|
553 |
+
@pytest.mark.parametrize(
|
554 |
+
"infinity", ["inf", "inF", "iNf", "Inf", "iNF", "InF", "INf", "INF"]
|
555 |
+
)
|
556 |
+
@pytest.mark.parametrize("prefix", ["", "-", "+"])
|
557 |
+
def test_maybe_convert_numeric_infinities(
|
558 |
+
self, coerce_numeric, infinity, prefix, convert_to_masked_nullable
|
559 |
+
):
|
560 |
+
# see gh-13274
|
561 |
+
result, _ = lib.maybe_convert_numeric(
|
562 |
+
np.array([prefix + infinity], dtype=object),
|
563 |
+
na_values={"", "NULL", "nan"},
|
564 |
+
coerce_numeric=coerce_numeric,
|
565 |
+
convert_to_masked_nullable=convert_to_masked_nullable,
|
566 |
+
)
|
567 |
+
expected = np.array([np.inf if prefix in ["", "+"] else -np.inf])
|
568 |
+
tm.assert_numpy_array_equal(result, expected)
|
569 |
+
|
570 |
+
@pytest.mark.parametrize("convert_to_masked_nullable", [True, False])
|
571 |
+
def test_maybe_convert_numeric_infinities_raises(self, convert_to_masked_nullable):
|
572 |
+
msg = "Unable to parse string"
|
573 |
+
with pytest.raises(ValueError, match=msg):
|
574 |
+
lib.maybe_convert_numeric(
|
575 |
+
np.array(["foo_inf"], dtype=object),
|
576 |
+
na_values={"", "NULL", "nan"},
|
577 |
+
coerce_numeric=False,
|
578 |
+
convert_to_masked_nullable=convert_to_masked_nullable,
|
579 |
+
)
|
580 |
+
|
581 |
+
@pytest.mark.parametrize("convert_to_masked_nullable", [True, False])
|
582 |
+
def test_maybe_convert_numeric_post_floatify_nan(
|
583 |
+
self, coerce, convert_to_masked_nullable
|
584 |
+
):
|
585 |
+
# see gh-13314
|
586 |
+
data = np.array(["1.200", "-999.000", "4.500"], dtype=object)
|
587 |
+
expected = np.array([1.2, np.nan, 4.5], dtype=np.float64)
|
588 |
+
nan_values = {-999, -999.0}
|
589 |
+
|
590 |
+
out = lib.maybe_convert_numeric(
|
591 |
+
data,
|
592 |
+
nan_values,
|
593 |
+
coerce,
|
594 |
+
convert_to_masked_nullable=convert_to_masked_nullable,
|
595 |
+
)
|
596 |
+
if convert_to_masked_nullable:
|
597 |
+
expected = FloatingArray(expected, np.isnan(expected))
|
598 |
+
tm.assert_extension_array_equal(expected, FloatingArray(*out))
|
599 |
+
else:
|
600 |
+
out = out[0]
|
601 |
+
tm.assert_numpy_array_equal(out, expected)
|
602 |
+
|
603 |
+
def test_convert_infs(self):
|
604 |
+
arr = np.array(["inf", "inf", "inf"], dtype="O")
|
605 |
+
result, _ = lib.maybe_convert_numeric(arr, set(), False)
|
606 |
+
assert result.dtype == np.float64
|
607 |
+
|
608 |
+
arr = np.array(["-inf", "-inf", "-inf"], dtype="O")
|
609 |
+
result, _ = lib.maybe_convert_numeric(arr, set(), False)
|
610 |
+
assert result.dtype == np.float64
|
611 |
+
|
612 |
+
def test_scientific_no_exponent(self):
|
613 |
+
# See PR 12215
|
614 |
+
arr = np.array(["42E", "2E", "99e", "6e"], dtype="O")
|
615 |
+
result, _ = lib.maybe_convert_numeric(arr, set(), False, True)
|
616 |
+
assert np.all(np.isnan(result))
|
617 |
+
|
618 |
+
def test_convert_non_hashable(self):
|
619 |
+
# GH13324
|
620 |
+
# make sure that we are handing non-hashables
|
621 |
+
arr = np.array([[10.0, 2], 1.0, "apple"], dtype=object)
|
622 |
+
result, _ = lib.maybe_convert_numeric(arr, set(), False, True)
|
623 |
+
tm.assert_numpy_array_equal(result, np.array([np.nan, 1.0, np.nan]))
|
624 |
+
|
625 |
+
def test_convert_numeric_uint64(self):
|
626 |
+
arr = np.array([2**63], dtype=object)
|
627 |
+
exp = np.array([2**63], dtype=np.uint64)
|
628 |
+
tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set())[0], exp)
|
629 |
+
|
630 |
+
arr = np.array([str(2**63)], dtype=object)
|
631 |
+
exp = np.array([2**63], dtype=np.uint64)
|
632 |
+
tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set())[0], exp)
|
633 |
+
|
634 |
+
arr = np.array([np.uint64(2**63)], dtype=object)
|
635 |
+
exp = np.array([2**63], dtype=np.uint64)
|
636 |
+
tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set())[0], exp)
|
637 |
+
|
638 |
+
@pytest.mark.parametrize(
|
639 |
+
"arr",
|
640 |
+
[
|
641 |
+
np.array([2**63, np.nan], dtype=object),
|
642 |
+
np.array([str(2**63), np.nan], dtype=object),
|
643 |
+
np.array([np.nan, 2**63], dtype=object),
|
644 |
+
np.array([np.nan, str(2**63)], dtype=object),
|
645 |
+
],
|
646 |
+
)
|
647 |
+
def test_convert_numeric_uint64_nan(self, coerce, arr):
|
648 |
+
expected = arr.astype(float) if coerce else arr.copy()
|
649 |
+
result, _ = lib.maybe_convert_numeric(arr, set(), coerce_numeric=coerce)
|
650 |
+
tm.assert_almost_equal(result, expected)
|
651 |
+
|
652 |
+
@pytest.mark.parametrize("convert_to_masked_nullable", [True, False])
|
653 |
+
def test_convert_numeric_uint64_nan_values(
|
654 |
+
self, coerce, convert_to_masked_nullable
|
655 |
+
):
|
656 |
+
arr = np.array([2**63, 2**63 + 1], dtype=object)
|
657 |
+
na_values = {2**63}
|
658 |
+
|
659 |
+
expected = (
|
660 |
+
np.array([np.nan, 2**63 + 1], dtype=float) if coerce else arr.copy()
|
661 |
+
)
|
662 |
+
result = lib.maybe_convert_numeric(
|
663 |
+
arr,
|
664 |
+
na_values,
|
665 |
+
coerce_numeric=coerce,
|
666 |
+
convert_to_masked_nullable=convert_to_masked_nullable,
|
667 |
+
)
|
668 |
+
if convert_to_masked_nullable and coerce:
|
669 |
+
expected = IntegerArray(
|
670 |
+
np.array([0, 2**63 + 1], dtype="u8"),
|
671 |
+
np.array([True, False], dtype="bool"),
|
672 |
+
)
|
673 |
+
result = IntegerArray(*result)
|
674 |
+
else:
|
675 |
+
result = result[0] # discard mask
|
676 |
+
tm.assert_almost_equal(result, expected)
|
677 |
+
|
678 |
+
@pytest.mark.parametrize(
|
679 |
+
"case",
|
680 |
+
[
|
681 |
+
np.array([2**63, -1], dtype=object),
|
682 |
+
np.array([str(2**63), -1], dtype=object),
|
683 |
+
np.array([str(2**63), str(-1)], dtype=object),
|
684 |
+
np.array([-1, 2**63], dtype=object),
|
685 |
+
np.array([-1, str(2**63)], dtype=object),
|
686 |
+
np.array([str(-1), str(2**63)], dtype=object),
|
687 |
+
],
|
688 |
+
)
|
689 |
+
@pytest.mark.parametrize("convert_to_masked_nullable", [True, False])
|
690 |
+
def test_convert_numeric_int64_uint64(
|
691 |
+
self, case, coerce, convert_to_masked_nullable
|
692 |
+
):
|
693 |
+
expected = case.astype(float) if coerce else case.copy()
|
694 |
+
result, _ = lib.maybe_convert_numeric(
|
695 |
+
case,
|
696 |
+
set(),
|
697 |
+
coerce_numeric=coerce,
|
698 |
+
convert_to_masked_nullable=convert_to_masked_nullable,
|
699 |
+
)
|
700 |
+
|
701 |
+
tm.assert_almost_equal(result, expected)
|
702 |
+
|
703 |
+
@pytest.mark.parametrize("convert_to_masked_nullable", [True, False])
|
704 |
+
def test_convert_numeric_string_uint64(self, convert_to_masked_nullable):
|
705 |
+
# GH32394
|
706 |
+
result = lib.maybe_convert_numeric(
|
707 |
+
np.array(["uint64"], dtype=object),
|
708 |
+
set(),
|
709 |
+
coerce_numeric=True,
|
710 |
+
convert_to_masked_nullable=convert_to_masked_nullable,
|
711 |
+
)
|
712 |
+
if convert_to_masked_nullable:
|
713 |
+
result = FloatingArray(*result)
|
714 |
+
else:
|
715 |
+
result = result[0]
|
716 |
+
assert np.isnan(result)
|
717 |
+
|
718 |
+
@pytest.mark.parametrize("value", [-(2**63) - 1, 2**64])
|
719 |
+
def test_convert_int_overflow(self, value):
|
720 |
+
# see gh-18584
|
721 |
+
arr = np.array([value], dtype=object)
|
722 |
+
result = lib.maybe_convert_objects(arr)
|
723 |
+
tm.assert_numpy_array_equal(arr, result)
|
724 |
+
|
725 |
+
@pytest.mark.parametrize("val", [None, np.nan, float("nan")])
|
726 |
+
@pytest.mark.parametrize("dtype", ["M8[ns]", "m8[ns]"])
|
727 |
+
def test_maybe_convert_objects_nat_inference(self, val, dtype):
|
728 |
+
dtype = np.dtype(dtype)
|
729 |
+
vals = np.array([pd.NaT, val], dtype=object)
|
730 |
+
result = lib.maybe_convert_objects(
|
731 |
+
vals,
|
732 |
+
convert_non_numeric=True,
|
733 |
+
dtype_if_all_nat=dtype,
|
734 |
+
)
|
735 |
+
assert result.dtype == dtype
|
736 |
+
assert np.isnat(result).all()
|
737 |
+
|
738 |
+
result = lib.maybe_convert_objects(
|
739 |
+
vals[::-1],
|
740 |
+
convert_non_numeric=True,
|
741 |
+
dtype_if_all_nat=dtype,
|
742 |
+
)
|
743 |
+
assert result.dtype == dtype
|
744 |
+
assert np.isnat(result).all()
|
745 |
+
|
746 |
+
@pytest.mark.parametrize(
|
747 |
+
"value, expected_dtype",
|
748 |
+
[
|
749 |
+
# see gh-4471
|
750 |
+
([2**63], np.uint64),
|
751 |
+
# NumPy bug: can't compare uint64 to int64, as that
|
752 |
+
# results in both casting to float64, so we should
|
753 |
+
# make sure that this function is robust against it
|
754 |
+
([np.uint64(2**63)], np.uint64),
|
755 |
+
([2, -1], np.int64),
|
756 |
+
([2**63, -1], object),
|
757 |
+
# GH#47294
|
758 |
+
([np.uint8(1)], np.uint8),
|
759 |
+
([np.uint16(1)], np.uint16),
|
760 |
+
([np.uint32(1)], np.uint32),
|
761 |
+
([np.uint64(1)], np.uint64),
|
762 |
+
([np.uint8(2), np.uint16(1)], np.uint16),
|
763 |
+
([np.uint32(2), np.uint16(1)], np.uint32),
|
764 |
+
([np.uint32(2), -1], object),
|
765 |
+
([np.uint32(2), 1], np.uint64),
|
766 |
+
([np.uint32(2), np.int32(1)], object),
|
767 |
+
],
|
768 |
+
)
|
769 |
+
def test_maybe_convert_objects_uint(self, value, expected_dtype):
|
770 |
+
arr = np.array(value, dtype=object)
|
771 |
+
exp = np.array(value, dtype=expected_dtype)
|
772 |
+
tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp)
|
773 |
+
|
774 |
+
def test_maybe_convert_objects_datetime(self):
|
775 |
+
# GH27438
|
776 |
+
arr = np.array(
|
777 |
+
[np.datetime64("2000-01-01"), np.timedelta64(1, "s")], dtype=object
|
778 |
+
)
|
779 |
+
exp = arr.copy()
|
780 |
+
out = lib.maybe_convert_objects(arr, convert_non_numeric=True)
|
781 |
+
tm.assert_numpy_array_equal(out, exp)
|
782 |
+
|
783 |
+
arr = np.array([pd.NaT, np.timedelta64(1, "s")], dtype=object)
|
784 |
+
exp = np.array([np.timedelta64("NaT"), np.timedelta64(1, "s")], dtype="m8[ns]")
|
785 |
+
out = lib.maybe_convert_objects(arr, convert_non_numeric=True)
|
786 |
+
tm.assert_numpy_array_equal(out, exp)
|
787 |
+
|
788 |
+
# with convert_non_numeric=True, the nan is a valid NA value for td64
|
789 |
+
arr = np.array([np.timedelta64(1, "s"), np.nan], dtype=object)
|
790 |
+
exp = exp[::-1]
|
791 |
+
out = lib.maybe_convert_objects(arr, convert_non_numeric=True)
|
792 |
+
tm.assert_numpy_array_equal(out, exp)
|
793 |
+
|
794 |
+
def test_maybe_convert_objects_dtype_if_all_nat(self):
|
795 |
+
arr = np.array([pd.NaT, pd.NaT], dtype=object)
|
796 |
+
out = lib.maybe_convert_objects(arr, convert_non_numeric=True)
|
797 |
+
# no dtype_if_all_nat passed -> we dont guess
|
798 |
+
tm.assert_numpy_array_equal(out, arr)
|
799 |
+
|
800 |
+
out = lib.maybe_convert_objects(
|
801 |
+
arr,
|
802 |
+
convert_non_numeric=True,
|
803 |
+
dtype_if_all_nat=np.dtype("timedelta64[ns]"),
|
804 |
+
)
|
805 |
+
exp = np.array(["NaT", "NaT"], dtype="timedelta64[ns]")
|
806 |
+
tm.assert_numpy_array_equal(out, exp)
|
807 |
+
|
808 |
+
out = lib.maybe_convert_objects(
|
809 |
+
arr,
|
810 |
+
convert_non_numeric=True,
|
811 |
+
dtype_if_all_nat=np.dtype("datetime64[ns]"),
|
812 |
+
)
|
813 |
+
exp = np.array(["NaT", "NaT"], dtype="datetime64[ns]")
|
814 |
+
tm.assert_numpy_array_equal(out, exp)
|
815 |
+
|
816 |
+
def test_maybe_convert_objects_dtype_if_all_nat_invalid(self):
|
817 |
+
# we accept datetime64[ns], timedelta64[ns], and EADtype
|
818 |
+
arr = np.array([pd.NaT, pd.NaT], dtype=object)
|
819 |
+
|
820 |
+
with pytest.raises(ValueError, match="int64"):
|
821 |
+
lib.maybe_convert_objects(
|
822 |
+
arr,
|
823 |
+
convert_non_numeric=True,
|
824 |
+
dtype_if_all_nat=np.dtype("int64"),
|
825 |
+
)
|
826 |
+
|
827 |
+
@pytest.mark.parametrize("dtype", ["datetime64[ns]", "timedelta64[ns]"])
|
828 |
+
def test_maybe_convert_objects_datetime_overflow_safe(self, dtype):
|
829 |
+
stamp = datetime(2363, 10, 4) # Enterprise-D launch date
|
830 |
+
if dtype == "timedelta64[ns]":
|
831 |
+
stamp = stamp - datetime(1970, 1, 1)
|
832 |
+
arr = np.array([stamp], dtype=object)
|
833 |
+
|
834 |
+
out = lib.maybe_convert_objects(arr, convert_non_numeric=True)
|
835 |
+
# no OutOfBoundsDatetime/OutOfBoundsTimedeltas
|
836 |
+
tm.assert_numpy_array_equal(out, arr)
|
837 |
+
|
838 |
+
def test_maybe_convert_objects_mixed_datetimes(self):
|
839 |
+
ts = Timestamp("now")
|
840 |
+
vals = [ts, ts.to_pydatetime(), ts.to_datetime64(), pd.NaT, np.nan, None]
|
841 |
+
|
842 |
+
for data in itertools.permutations(vals):
|
843 |
+
data = np.array(list(data), dtype=object)
|
844 |
+
expected = DatetimeIndex(data)._data._ndarray
|
845 |
+
result = lib.maybe_convert_objects(data, convert_non_numeric=True)
|
846 |
+
tm.assert_numpy_array_equal(result, expected)
|
847 |
+
|
848 |
+
def test_maybe_convert_objects_timedelta64_nat(self):
|
849 |
+
obj = np.timedelta64("NaT", "ns")
|
850 |
+
arr = np.array([obj], dtype=object)
|
851 |
+
assert arr[0] is obj
|
852 |
+
|
853 |
+
result = lib.maybe_convert_objects(arr, convert_non_numeric=True)
|
854 |
+
|
855 |
+
expected = np.array([obj], dtype="m8[ns]")
|
856 |
+
tm.assert_numpy_array_equal(result, expected)
|
857 |
+
|
858 |
+
@pytest.mark.parametrize(
|
859 |
+
"exp",
|
860 |
+
[
|
861 |
+
IntegerArray(np.array([2, 0], dtype="i8"), np.array([False, True])),
|
862 |
+
IntegerArray(np.array([2, 0], dtype="int64"), np.array([False, True])),
|
863 |
+
],
|
864 |
+
)
|
865 |
+
def test_maybe_convert_objects_nullable_integer(self, exp):
|
866 |
+
# GH27335
|
867 |
+
arr = np.array([2, np.nan], dtype=object)
|
868 |
+
result = lib.maybe_convert_objects(arr, convert_to_nullable_dtype=True)
|
869 |
+
|
870 |
+
tm.assert_extension_array_equal(result, exp)
|
871 |
+
|
872 |
+
@pytest.mark.parametrize(
|
873 |
+
"dtype, val", [("int64", 1), ("uint64", np.iinfo(np.int64).max + 1)]
|
874 |
+
)
|
875 |
+
def test_maybe_convert_objects_nullable_none(self, dtype, val):
|
876 |
+
# GH#50043
|
877 |
+
arr = np.array([val, None, 3], dtype="object")
|
878 |
+
result = lib.maybe_convert_objects(arr, convert_to_nullable_dtype=True)
|
879 |
+
expected = IntegerArray(
|
880 |
+
np.array([val, 0, 3], dtype=dtype), np.array([False, True, False])
|
881 |
+
)
|
882 |
+
tm.assert_extension_array_equal(result, expected)
|
883 |
+
|
884 |
+
@pytest.mark.parametrize(
|
885 |
+
"convert_to_masked_nullable, exp",
|
886 |
+
[
|
887 |
+
(True, IntegerArray(np.array([2, 0], dtype="i8"), np.array([False, True]))),
|
888 |
+
(False, np.array([2, np.nan], dtype="float64")),
|
889 |
+
],
|
890 |
+
)
|
891 |
+
def test_maybe_convert_numeric_nullable_integer(
|
892 |
+
self, convert_to_masked_nullable, exp
|
893 |
+
):
|
894 |
+
# GH 40687
|
895 |
+
arr = np.array([2, np.nan], dtype=object)
|
896 |
+
result = lib.maybe_convert_numeric(
|
897 |
+
arr, set(), convert_to_masked_nullable=convert_to_masked_nullable
|
898 |
+
)
|
899 |
+
if convert_to_masked_nullable:
|
900 |
+
result = IntegerArray(*result)
|
901 |
+
tm.assert_extension_array_equal(result, exp)
|
902 |
+
else:
|
903 |
+
result = result[0]
|
904 |
+
tm.assert_numpy_array_equal(result, exp)
|
905 |
+
|
906 |
+
@pytest.mark.parametrize(
|
907 |
+
"convert_to_masked_nullable, exp",
|
908 |
+
[
|
909 |
+
(
|
910 |
+
True,
|
911 |
+
FloatingArray(
|
912 |
+
np.array([2.0, 0.0], dtype="float64"), np.array([False, True])
|
913 |
+
),
|
914 |
+
),
|
915 |
+
(False, np.array([2.0, np.nan], dtype="float64")),
|
916 |
+
],
|
917 |
+
)
|
918 |
+
def test_maybe_convert_numeric_floating_array(
|
919 |
+
self, convert_to_masked_nullable, exp
|
920 |
+
):
|
921 |
+
# GH 40687
|
922 |
+
arr = np.array([2.0, np.nan], dtype=object)
|
923 |
+
result = lib.maybe_convert_numeric(
|
924 |
+
arr, set(), convert_to_masked_nullable=convert_to_masked_nullable
|
925 |
+
)
|
926 |
+
if convert_to_masked_nullable:
|
927 |
+
tm.assert_extension_array_equal(FloatingArray(*result), exp)
|
928 |
+
else:
|
929 |
+
result = result[0]
|
930 |
+
tm.assert_numpy_array_equal(result, exp)
|
931 |
+
|
932 |
+
def test_maybe_convert_objects_bool_nan(self):
|
933 |
+
# GH32146
|
934 |
+
ind = Index([True, False, np.nan], dtype=object)
|
935 |
+
exp = np.array([True, False, np.nan], dtype=object)
|
936 |
+
out = lib.maybe_convert_objects(ind.values, safe=1)
|
937 |
+
tm.assert_numpy_array_equal(out, exp)
|
938 |
+
|
939 |
+
def test_maybe_convert_objects_nullable_boolean(self):
|
940 |
+
# GH50047
|
941 |
+
arr = np.array([True, False], dtype=object)
|
942 |
+
exp = np.array([True, False])
|
943 |
+
out = lib.maybe_convert_objects(arr, convert_to_nullable_dtype=True)
|
944 |
+
tm.assert_numpy_array_equal(out, exp)
|
945 |
+
|
946 |
+
arr = np.array([True, False, pd.NaT], dtype=object)
|
947 |
+
exp = np.array([True, False, pd.NaT], dtype=object)
|
948 |
+
out = lib.maybe_convert_objects(arr, convert_to_nullable_dtype=True)
|
949 |
+
tm.assert_numpy_array_equal(out, exp)
|
950 |
+
|
951 |
+
@pytest.mark.parametrize("val", [None, np.nan])
|
952 |
+
def test_maybe_convert_objects_nullable_boolean_na(self, val):
|
953 |
+
# GH50047
|
954 |
+
arr = np.array([True, False, val], dtype=object)
|
955 |
+
exp = BooleanArray(
|
956 |
+
np.array([True, False, False]), np.array([False, False, True])
|
957 |
+
)
|
958 |
+
out = lib.maybe_convert_objects(arr, convert_to_nullable_dtype=True)
|
959 |
+
tm.assert_extension_array_equal(out, exp)
|
960 |
+
|
961 |
+
@pytest.mark.parametrize(
|
962 |
+
"data0",
|
963 |
+
[
|
964 |
+
True,
|
965 |
+
1,
|
966 |
+
1.0,
|
967 |
+
1.0 + 1.0j,
|
968 |
+
np.int8(1),
|
969 |
+
np.int16(1),
|
970 |
+
np.int32(1),
|
971 |
+
np.int64(1),
|
972 |
+
np.float16(1),
|
973 |
+
np.float32(1),
|
974 |
+
np.float64(1),
|
975 |
+
np.complex64(1),
|
976 |
+
np.complex128(1),
|
977 |
+
],
|
978 |
+
)
|
979 |
+
@pytest.mark.parametrize(
|
980 |
+
"data1",
|
981 |
+
[
|
982 |
+
True,
|
983 |
+
1,
|
984 |
+
1.0,
|
985 |
+
1.0 + 1.0j,
|
986 |
+
np.int8(1),
|
987 |
+
np.int16(1),
|
988 |
+
np.int32(1),
|
989 |
+
np.int64(1),
|
990 |
+
np.float16(1),
|
991 |
+
np.float32(1),
|
992 |
+
np.float64(1),
|
993 |
+
np.complex64(1),
|
994 |
+
np.complex128(1),
|
995 |
+
],
|
996 |
+
)
|
997 |
+
def test_maybe_convert_objects_itemsize(self, data0, data1):
|
998 |
+
# GH 40908
|
999 |
+
data = [data0, data1]
|
1000 |
+
arr = np.array(data, dtype="object")
|
1001 |
+
|
1002 |
+
common_kind = np.result_type(type(data0), type(data1)).kind
|
1003 |
+
kind0 = "python" if not hasattr(data0, "dtype") else data0.dtype.kind
|
1004 |
+
kind1 = "python" if not hasattr(data1, "dtype") else data1.dtype.kind
|
1005 |
+
if kind0 != "python" and kind1 != "python":
|
1006 |
+
kind = common_kind
|
1007 |
+
itemsize = max(data0.dtype.itemsize, data1.dtype.itemsize)
|
1008 |
+
elif is_bool(data0) or is_bool(data1):
|
1009 |
+
kind = "bool" if (is_bool(data0) and is_bool(data1)) else "object"
|
1010 |
+
itemsize = ""
|
1011 |
+
elif is_complex(data0) or is_complex(data1):
|
1012 |
+
kind = common_kind
|
1013 |
+
itemsize = 16
|
1014 |
+
else:
|
1015 |
+
kind = common_kind
|
1016 |
+
itemsize = 8
|
1017 |
+
|
1018 |
+
expected = np.array(data, dtype=f"{kind}{itemsize}")
|
1019 |
+
result = lib.maybe_convert_objects(arr)
|
1020 |
+
tm.assert_numpy_array_equal(result, expected)
|
1021 |
+
|
1022 |
+
def test_mixed_dtypes_remain_object_array(self):
|
1023 |
+
# GH14956
|
1024 |
+
arr = np.array([datetime(2015, 1, 1, tzinfo=pytz.utc), 1], dtype=object)
|
1025 |
+
result = lib.maybe_convert_objects(arr, convert_non_numeric=True)
|
1026 |
+
tm.assert_numpy_array_equal(result, arr)
|
1027 |
+
|
1028 |
+
@pytest.mark.parametrize(
|
1029 |
+
"idx",
|
1030 |
+
[
|
1031 |
+
pd.IntervalIndex.from_breaks(range(5), closed="both"),
|
1032 |
+
pd.period_range("2016-01-01", periods=3, freq="D"),
|
1033 |
+
],
|
1034 |
+
)
|
1035 |
+
def test_maybe_convert_objects_ea(self, idx):
|
1036 |
+
result = lib.maybe_convert_objects(
|
1037 |
+
np.array(idx, dtype=object),
|
1038 |
+
convert_non_numeric=True,
|
1039 |
+
)
|
1040 |
+
tm.assert_extension_array_equal(result, idx._data)
|
1041 |
+
|
1042 |
+
|
1043 |
+
class TestTypeInference:
|
1044 |
+
# Dummy class used for testing with Python objects
|
1045 |
+
class Dummy:
|
1046 |
+
pass
|
1047 |
+
|
1048 |
+
def test_inferred_dtype_fixture(self, any_skipna_inferred_dtype):
|
1049 |
+
# see pandas/conftest.py
|
1050 |
+
inferred_dtype, values = any_skipna_inferred_dtype
|
1051 |
+
|
1052 |
+
# make sure the inferred dtype of the fixture is as requested
|
1053 |
+
assert inferred_dtype == lib.infer_dtype(values, skipna=True)
|
1054 |
+
|
1055 |
+
@pytest.mark.parametrize("skipna", [True, False])
|
1056 |
+
def test_length_zero(self, skipna):
|
1057 |
+
result = lib.infer_dtype(np.array([], dtype="i4"), skipna=skipna)
|
1058 |
+
assert result == "integer"
|
1059 |
+
|
1060 |
+
result = lib.infer_dtype([], skipna=skipna)
|
1061 |
+
assert result == "empty"
|
1062 |
+
|
1063 |
+
# GH 18004
|
1064 |
+
arr = np.array([np.array([], dtype=object), np.array([], dtype=object)])
|
1065 |
+
result = lib.infer_dtype(arr, skipna=skipna)
|
1066 |
+
assert result == "empty"
|
1067 |
+
|
1068 |
+
def test_integers(self):
|
1069 |
+
arr = np.array([1, 2, 3, np.int64(4), np.int32(5)], dtype="O")
|
1070 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1071 |
+
assert result == "integer"
|
1072 |
+
|
1073 |
+
arr = np.array([1, 2, 3, np.int64(4), np.int32(5), "foo"], dtype="O")
|
1074 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1075 |
+
assert result == "mixed-integer"
|
1076 |
+
|
1077 |
+
arr = np.array([1, 2, 3, 4, 5], dtype="i4")
|
1078 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1079 |
+
assert result == "integer"
|
1080 |
+
|
1081 |
+
@pytest.mark.parametrize(
|
1082 |
+
"arr, skipna",
|
1083 |
+
[
|
1084 |
+
(np.array([1, 2, np.nan, np.nan, 3], dtype="O"), False),
|
1085 |
+
(np.array([1, 2, np.nan, np.nan, 3], dtype="O"), True),
|
1086 |
+
(np.array([1, 2, 3, np.int64(4), np.int32(5), np.nan], dtype="O"), False),
|
1087 |
+
(np.array([1, 2, 3, np.int64(4), np.int32(5), np.nan], dtype="O"), True),
|
1088 |
+
],
|
1089 |
+
)
|
1090 |
+
def test_integer_na(self, arr, skipna):
|
1091 |
+
# GH 27392
|
1092 |
+
result = lib.infer_dtype(arr, skipna=skipna)
|
1093 |
+
expected = "integer" if skipna else "integer-na"
|
1094 |
+
assert result == expected
|
1095 |
+
|
1096 |
+
def test_infer_dtype_skipna_default(self):
|
1097 |
+
# infer_dtype `skipna` default deprecated in GH#24050,
|
1098 |
+
# changed to True in GH#29876
|
1099 |
+
arr = np.array([1, 2, 3, np.nan], dtype=object)
|
1100 |
+
|
1101 |
+
result = lib.infer_dtype(arr)
|
1102 |
+
assert result == "integer"
|
1103 |
+
|
1104 |
+
def test_bools(self):
|
1105 |
+
arr = np.array([True, False, True, True, True], dtype="O")
|
1106 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1107 |
+
assert result == "boolean"
|
1108 |
+
|
1109 |
+
arr = np.array([np.bool_(True), np.bool_(False)], dtype="O")
|
1110 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1111 |
+
assert result == "boolean"
|
1112 |
+
|
1113 |
+
arr = np.array([True, False, True, "foo"], dtype="O")
|
1114 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1115 |
+
assert result == "mixed"
|
1116 |
+
|
1117 |
+
arr = np.array([True, False, True], dtype=bool)
|
1118 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1119 |
+
assert result == "boolean"
|
1120 |
+
|
1121 |
+
arr = np.array([True, np.nan, False], dtype="O")
|
1122 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1123 |
+
assert result == "boolean"
|
1124 |
+
|
1125 |
+
result = lib.infer_dtype(arr, skipna=False)
|
1126 |
+
assert result == "mixed"
|
1127 |
+
|
1128 |
+
def test_floats(self):
|
1129 |
+
arr = np.array([1.0, 2.0, 3.0, np.float64(4), np.float32(5)], dtype="O")
|
1130 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1131 |
+
assert result == "floating"
|
1132 |
+
|
1133 |
+
arr = np.array([1, 2, 3, np.float64(4), np.float32(5), "foo"], dtype="O")
|
1134 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1135 |
+
assert result == "mixed-integer"
|
1136 |
+
|
1137 |
+
arr = np.array([1, 2, 3, 4, 5], dtype="f4")
|
1138 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1139 |
+
assert result == "floating"
|
1140 |
+
|
1141 |
+
arr = np.array([1, 2, 3, 4, 5], dtype="f8")
|
1142 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1143 |
+
assert result == "floating"
|
1144 |
+
|
1145 |
+
def test_decimals(self):
|
1146 |
+
# GH15690
|
1147 |
+
arr = np.array([Decimal(1), Decimal(2), Decimal(3)])
|
1148 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1149 |
+
assert result == "decimal"
|
1150 |
+
|
1151 |
+
arr = np.array([1.0, 2.0, Decimal(3)])
|
1152 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1153 |
+
assert result == "mixed"
|
1154 |
+
|
1155 |
+
result = lib.infer_dtype(arr[::-1], skipna=True)
|
1156 |
+
assert result == "mixed"
|
1157 |
+
|
1158 |
+
arr = np.array([Decimal(1), Decimal("NaN"), Decimal(3)])
|
1159 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1160 |
+
assert result == "decimal"
|
1161 |
+
|
1162 |
+
arr = np.array([Decimal(1), np.nan, Decimal(3)], dtype="O")
|
1163 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1164 |
+
assert result == "decimal"
|
1165 |
+
|
1166 |
+
# complex is compatible with nan, so skipna has no effect
|
1167 |
+
@pytest.mark.parametrize("skipna", [True, False])
|
1168 |
+
def test_complex(self, skipna):
|
1169 |
+
# gets cast to complex on array construction
|
1170 |
+
arr = np.array([1.0, 2.0, 1 + 1j])
|
1171 |
+
result = lib.infer_dtype(arr, skipna=skipna)
|
1172 |
+
assert result == "complex"
|
1173 |
+
|
1174 |
+
arr = np.array([1.0, 2.0, 1 + 1j], dtype="O")
|
1175 |
+
result = lib.infer_dtype(arr, skipna=skipna)
|
1176 |
+
assert result == "mixed"
|
1177 |
+
|
1178 |
+
result = lib.infer_dtype(arr[::-1], skipna=skipna)
|
1179 |
+
assert result == "mixed"
|
1180 |
+
|
1181 |
+
# gets cast to complex on array construction
|
1182 |
+
arr = np.array([1, np.nan, 1 + 1j])
|
1183 |
+
result = lib.infer_dtype(arr, skipna=skipna)
|
1184 |
+
assert result == "complex"
|
1185 |
+
|
1186 |
+
arr = np.array([1.0, np.nan, 1 + 1j], dtype="O")
|
1187 |
+
result = lib.infer_dtype(arr, skipna=skipna)
|
1188 |
+
assert result == "mixed"
|
1189 |
+
|
1190 |
+
# complex with nans stays complex
|
1191 |
+
arr = np.array([1 + 1j, np.nan, 3 + 3j], dtype="O")
|
1192 |
+
result = lib.infer_dtype(arr, skipna=skipna)
|
1193 |
+
assert result == "complex"
|
1194 |
+
|
1195 |
+
# test smaller complex dtype; will pass through _try_infer_map fastpath
|
1196 |
+
arr = np.array([1 + 1j, np.nan, 3 + 3j], dtype=np.complex64)
|
1197 |
+
result = lib.infer_dtype(arr, skipna=skipna)
|
1198 |
+
assert result == "complex"
|
1199 |
+
|
1200 |
+
def test_string(self):
|
1201 |
+
pass
|
1202 |
+
|
1203 |
+
def test_unicode(self):
|
1204 |
+
arr = ["a", np.nan, "c"]
|
1205 |
+
result = lib.infer_dtype(arr, skipna=False)
|
1206 |
+
# This currently returns "mixed", but it's not clear that's optimal.
|
1207 |
+
# This could also return "string" or "mixed-string"
|
1208 |
+
assert result == "mixed"
|
1209 |
+
|
1210 |
+
# even though we use skipna, we are only skipping those NAs that are
|
1211 |
+
# considered matching by is_string_array
|
1212 |
+
arr = ["a", np.nan, "c"]
|
1213 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1214 |
+
assert result == "string"
|
1215 |
+
|
1216 |
+
arr = ["a", pd.NA, "c"]
|
1217 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1218 |
+
assert result == "string"
|
1219 |
+
|
1220 |
+
arr = ["a", pd.NaT, "c"]
|
1221 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1222 |
+
assert result == "mixed"
|
1223 |
+
|
1224 |
+
arr = ["a", "c"]
|
1225 |
+
result = lib.infer_dtype(arr, skipna=False)
|
1226 |
+
assert result == "string"
|
1227 |
+
|
1228 |
+
@pytest.mark.parametrize(
|
1229 |
+
"dtype, missing, skipna, expected",
|
1230 |
+
[
|
1231 |
+
(float, np.nan, False, "floating"),
|
1232 |
+
(float, np.nan, True, "floating"),
|
1233 |
+
(object, np.nan, False, "floating"),
|
1234 |
+
(object, np.nan, True, "empty"),
|
1235 |
+
(object, None, False, "mixed"),
|
1236 |
+
(object, None, True, "empty"),
|
1237 |
+
],
|
1238 |
+
)
|
1239 |
+
@pytest.mark.parametrize("box", [Series, np.array])
|
1240 |
+
def test_object_empty(self, box, missing, dtype, skipna, expected):
|
1241 |
+
# GH 23421
|
1242 |
+
arr = box([missing, missing], dtype=dtype)
|
1243 |
+
|
1244 |
+
result = lib.infer_dtype(arr, skipna=skipna)
|
1245 |
+
assert result == expected
|
1246 |
+
|
1247 |
+
def test_datetime(self):
|
1248 |
+
dates = [datetime(2012, 1, x) for x in range(1, 20)]
|
1249 |
+
index = Index(dates)
|
1250 |
+
assert index.inferred_type == "datetime64"
|
1251 |
+
|
1252 |
+
def test_infer_dtype_datetime64(self):
|
1253 |
+
arr = np.array(
|
1254 |
+
[np.datetime64("2011-01-01"), np.datetime64("2011-01-01")], dtype=object
|
1255 |
+
)
|
1256 |
+
assert lib.infer_dtype(arr, skipna=True) == "datetime64"
|
1257 |
+
|
1258 |
+
@pytest.mark.parametrize("na_value", [pd.NaT, np.nan])
|
1259 |
+
def test_infer_dtype_datetime64_with_na(self, na_value):
|
1260 |
+
# starts with nan
|
1261 |
+
arr = np.array([na_value, np.datetime64("2011-01-02")])
|
1262 |
+
assert lib.infer_dtype(arr, skipna=True) == "datetime64"
|
1263 |
+
|
1264 |
+
arr = np.array([na_value, np.datetime64("2011-01-02"), na_value])
|
1265 |
+
assert lib.infer_dtype(arr, skipna=True) == "datetime64"
|
1266 |
+
|
1267 |
+
@pytest.mark.parametrize(
|
1268 |
+
"arr",
|
1269 |
+
[
|
1270 |
+
np.array(
|
1271 |
+
[np.timedelta64("nat"), np.datetime64("2011-01-02")], dtype=object
|
1272 |
+
),
|
1273 |
+
np.array(
|
1274 |
+
[np.datetime64("2011-01-02"), np.timedelta64("nat")], dtype=object
|
1275 |
+
),
|
1276 |
+
np.array([np.datetime64("2011-01-01"), Timestamp("2011-01-02")]),
|
1277 |
+
np.array([Timestamp("2011-01-02"), np.datetime64("2011-01-01")]),
|
1278 |
+
np.array([np.nan, Timestamp("2011-01-02"), 1.1]),
|
1279 |
+
np.array([np.nan, "2011-01-01", Timestamp("2011-01-02")], dtype=object),
|
1280 |
+
np.array([np.datetime64("nat"), np.timedelta64(1, "D")], dtype=object),
|
1281 |
+
np.array([np.timedelta64(1, "D"), np.datetime64("nat")], dtype=object),
|
1282 |
+
],
|
1283 |
+
)
|
1284 |
+
def test_infer_datetimelike_dtype_mixed(self, arr):
|
1285 |
+
assert lib.infer_dtype(arr, skipna=False) == "mixed"
|
1286 |
+
|
1287 |
+
def test_infer_dtype_mixed_integer(self):
|
1288 |
+
arr = np.array([np.nan, Timestamp("2011-01-02"), 1])
|
1289 |
+
assert lib.infer_dtype(arr, skipna=True) == "mixed-integer"
|
1290 |
+
|
1291 |
+
@pytest.mark.parametrize(
|
1292 |
+
"arr",
|
1293 |
+
[
|
1294 |
+
np.array([Timestamp("2011-01-01"), Timestamp("2011-01-02")]),
|
1295 |
+
np.array([datetime(2011, 1, 1), datetime(2012, 2, 1)]),
|
1296 |
+
np.array([datetime(2011, 1, 1), Timestamp("2011-01-02")]),
|
1297 |
+
],
|
1298 |
+
)
|
1299 |
+
def test_infer_dtype_datetime(self, arr):
|
1300 |
+
assert lib.infer_dtype(arr, skipna=True) == "datetime"
|
1301 |
+
|
1302 |
+
@pytest.mark.parametrize("na_value", [pd.NaT, np.nan])
|
1303 |
+
@pytest.mark.parametrize(
|
1304 |
+
"time_stamp", [Timestamp("2011-01-01"), datetime(2011, 1, 1)]
|
1305 |
+
)
|
1306 |
+
def test_infer_dtype_datetime_with_na(self, na_value, time_stamp):
|
1307 |
+
# starts with nan
|
1308 |
+
arr = np.array([na_value, time_stamp])
|
1309 |
+
assert lib.infer_dtype(arr, skipna=True) == "datetime"
|
1310 |
+
|
1311 |
+
arr = np.array([na_value, time_stamp, na_value])
|
1312 |
+
assert lib.infer_dtype(arr, skipna=True) == "datetime"
|
1313 |
+
|
1314 |
+
@pytest.mark.parametrize(
|
1315 |
+
"arr",
|
1316 |
+
[
|
1317 |
+
np.array([Timedelta("1 days"), Timedelta("2 days")]),
|
1318 |
+
np.array([np.timedelta64(1, "D"), np.timedelta64(2, "D")], dtype=object),
|
1319 |
+
np.array([timedelta(1), timedelta(2)]),
|
1320 |
+
],
|
1321 |
+
)
|
1322 |
+
def test_infer_dtype_timedelta(self, arr):
|
1323 |
+
assert lib.infer_dtype(arr, skipna=True) == "timedelta"
|
1324 |
+
|
1325 |
+
@pytest.mark.parametrize("na_value", [pd.NaT, np.nan])
|
1326 |
+
@pytest.mark.parametrize(
|
1327 |
+
"delta", [Timedelta("1 days"), np.timedelta64(1, "D"), timedelta(1)]
|
1328 |
+
)
|
1329 |
+
def test_infer_dtype_timedelta_with_na(self, na_value, delta):
|
1330 |
+
# starts with nan
|
1331 |
+
arr = np.array([na_value, delta])
|
1332 |
+
assert lib.infer_dtype(arr, skipna=True) == "timedelta"
|
1333 |
+
|
1334 |
+
arr = np.array([na_value, delta, na_value])
|
1335 |
+
assert lib.infer_dtype(arr, skipna=True) == "timedelta"
|
1336 |
+
|
1337 |
+
def test_infer_dtype_period(self):
|
1338 |
+
# GH 13664
|
1339 |
+
arr = np.array([Period("2011-01", freq="D"), Period("2011-02", freq="D")])
|
1340 |
+
assert lib.infer_dtype(arr, skipna=True) == "period"
|
1341 |
+
|
1342 |
+
# non-homogeneous freqs -> mixed
|
1343 |
+
arr = np.array([Period("2011-01", freq="D"), Period("2011-02", freq="M")])
|
1344 |
+
assert lib.infer_dtype(arr, skipna=True) == "mixed"
|
1345 |
+
|
1346 |
+
@pytest.mark.parametrize("klass", [pd.array, Series, Index])
|
1347 |
+
@pytest.mark.parametrize("skipna", [True, False])
|
1348 |
+
def test_infer_dtype_period_array(self, klass, skipna):
|
1349 |
+
# https://github.com/pandas-dev/pandas/issues/23553
|
1350 |
+
values = klass(
|
1351 |
+
[
|
1352 |
+
Period("2011-01-01", freq="D"),
|
1353 |
+
Period("2011-01-02", freq="D"),
|
1354 |
+
pd.NaT,
|
1355 |
+
]
|
1356 |
+
)
|
1357 |
+
assert lib.infer_dtype(values, skipna=skipna) == "period"
|
1358 |
+
|
1359 |
+
# periods but mixed freq
|
1360 |
+
values = klass(
|
1361 |
+
[
|
1362 |
+
Period("2011-01-01", freq="D"),
|
1363 |
+
Period("2011-01-02", freq="M"),
|
1364 |
+
pd.NaT,
|
1365 |
+
]
|
1366 |
+
)
|
1367 |
+
# with pd.array this becomes NumpyExtensionArray which ends up
|
1368 |
+
# as "unknown-array"
|
1369 |
+
exp = "unknown-array" if klass is pd.array else "mixed"
|
1370 |
+
assert lib.infer_dtype(values, skipna=skipna) == exp
|
1371 |
+
|
1372 |
+
def test_infer_dtype_period_mixed(self):
|
1373 |
+
arr = np.array(
|
1374 |
+
[Period("2011-01", freq="M"), np.datetime64("nat")], dtype=object
|
1375 |
+
)
|
1376 |
+
assert lib.infer_dtype(arr, skipna=False) == "mixed"
|
1377 |
+
|
1378 |
+
arr = np.array(
|
1379 |
+
[np.datetime64("nat"), Period("2011-01", freq="M")], dtype=object
|
1380 |
+
)
|
1381 |
+
assert lib.infer_dtype(arr, skipna=False) == "mixed"
|
1382 |
+
|
1383 |
+
@pytest.mark.parametrize("na_value", [pd.NaT, np.nan])
|
1384 |
+
def test_infer_dtype_period_with_na(self, na_value):
|
1385 |
+
# starts with nan
|
1386 |
+
arr = np.array([na_value, Period("2011-01", freq="D")])
|
1387 |
+
assert lib.infer_dtype(arr, skipna=True) == "period"
|
1388 |
+
|
1389 |
+
arr = np.array([na_value, Period("2011-01", freq="D"), na_value])
|
1390 |
+
assert lib.infer_dtype(arr, skipna=True) == "period"
|
1391 |
+
|
1392 |
+
def test_infer_dtype_all_nan_nat_like(self):
|
1393 |
+
arr = np.array([np.nan, np.nan])
|
1394 |
+
assert lib.infer_dtype(arr, skipna=True) == "floating"
|
1395 |
+
|
1396 |
+
# nan and None mix are result in mixed
|
1397 |
+
arr = np.array([np.nan, np.nan, None])
|
1398 |
+
assert lib.infer_dtype(arr, skipna=True) == "empty"
|
1399 |
+
assert lib.infer_dtype(arr, skipna=False) == "mixed"
|
1400 |
+
|
1401 |
+
arr = np.array([None, np.nan, np.nan])
|
1402 |
+
assert lib.infer_dtype(arr, skipna=True) == "empty"
|
1403 |
+
assert lib.infer_dtype(arr, skipna=False) == "mixed"
|
1404 |
+
|
1405 |
+
# pd.NaT
|
1406 |
+
arr = np.array([pd.NaT])
|
1407 |
+
assert lib.infer_dtype(arr, skipna=False) == "datetime"
|
1408 |
+
|
1409 |
+
arr = np.array([pd.NaT, np.nan])
|
1410 |
+
assert lib.infer_dtype(arr, skipna=False) == "datetime"
|
1411 |
+
|
1412 |
+
arr = np.array([np.nan, pd.NaT])
|
1413 |
+
assert lib.infer_dtype(arr, skipna=False) == "datetime"
|
1414 |
+
|
1415 |
+
arr = np.array([np.nan, pd.NaT, np.nan])
|
1416 |
+
assert lib.infer_dtype(arr, skipna=False) == "datetime"
|
1417 |
+
|
1418 |
+
arr = np.array([None, pd.NaT, None])
|
1419 |
+
assert lib.infer_dtype(arr, skipna=False) == "datetime"
|
1420 |
+
|
1421 |
+
# np.datetime64(nat)
|
1422 |
+
arr = np.array([np.datetime64("nat")])
|
1423 |
+
assert lib.infer_dtype(arr, skipna=False) == "datetime64"
|
1424 |
+
|
1425 |
+
for n in [np.nan, pd.NaT, None]:
|
1426 |
+
arr = np.array([n, np.datetime64("nat"), n])
|
1427 |
+
assert lib.infer_dtype(arr, skipna=False) == "datetime64"
|
1428 |
+
|
1429 |
+
arr = np.array([pd.NaT, n, np.datetime64("nat"), n])
|
1430 |
+
assert lib.infer_dtype(arr, skipna=False) == "datetime64"
|
1431 |
+
|
1432 |
+
arr = np.array([np.timedelta64("nat")], dtype=object)
|
1433 |
+
assert lib.infer_dtype(arr, skipna=False) == "timedelta"
|
1434 |
+
|
1435 |
+
for n in [np.nan, pd.NaT, None]:
|
1436 |
+
arr = np.array([n, np.timedelta64("nat"), n])
|
1437 |
+
assert lib.infer_dtype(arr, skipna=False) == "timedelta"
|
1438 |
+
|
1439 |
+
arr = np.array([pd.NaT, n, np.timedelta64("nat"), n])
|
1440 |
+
assert lib.infer_dtype(arr, skipna=False) == "timedelta"
|
1441 |
+
|
1442 |
+
# datetime / timedelta mixed
|
1443 |
+
arr = np.array([pd.NaT, np.datetime64("nat"), np.timedelta64("nat"), np.nan])
|
1444 |
+
assert lib.infer_dtype(arr, skipna=False) == "mixed"
|
1445 |
+
|
1446 |
+
arr = np.array([np.timedelta64("nat"), np.datetime64("nat")], dtype=object)
|
1447 |
+
assert lib.infer_dtype(arr, skipna=False) == "mixed"
|
1448 |
+
|
1449 |
+
def test_is_datetimelike_array_all_nan_nat_like(self):
|
1450 |
+
arr = np.array([np.nan, pd.NaT, np.datetime64("nat")])
|
1451 |
+
assert lib.is_datetime_array(arr)
|
1452 |
+
assert lib.is_datetime64_array(arr)
|
1453 |
+
assert not lib.is_timedelta_or_timedelta64_array(arr)
|
1454 |
+
|
1455 |
+
arr = np.array([np.nan, pd.NaT, np.timedelta64("nat")])
|
1456 |
+
assert not lib.is_datetime_array(arr)
|
1457 |
+
assert not lib.is_datetime64_array(arr)
|
1458 |
+
assert lib.is_timedelta_or_timedelta64_array(arr)
|
1459 |
+
|
1460 |
+
arr = np.array([np.nan, pd.NaT, np.datetime64("nat"), np.timedelta64("nat")])
|
1461 |
+
assert not lib.is_datetime_array(arr)
|
1462 |
+
assert not lib.is_datetime64_array(arr)
|
1463 |
+
assert not lib.is_timedelta_or_timedelta64_array(arr)
|
1464 |
+
|
1465 |
+
arr = np.array([np.nan, pd.NaT])
|
1466 |
+
assert lib.is_datetime_array(arr)
|
1467 |
+
assert lib.is_datetime64_array(arr)
|
1468 |
+
assert lib.is_timedelta_or_timedelta64_array(arr)
|
1469 |
+
|
1470 |
+
arr = np.array([np.nan, np.nan], dtype=object)
|
1471 |
+
assert not lib.is_datetime_array(arr)
|
1472 |
+
assert not lib.is_datetime64_array(arr)
|
1473 |
+
assert not lib.is_timedelta_or_timedelta64_array(arr)
|
1474 |
+
|
1475 |
+
assert lib.is_datetime_with_singletz_array(
|
1476 |
+
np.array(
|
1477 |
+
[
|
1478 |
+
Timestamp("20130101", tz="US/Eastern"),
|
1479 |
+
Timestamp("20130102", tz="US/Eastern"),
|
1480 |
+
],
|
1481 |
+
dtype=object,
|
1482 |
+
)
|
1483 |
+
)
|
1484 |
+
assert not lib.is_datetime_with_singletz_array(
|
1485 |
+
np.array(
|
1486 |
+
[
|
1487 |
+
Timestamp("20130101", tz="US/Eastern"),
|
1488 |
+
Timestamp("20130102", tz="CET"),
|
1489 |
+
],
|
1490 |
+
dtype=object,
|
1491 |
+
)
|
1492 |
+
)
|
1493 |
+
|
1494 |
+
@pytest.mark.parametrize(
|
1495 |
+
"func",
|
1496 |
+
[
|
1497 |
+
"is_datetime_array",
|
1498 |
+
"is_datetime64_array",
|
1499 |
+
"is_bool_array",
|
1500 |
+
"is_timedelta_or_timedelta64_array",
|
1501 |
+
"is_date_array",
|
1502 |
+
"is_time_array",
|
1503 |
+
"is_interval_array",
|
1504 |
+
],
|
1505 |
+
)
|
1506 |
+
def test_other_dtypes_for_array(self, func):
|
1507 |
+
func = getattr(lib, func)
|
1508 |
+
arr = np.array(["foo", "bar"])
|
1509 |
+
assert not func(arr)
|
1510 |
+
assert not func(arr.reshape(2, 1))
|
1511 |
+
|
1512 |
+
arr = np.array([1, 2])
|
1513 |
+
assert not func(arr)
|
1514 |
+
assert not func(arr.reshape(2, 1))
|
1515 |
+
|
1516 |
+
def test_date(self):
|
1517 |
+
dates = [date(2012, 1, day) for day in range(1, 20)]
|
1518 |
+
index = Index(dates)
|
1519 |
+
assert index.inferred_type == "date"
|
1520 |
+
|
1521 |
+
dates = [date(2012, 1, day) for day in range(1, 20)] + [np.nan]
|
1522 |
+
result = lib.infer_dtype(dates, skipna=False)
|
1523 |
+
assert result == "mixed"
|
1524 |
+
|
1525 |
+
result = lib.infer_dtype(dates, skipna=True)
|
1526 |
+
assert result == "date"
|
1527 |
+
|
1528 |
+
@pytest.mark.parametrize(
|
1529 |
+
"values",
|
1530 |
+
[
|
1531 |
+
[date(2020, 1, 1), Timestamp("2020-01-01")],
|
1532 |
+
[Timestamp("2020-01-01"), date(2020, 1, 1)],
|
1533 |
+
[date(2020, 1, 1), pd.NaT],
|
1534 |
+
[pd.NaT, date(2020, 1, 1)],
|
1535 |
+
],
|
1536 |
+
)
|
1537 |
+
@pytest.mark.parametrize("skipna", [True, False])
|
1538 |
+
def test_infer_dtype_date_order_invariant(self, values, skipna):
|
1539 |
+
# https://github.com/pandas-dev/pandas/issues/33741
|
1540 |
+
result = lib.infer_dtype(values, skipna=skipna)
|
1541 |
+
assert result == "date"
|
1542 |
+
|
1543 |
+
def test_is_numeric_array(self):
|
1544 |
+
assert lib.is_float_array(np.array([1, 2.0]))
|
1545 |
+
assert lib.is_float_array(np.array([1, 2.0, np.nan]))
|
1546 |
+
assert not lib.is_float_array(np.array([1, 2]))
|
1547 |
+
|
1548 |
+
assert lib.is_integer_array(np.array([1, 2]))
|
1549 |
+
assert not lib.is_integer_array(np.array([1, 2.0]))
|
1550 |
+
|
1551 |
+
def test_is_string_array(self):
|
1552 |
+
# We should only be accepting pd.NA, np.nan,
|
1553 |
+
# other floating point nans e.g. float('nan')]
|
1554 |
+
# when skipna is True.
|
1555 |
+
assert lib.is_string_array(np.array(["foo", "bar"]))
|
1556 |
+
assert not lib.is_string_array(
|
1557 |
+
np.array(["foo", "bar", pd.NA], dtype=object), skipna=False
|
1558 |
+
)
|
1559 |
+
assert lib.is_string_array(
|
1560 |
+
np.array(["foo", "bar", pd.NA], dtype=object), skipna=True
|
1561 |
+
)
|
1562 |
+
# we allow NaN/None in the StringArray constructor, so its allowed here
|
1563 |
+
assert lib.is_string_array(
|
1564 |
+
np.array(["foo", "bar", None], dtype=object), skipna=True
|
1565 |
+
)
|
1566 |
+
assert lib.is_string_array(
|
1567 |
+
np.array(["foo", "bar", np.nan], dtype=object), skipna=True
|
1568 |
+
)
|
1569 |
+
# But not e.g. datetimelike or Decimal NAs
|
1570 |
+
assert not lib.is_string_array(
|
1571 |
+
np.array(["foo", "bar", pd.NaT], dtype=object), skipna=True
|
1572 |
+
)
|
1573 |
+
assert not lib.is_string_array(
|
1574 |
+
np.array(["foo", "bar", np.datetime64("NaT")], dtype=object), skipna=True
|
1575 |
+
)
|
1576 |
+
assert not lib.is_string_array(
|
1577 |
+
np.array(["foo", "bar", Decimal("NaN")], dtype=object), skipna=True
|
1578 |
+
)
|
1579 |
+
|
1580 |
+
assert not lib.is_string_array(
|
1581 |
+
np.array(["foo", "bar", None], dtype=object), skipna=False
|
1582 |
+
)
|
1583 |
+
assert not lib.is_string_array(
|
1584 |
+
np.array(["foo", "bar", np.nan], dtype=object), skipna=False
|
1585 |
+
)
|
1586 |
+
assert not lib.is_string_array(np.array([1, 2]))
|
1587 |
+
|
1588 |
+
def test_to_object_array_tuples(self):
|
1589 |
+
r = (5, 6)
|
1590 |
+
values = [r]
|
1591 |
+
lib.to_object_array_tuples(values)
|
1592 |
+
|
1593 |
+
# make sure record array works
|
1594 |
+
record = namedtuple("record", "x y")
|
1595 |
+
r = record(5, 6)
|
1596 |
+
values = [r]
|
1597 |
+
lib.to_object_array_tuples(values)
|
1598 |
+
|
1599 |
+
def test_object(self):
|
1600 |
+
# GH 7431
|
1601 |
+
# cannot infer more than this as only a single element
|
1602 |
+
arr = np.array([None], dtype="O")
|
1603 |
+
result = lib.infer_dtype(arr, skipna=False)
|
1604 |
+
assert result == "mixed"
|
1605 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1606 |
+
assert result == "empty"
|
1607 |
+
|
1608 |
+
def test_to_object_array_width(self):
|
1609 |
+
# see gh-13320
|
1610 |
+
rows = [[1, 2, 3], [4, 5, 6]]
|
1611 |
+
|
1612 |
+
expected = np.array(rows, dtype=object)
|
1613 |
+
out = lib.to_object_array(rows)
|
1614 |
+
tm.assert_numpy_array_equal(out, expected)
|
1615 |
+
|
1616 |
+
expected = np.array(rows, dtype=object)
|
1617 |
+
out = lib.to_object_array(rows, min_width=1)
|
1618 |
+
tm.assert_numpy_array_equal(out, expected)
|
1619 |
+
|
1620 |
+
expected = np.array(
|
1621 |
+
[[1, 2, 3, None, None], [4, 5, 6, None, None]], dtype=object
|
1622 |
+
)
|
1623 |
+
out = lib.to_object_array(rows, min_width=5)
|
1624 |
+
tm.assert_numpy_array_equal(out, expected)
|
1625 |
+
|
1626 |
+
def test_is_period(self):
|
1627 |
+
# GH#55264
|
1628 |
+
msg = "is_period is deprecated and will be removed in a future version"
|
1629 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1630 |
+
assert lib.is_period(Period("2011-01", freq="M"))
|
1631 |
+
assert not lib.is_period(PeriodIndex(["2011-01"], freq="M"))
|
1632 |
+
assert not lib.is_period(Timestamp("2011-01"))
|
1633 |
+
assert not lib.is_period(1)
|
1634 |
+
assert not lib.is_period(np.nan)
|
1635 |
+
|
1636 |
+
def test_is_interval(self):
|
1637 |
+
# GH#55264
|
1638 |
+
msg = "is_interval is deprecated and will be removed in a future version"
|
1639 |
+
item = Interval(1, 2)
|
1640 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1641 |
+
assert lib.is_interval(item)
|
1642 |
+
assert not lib.is_interval(pd.IntervalIndex([item]))
|
1643 |
+
assert not lib.is_interval(pd.IntervalIndex([item])._engine)
|
1644 |
+
|
1645 |
+
def test_categorical(self):
|
1646 |
+
# GH 8974
|
1647 |
+
arr = Categorical(list("abc"))
|
1648 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1649 |
+
assert result == "categorical"
|
1650 |
+
|
1651 |
+
result = lib.infer_dtype(Series(arr), skipna=True)
|
1652 |
+
assert result == "categorical"
|
1653 |
+
|
1654 |
+
arr = Categorical(list("abc"), categories=["cegfab"], ordered=True)
|
1655 |
+
result = lib.infer_dtype(arr, skipna=True)
|
1656 |
+
assert result == "categorical"
|
1657 |
+
|
1658 |
+
result = lib.infer_dtype(Series(arr), skipna=True)
|
1659 |
+
assert result == "categorical"
|
1660 |
+
|
1661 |
+
@pytest.mark.parametrize("asobject", [True, False])
|
1662 |
+
def test_interval(self, asobject):
|
1663 |
+
idx = pd.IntervalIndex.from_breaks(range(5), closed="both")
|
1664 |
+
if asobject:
|
1665 |
+
idx = idx.astype(object)
|
1666 |
+
|
1667 |
+
inferred = lib.infer_dtype(idx, skipna=False)
|
1668 |
+
assert inferred == "interval"
|
1669 |
+
|
1670 |
+
inferred = lib.infer_dtype(idx._data, skipna=False)
|
1671 |
+
assert inferred == "interval"
|
1672 |
+
|
1673 |
+
inferred = lib.infer_dtype(Series(idx, dtype=idx.dtype), skipna=False)
|
1674 |
+
assert inferred == "interval"
|
1675 |
+
|
1676 |
+
@pytest.mark.parametrize("value", [Timestamp(0), Timedelta(0), 0, 0.0])
|
1677 |
+
def test_interval_mismatched_closed(self, value):
|
1678 |
+
first = Interval(value, value, closed="left")
|
1679 |
+
second = Interval(value, value, closed="right")
|
1680 |
+
|
1681 |
+
# if closed match, we should infer "interval"
|
1682 |
+
arr = np.array([first, first], dtype=object)
|
1683 |
+
assert lib.infer_dtype(arr, skipna=False) == "interval"
|
1684 |
+
|
1685 |
+
# if closed dont match, we should _not_ get "interval"
|
1686 |
+
arr2 = np.array([first, second], dtype=object)
|
1687 |
+
assert lib.infer_dtype(arr2, skipna=False) == "mixed"
|
1688 |
+
|
1689 |
+
def test_interval_mismatched_subtype(self):
|
1690 |
+
first = Interval(0, 1, closed="left")
|
1691 |
+
second = Interval(Timestamp(0), Timestamp(1), closed="left")
|
1692 |
+
third = Interval(Timedelta(0), Timedelta(1), closed="left")
|
1693 |
+
|
1694 |
+
arr = np.array([first, second])
|
1695 |
+
assert lib.infer_dtype(arr, skipna=False) == "mixed"
|
1696 |
+
|
1697 |
+
arr = np.array([second, third])
|
1698 |
+
assert lib.infer_dtype(arr, skipna=False) == "mixed"
|
1699 |
+
|
1700 |
+
arr = np.array([first, third])
|
1701 |
+
assert lib.infer_dtype(arr, skipna=False) == "mixed"
|
1702 |
+
|
1703 |
+
# float vs int subdtype are compatible
|
1704 |
+
flt_interval = Interval(1.5, 2.5, closed="left")
|
1705 |
+
arr = np.array([first, flt_interval], dtype=object)
|
1706 |
+
assert lib.infer_dtype(arr, skipna=False) == "interval"
|
1707 |
+
|
1708 |
+
@pytest.mark.parametrize("klass", [pd.array, Series])
|
1709 |
+
@pytest.mark.parametrize("skipna", [True, False])
|
1710 |
+
@pytest.mark.parametrize("data", [["a", "b", "c"], ["a", "b", pd.NA]])
|
1711 |
+
def test_string_dtype(self, data, skipna, klass, nullable_string_dtype):
|
1712 |
+
# StringArray
|
1713 |
+
val = klass(data, dtype=nullable_string_dtype)
|
1714 |
+
inferred = lib.infer_dtype(val, skipna=skipna)
|
1715 |
+
assert inferred == "string"
|
1716 |
+
|
1717 |
+
@pytest.mark.parametrize("klass", [pd.array, Series])
|
1718 |
+
@pytest.mark.parametrize("skipna", [True, False])
|
1719 |
+
@pytest.mark.parametrize("data", [[True, False, True], [True, False, pd.NA]])
|
1720 |
+
def test_boolean_dtype(self, data, skipna, klass):
|
1721 |
+
# BooleanArray
|
1722 |
+
val = klass(data, dtype="boolean")
|
1723 |
+
inferred = lib.infer_dtype(val, skipna=skipna)
|
1724 |
+
assert inferred == "boolean"
|
1725 |
+
|
1726 |
+
|
1727 |
+
class TestNumberScalar:
|
1728 |
+
def test_is_number(self):
|
1729 |
+
assert is_number(True)
|
1730 |
+
assert is_number(1)
|
1731 |
+
assert is_number(1.1)
|
1732 |
+
assert is_number(1 + 3j)
|
1733 |
+
assert is_number(np.int64(1))
|
1734 |
+
assert is_number(np.float64(1.1))
|
1735 |
+
assert is_number(np.complex128(1 + 3j))
|
1736 |
+
assert is_number(np.nan)
|
1737 |
+
|
1738 |
+
assert not is_number(None)
|
1739 |
+
assert not is_number("x")
|
1740 |
+
assert not is_number(datetime(2011, 1, 1))
|
1741 |
+
assert not is_number(np.datetime64("2011-01-01"))
|
1742 |
+
assert not is_number(Timestamp("2011-01-01"))
|
1743 |
+
assert not is_number(Timestamp("2011-01-01", tz="US/Eastern"))
|
1744 |
+
assert not is_number(timedelta(1000))
|
1745 |
+
assert not is_number(Timedelta("1 days"))
|
1746 |
+
|
1747 |
+
# questionable
|
1748 |
+
assert not is_number(np.bool_(False))
|
1749 |
+
assert is_number(np.timedelta64(1, "D"))
|
1750 |
+
|
1751 |
+
def test_is_bool(self):
|
1752 |
+
assert is_bool(True)
|
1753 |
+
assert is_bool(False)
|
1754 |
+
assert is_bool(np.bool_(False))
|
1755 |
+
|
1756 |
+
assert not is_bool(1)
|
1757 |
+
assert not is_bool(1.1)
|
1758 |
+
assert not is_bool(1 + 3j)
|
1759 |
+
assert not is_bool(np.int64(1))
|
1760 |
+
assert not is_bool(np.float64(1.1))
|
1761 |
+
assert not is_bool(np.complex128(1 + 3j))
|
1762 |
+
assert not is_bool(np.nan)
|
1763 |
+
assert not is_bool(None)
|
1764 |
+
assert not is_bool("x")
|
1765 |
+
assert not is_bool(datetime(2011, 1, 1))
|
1766 |
+
assert not is_bool(np.datetime64("2011-01-01"))
|
1767 |
+
assert not is_bool(Timestamp("2011-01-01"))
|
1768 |
+
assert not is_bool(Timestamp("2011-01-01", tz="US/Eastern"))
|
1769 |
+
assert not is_bool(timedelta(1000))
|
1770 |
+
assert not is_bool(np.timedelta64(1, "D"))
|
1771 |
+
assert not is_bool(Timedelta("1 days"))
|
1772 |
+
|
1773 |
+
def test_is_integer(self):
|
1774 |
+
assert is_integer(1)
|
1775 |
+
assert is_integer(np.int64(1))
|
1776 |
+
|
1777 |
+
assert not is_integer(True)
|
1778 |
+
assert not is_integer(1.1)
|
1779 |
+
assert not is_integer(1 + 3j)
|
1780 |
+
assert not is_integer(False)
|
1781 |
+
assert not is_integer(np.bool_(False))
|
1782 |
+
assert not is_integer(np.float64(1.1))
|
1783 |
+
assert not is_integer(np.complex128(1 + 3j))
|
1784 |
+
assert not is_integer(np.nan)
|
1785 |
+
assert not is_integer(None)
|
1786 |
+
assert not is_integer("x")
|
1787 |
+
assert not is_integer(datetime(2011, 1, 1))
|
1788 |
+
assert not is_integer(np.datetime64("2011-01-01"))
|
1789 |
+
assert not is_integer(Timestamp("2011-01-01"))
|
1790 |
+
assert not is_integer(Timestamp("2011-01-01", tz="US/Eastern"))
|
1791 |
+
assert not is_integer(timedelta(1000))
|
1792 |
+
assert not is_integer(Timedelta("1 days"))
|
1793 |
+
assert not is_integer(np.timedelta64(1, "D"))
|
1794 |
+
|
1795 |
+
def test_is_float(self):
|
1796 |
+
assert is_float(1.1)
|
1797 |
+
assert is_float(np.float64(1.1))
|
1798 |
+
assert is_float(np.nan)
|
1799 |
+
|
1800 |
+
assert not is_float(True)
|
1801 |
+
assert not is_float(1)
|
1802 |
+
assert not is_float(1 + 3j)
|
1803 |
+
assert not is_float(False)
|
1804 |
+
assert not is_float(np.bool_(False))
|
1805 |
+
assert not is_float(np.int64(1))
|
1806 |
+
assert not is_float(np.complex128(1 + 3j))
|
1807 |
+
assert not is_float(None)
|
1808 |
+
assert not is_float("x")
|
1809 |
+
assert not is_float(datetime(2011, 1, 1))
|
1810 |
+
assert not is_float(np.datetime64("2011-01-01"))
|
1811 |
+
assert not is_float(Timestamp("2011-01-01"))
|
1812 |
+
assert not is_float(Timestamp("2011-01-01", tz="US/Eastern"))
|
1813 |
+
assert not is_float(timedelta(1000))
|
1814 |
+
assert not is_float(np.timedelta64(1, "D"))
|
1815 |
+
assert not is_float(Timedelta("1 days"))
|
1816 |
+
|
1817 |
+
def test_is_datetime_dtypes(self):
|
1818 |
+
ts = pd.date_range("20130101", periods=3)
|
1819 |
+
tsa = pd.date_range("20130101", periods=3, tz="US/Eastern")
|
1820 |
+
|
1821 |
+
msg = "is_datetime64tz_dtype is deprecated"
|
1822 |
+
|
1823 |
+
assert is_datetime64_dtype("datetime64")
|
1824 |
+
assert is_datetime64_dtype("datetime64[ns]")
|
1825 |
+
assert is_datetime64_dtype(ts)
|
1826 |
+
assert not is_datetime64_dtype(tsa)
|
1827 |
+
|
1828 |
+
assert not is_datetime64_ns_dtype("datetime64")
|
1829 |
+
assert is_datetime64_ns_dtype("datetime64[ns]")
|
1830 |
+
assert is_datetime64_ns_dtype(ts)
|
1831 |
+
assert is_datetime64_ns_dtype(tsa)
|
1832 |
+
|
1833 |
+
assert is_datetime64_any_dtype("datetime64")
|
1834 |
+
assert is_datetime64_any_dtype("datetime64[ns]")
|
1835 |
+
assert is_datetime64_any_dtype(ts)
|
1836 |
+
assert is_datetime64_any_dtype(tsa)
|
1837 |
+
|
1838 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1839 |
+
assert not is_datetime64tz_dtype("datetime64")
|
1840 |
+
assert not is_datetime64tz_dtype("datetime64[ns]")
|
1841 |
+
assert not is_datetime64tz_dtype(ts)
|
1842 |
+
assert is_datetime64tz_dtype(tsa)
|
1843 |
+
|
1844 |
+
@pytest.mark.parametrize("tz", ["US/Eastern", "UTC"])
|
1845 |
+
def test_is_datetime_dtypes_with_tz(self, tz):
|
1846 |
+
dtype = f"datetime64[ns, {tz}]"
|
1847 |
+
assert not is_datetime64_dtype(dtype)
|
1848 |
+
|
1849 |
+
msg = "is_datetime64tz_dtype is deprecated"
|
1850 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1851 |
+
assert is_datetime64tz_dtype(dtype)
|
1852 |
+
assert is_datetime64_ns_dtype(dtype)
|
1853 |
+
assert is_datetime64_any_dtype(dtype)
|
1854 |
+
|
1855 |
+
def test_is_timedelta(self):
|
1856 |
+
assert is_timedelta64_dtype("timedelta64")
|
1857 |
+
assert is_timedelta64_dtype("timedelta64[ns]")
|
1858 |
+
assert not is_timedelta64_ns_dtype("timedelta64")
|
1859 |
+
assert is_timedelta64_ns_dtype("timedelta64[ns]")
|
1860 |
+
|
1861 |
+
tdi = TimedeltaIndex([1e14, 2e14], dtype="timedelta64[ns]")
|
1862 |
+
assert is_timedelta64_dtype(tdi)
|
1863 |
+
assert is_timedelta64_ns_dtype(tdi)
|
1864 |
+
assert is_timedelta64_ns_dtype(tdi.astype("timedelta64[ns]"))
|
1865 |
+
|
1866 |
+
assert not is_timedelta64_ns_dtype(Index([], dtype=np.float64))
|
1867 |
+
assert not is_timedelta64_ns_dtype(Index([], dtype=np.int64))
|
1868 |
+
|
1869 |
+
|
1870 |
+
class TestIsScalar:
|
1871 |
+
def test_is_scalar_builtin_scalars(self):
|
1872 |
+
assert is_scalar(None)
|
1873 |
+
assert is_scalar(True)
|
1874 |
+
assert is_scalar(False)
|
1875 |
+
assert is_scalar(Fraction())
|
1876 |
+
assert is_scalar(0.0)
|
1877 |
+
assert is_scalar(1)
|
1878 |
+
assert is_scalar(complex(2))
|
1879 |
+
assert is_scalar(float("NaN"))
|
1880 |
+
assert is_scalar(np.nan)
|
1881 |
+
assert is_scalar("foobar")
|
1882 |
+
assert is_scalar(b"foobar")
|
1883 |
+
assert is_scalar(datetime(2014, 1, 1))
|
1884 |
+
assert is_scalar(date(2014, 1, 1))
|
1885 |
+
assert is_scalar(time(12, 0))
|
1886 |
+
assert is_scalar(timedelta(hours=1))
|
1887 |
+
assert is_scalar(pd.NaT)
|
1888 |
+
assert is_scalar(pd.NA)
|
1889 |
+
|
1890 |
+
def test_is_scalar_builtin_nonscalars(self):
|
1891 |
+
assert not is_scalar({})
|
1892 |
+
assert not is_scalar([])
|
1893 |
+
assert not is_scalar([1])
|
1894 |
+
assert not is_scalar(())
|
1895 |
+
assert not is_scalar((1,))
|
1896 |
+
assert not is_scalar(slice(None))
|
1897 |
+
assert not is_scalar(Ellipsis)
|
1898 |
+
|
1899 |
+
def test_is_scalar_numpy_array_scalars(self):
|
1900 |
+
assert is_scalar(np.int64(1))
|
1901 |
+
assert is_scalar(np.float64(1.0))
|
1902 |
+
assert is_scalar(np.int32(1))
|
1903 |
+
assert is_scalar(np.complex64(2))
|
1904 |
+
assert is_scalar(np.object_("foobar"))
|
1905 |
+
assert is_scalar(np.str_("foobar"))
|
1906 |
+
assert is_scalar(np.bytes_(b"foobar"))
|
1907 |
+
assert is_scalar(np.datetime64("2014-01-01"))
|
1908 |
+
assert is_scalar(np.timedelta64(1, "h"))
|
1909 |
+
|
1910 |
+
@pytest.mark.parametrize(
|
1911 |
+
"zerodim",
|
1912 |
+
[
|
1913 |
+
np.array(1),
|
1914 |
+
np.array("foobar"),
|
1915 |
+
np.array(np.datetime64("2014-01-01")),
|
1916 |
+
np.array(np.timedelta64(1, "h")),
|
1917 |
+
np.array(np.datetime64("NaT")),
|
1918 |
+
],
|
1919 |
+
)
|
1920 |
+
def test_is_scalar_numpy_zerodim_arrays(self, zerodim):
|
1921 |
+
assert not is_scalar(zerodim)
|
1922 |
+
assert is_scalar(lib.item_from_zerodim(zerodim))
|
1923 |
+
|
1924 |
+
@pytest.mark.parametrize("arr", [np.array([]), np.array([[]])])
|
1925 |
+
def test_is_scalar_numpy_arrays(self, arr):
|
1926 |
+
assert not is_scalar(arr)
|
1927 |
+
assert not is_scalar(MockNumpyLikeArray(arr))
|
1928 |
+
|
1929 |
+
def test_is_scalar_pandas_scalars(self):
|
1930 |
+
assert is_scalar(Timestamp("2014-01-01"))
|
1931 |
+
assert is_scalar(Timedelta(hours=1))
|
1932 |
+
assert is_scalar(Period("2014-01-01"))
|
1933 |
+
assert is_scalar(Interval(left=0, right=1))
|
1934 |
+
assert is_scalar(DateOffset(days=1))
|
1935 |
+
assert is_scalar(pd.offsets.Minute(3))
|
1936 |
+
|
1937 |
+
def test_is_scalar_pandas_containers(self):
|
1938 |
+
assert not is_scalar(Series(dtype=object))
|
1939 |
+
assert not is_scalar(Series([1]))
|
1940 |
+
assert not is_scalar(DataFrame())
|
1941 |
+
assert not is_scalar(DataFrame([[1]]))
|
1942 |
+
assert not is_scalar(Index([]))
|
1943 |
+
assert not is_scalar(Index([1]))
|
1944 |
+
assert not is_scalar(Categorical([]))
|
1945 |
+
assert not is_scalar(DatetimeIndex([])._data)
|
1946 |
+
assert not is_scalar(TimedeltaIndex([])._data)
|
1947 |
+
assert not is_scalar(DatetimeIndex([])._data.to_period("D"))
|
1948 |
+
assert not is_scalar(pd.array([1, 2, 3]))
|
1949 |
+
|
1950 |
+
def test_is_scalar_number(self):
|
1951 |
+
# Number() is not recognied by PyNumber_Check, so by extension
|
1952 |
+
# is not recognized by is_scalar, but instances of non-abstract
|
1953 |
+
# subclasses are.
|
1954 |
+
|
1955 |
+
class Numeric(Number):
|
1956 |
+
def __init__(self, value) -> None:
|
1957 |
+
self.value = value
|
1958 |
+
|
1959 |
+
def __int__(self) -> int:
|
1960 |
+
return self.value
|
1961 |
+
|
1962 |
+
num = Numeric(1)
|
1963 |
+
assert is_scalar(num)
|
1964 |
+
|
1965 |
+
|
1966 |
+
@pytest.mark.parametrize("unit", ["ms", "us", "ns"])
|
1967 |
+
def test_datetimeindex_from_empty_datetime64_array(unit):
|
1968 |
+
idx = DatetimeIndex(np.array([], dtype=f"datetime64[{unit}]"))
|
1969 |
+
assert len(idx) == 0
|
1970 |
+
|
1971 |
+
|
1972 |
+
def test_nan_to_nat_conversions():
|
1973 |
+
df = DataFrame(
|
1974 |
+
{"A": np.asarray(range(10), dtype="float64"), "B": Timestamp("20010101")}
|
1975 |
+
)
|
1976 |
+
df.iloc[3:6, :] = np.nan
|
1977 |
+
result = df.loc[4, "B"]
|
1978 |
+
assert result is pd.NaT
|
1979 |
+
|
1980 |
+
s = df["B"].copy()
|
1981 |
+
s[8:9] = np.nan
|
1982 |
+
assert s[8] is pd.NaT
|
1983 |
+
|
1984 |
+
|
1985 |
+
@pytest.mark.filterwarnings("ignore::PendingDeprecationWarning")
|
1986 |
+
def test_is_scipy_sparse(spmatrix):
|
1987 |
+
pytest.importorskip("scipy")
|
1988 |
+
assert is_scipy_sparse(spmatrix([[0, 1]]))
|
1989 |
+
assert not is_scipy_sparse(np.array([1]))
|
1990 |
+
|
1991 |
+
|
1992 |
+
def test_ensure_int32():
|
1993 |
+
values = np.arange(10, dtype=np.int32)
|
1994 |
+
result = ensure_int32(values)
|
1995 |
+
assert result.dtype == np.int32
|
1996 |
+
|
1997 |
+
values = np.arange(10, dtype=np.int64)
|
1998 |
+
result = ensure_int32(values)
|
1999 |
+
assert result.dtype == np.int32
|
2000 |
+
|
2001 |
+
|
2002 |
+
@pytest.mark.parametrize(
|
2003 |
+
"right,result",
|
2004 |
+
[
|
2005 |
+
(0, np.uint8),
|
2006 |
+
(-1, np.int16),
|
2007 |
+
(300, np.uint16),
|
2008 |
+
# For floats, we just upcast directly to float64 instead of trying to
|
2009 |
+
# find a smaller floating dtype
|
2010 |
+
(300.0, np.uint16), # for integer floats, we convert them to ints
|
2011 |
+
(300.1, np.float64),
|
2012 |
+
(np.int16(300), np.int16 if np_version_gt2 else np.uint16),
|
2013 |
+
],
|
2014 |
+
)
|
2015 |
+
def test_find_result_type_uint_int(right, result):
|
2016 |
+
left_dtype = np.dtype("uint8")
|
2017 |
+
assert find_result_type(left_dtype, right) == result
|
2018 |
+
|
2019 |
+
|
2020 |
+
@pytest.mark.parametrize(
|
2021 |
+
"right,result",
|
2022 |
+
[
|
2023 |
+
(0, np.int8),
|
2024 |
+
(-1, np.int8),
|
2025 |
+
(300, np.int16),
|
2026 |
+
# For floats, we just upcast directly to float64 instead of trying to
|
2027 |
+
# find a smaller floating dtype
|
2028 |
+
(300.0, np.int16), # for integer floats, we convert them to ints
|
2029 |
+
(300.1, np.float64),
|
2030 |
+
(np.int16(300), np.int16),
|
2031 |
+
],
|
2032 |
+
)
|
2033 |
+
def test_find_result_type_int_int(right, result):
|
2034 |
+
left_dtype = np.dtype("int8")
|
2035 |
+
assert find_result_type(left_dtype, right) == result
|
2036 |
+
|
2037 |
+
|
2038 |
+
@pytest.mark.parametrize(
|
2039 |
+
"right,result",
|
2040 |
+
[
|
2041 |
+
(300.0, np.float64),
|
2042 |
+
(np.float32(300), np.float32),
|
2043 |
+
],
|
2044 |
+
)
|
2045 |
+
def test_find_result_type_floats(right, result):
|
2046 |
+
left_dtype = np.dtype("float16")
|
2047 |
+
assert find_result_type(left_dtype, right) == result
|
venv/lib/python3.10/site-packages/pandas/tests/dtypes/test_missing.py
ADDED
@@ -0,0 +1,923 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import nullcontext
|
2 |
+
from datetime import datetime
|
3 |
+
from decimal import Decimal
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pytest
|
7 |
+
|
8 |
+
from pandas._config import config as cf
|
9 |
+
|
10 |
+
from pandas._libs import missing as libmissing
|
11 |
+
from pandas._libs.tslibs import iNaT
|
12 |
+
from pandas.compat.numpy import np_version_gte1p25
|
13 |
+
|
14 |
+
from pandas.core.dtypes.common import (
|
15 |
+
is_float,
|
16 |
+
is_scalar,
|
17 |
+
pandas_dtype,
|
18 |
+
)
|
19 |
+
from pandas.core.dtypes.dtypes import (
|
20 |
+
CategoricalDtype,
|
21 |
+
DatetimeTZDtype,
|
22 |
+
IntervalDtype,
|
23 |
+
PeriodDtype,
|
24 |
+
)
|
25 |
+
from pandas.core.dtypes.missing import (
|
26 |
+
array_equivalent,
|
27 |
+
is_valid_na_for_dtype,
|
28 |
+
isna,
|
29 |
+
isnull,
|
30 |
+
na_value_for_dtype,
|
31 |
+
notna,
|
32 |
+
notnull,
|
33 |
+
)
|
34 |
+
|
35 |
+
import pandas as pd
|
36 |
+
from pandas import (
|
37 |
+
DatetimeIndex,
|
38 |
+
Index,
|
39 |
+
NaT,
|
40 |
+
Series,
|
41 |
+
TimedeltaIndex,
|
42 |
+
date_range,
|
43 |
+
period_range,
|
44 |
+
)
|
45 |
+
import pandas._testing as tm
|
46 |
+
|
47 |
+
fix_now = pd.Timestamp("2021-01-01")
|
48 |
+
fix_utcnow = pd.Timestamp("2021-01-01", tz="UTC")
|
49 |
+
|
50 |
+
|
51 |
+
@pytest.mark.parametrize("notna_f", [notna, notnull])
|
52 |
+
def test_notna_notnull(notna_f):
|
53 |
+
assert notna_f(1.0)
|
54 |
+
assert not notna_f(None)
|
55 |
+
assert not notna_f(np.nan)
|
56 |
+
|
57 |
+
msg = "use_inf_as_na option is deprecated"
|
58 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
59 |
+
with cf.option_context("mode.use_inf_as_na", False):
|
60 |
+
assert notna_f(np.inf)
|
61 |
+
assert notna_f(-np.inf)
|
62 |
+
|
63 |
+
arr = np.array([1.5, np.inf, 3.5, -np.inf])
|
64 |
+
result = notna_f(arr)
|
65 |
+
assert result.all()
|
66 |
+
|
67 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
68 |
+
with cf.option_context("mode.use_inf_as_na", True):
|
69 |
+
assert not notna_f(np.inf)
|
70 |
+
assert not notna_f(-np.inf)
|
71 |
+
|
72 |
+
arr = np.array([1.5, np.inf, 3.5, -np.inf])
|
73 |
+
result = notna_f(arr)
|
74 |
+
assert result.sum() == 2
|
75 |
+
|
76 |
+
|
77 |
+
@pytest.mark.parametrize("null_func", [notna, notnull, isna, isnull])
|
78 |
+
@pytest.mark.parametrize(
|
79 |
+
"ser",
|
80 |
+
[
|
81 |
+
Series(
|
82 |
+
[str(i) for i in range(5)],
|
83 |
+
index=Index([str(i) for i in range(5)], dtype=object),
|
84 |
+
dtype=object,
|
85 |
+
),
|
86 |
+
Series(range(5), date_range("2020-01-01", periods=5)),
|
87 |
+
Series(range(5), period_range("2020-01-01", periods=5)),
|
88 |
+
],
|
89 |
+
)
|
90 |
+
def test_null_check_is_series(null_func, ser):
|
91 |
+
msg = "use_inf_as_na option is deprecated"
|
92 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
93 |
+
with cf.option_context("mode.use_inf_as_na", False):
|
94 |
+
assert isinstance(null_func(ser), Series)
|
95 |
+
|
96 |
+
|
97 |
+
class TestIsNA:
|
98 |
+
def test_0d_array(self):
|
99 |
+
assert isna(np.array(np.nan))
|
100 |
+
assert not isna(np.array(0.0))
|
101 |
+
assert not isna(np.array(0))
|
102 |
+
# test object dtype
|
103 |
+
assert isna(np.array(np.nan, dtype=object))
|
104 |
+
assert not isna(np.array(0.0, dtype=object))
|
105 |
+
assert not isna(np.array(0, dtype=object))
|
106 |
+
|
107 |
+
@pytest.mark.parametrize("shape", [(4, 0), (4,)])
|
108 |
+
def test_empty_object(self, shape):
|
109 |
+
arr = np.empty(shape=shape, dtype=object)
|
110 |
+
result = isna(arr)
|
111 |
+
expected = np.ones(shape=shape, dtype=bool)
|
112 |
+
tm.assert_numpy_array_equal(result, expected)
|
113 |
+
|
114 |
+
@pytest.mark.parametrize("isna_f", [isna, isnull])
|
115 |
+
def test_isna_isnull(self, isna_f):
|
116 |
+
assert not isna_f(1.0)
|
117 |
+
assert isna_f(None)
|
118 |
+
assert isna_f(np.nan)
|
119 |
+
assert float("nan")
|
120 |
+
assert not isna_f(np.inf)
|
121 |
+
assert not isna_f(-np.inf)
|
122 |
+
|
123 |
+
# type
|
124 |
+
assert not isna_f(type(Series(dtype=object)))
|
125 |
+
assert not isna_f(type(Series(dtype=np.float64)))
|
126 |
+
assert not isna_f(type(pd.DataFrame()))
|
127 |
+
|
128 |
+
@pytest.mark.parametrize("isna_f", [isna, isnull])
|
129 |
+
@pytest.mark.parametrize(
|
130 |
+
"data",
|
131 |
+
[
|
132 |
+
np.arange(4, dtype=float),
|
133 |
+
[0.0, 1.0, 0.0, 1.0],
|
134 |
+
Series(list("abcd"), dtype=object),
|
135 |
+
date_range("2020-01-01", periods=4),
|
136 |
+
],
|
137 |
+
)
|
138 |
+
@pytest.mark.parametrize(
|
139 |
+
"index",
|
140 |
+
[
|
141 |
+
date_range("2020-01-01", periods=4),
|
142 |
+
range(4),
|
143 |
+
period_range("2020-01-01", periods=4),
|
144 |
+
],
|
145 |
+
)
|
146 |
+
def test_isna_isnull_frame(self, isna_f, data, index):
|
147 |
+
# frame
|
148 |
+
df = pd.DataFrame(data, index=index)
|
149 |
+
result = isna_f(df)
|
150 |
+
expected = df.apply(isna_f)
|
151 |
+
tm.assert_frame_equal(result, expected)
|
152 |
+
|
153 |
+
def test_isna_lists(self):
|
154 |
+
result = isna([[False]])
|
155 |
+
exp = np.array([[False]])
|
156 |
+
tm.assert_numpy_array_equal(result, exp)
|
157 |
+
|
158 |
+
result = isna([[1], [2]])
|
159 |
+
exp = np.array([[False], [False]])
|
160 |
+
tm.assert_numpy_array_equal(result, exp)
|
161 |
+
|
162 |
+
# list of strings / unicode
|
163 |
+
result = isna(["foo", "bar"])
|
164 |
+
exp = np.array([False, False])
|
165 |
+
tm.assert_numpy_array_equal(result, exp)
|
166 |
+
|
167 |
+
result = isna(["foo", "bar"])
|
168 |
+
exp = np.array([False, False])
|
169 |
+
tm.assert_numpy_array_equal(result, exp)
|
170 |
+
|
171 |
+
# GH20675
|
172 |
+
result = isna([np.nan, "world"])
|
173 |
+
exp = np.array([True, False])
|
174 |
+
tm.assert_numpy_array_equal(result, exp)
|
175 |
+
|
176 |
+
def test_isna_nat(self):
|
177 |
+
result = isna([NaT])
|
178 |
+
exp = np.array([True])
|
179 |
+
tm.assert_numpy_array_equal(result, exp)
|
180 |
+
|
181 |
+
result = isna(np.array([NaT], dtype=object))
|
182 |
+
exp = np.array([True])
|
183 |
+
tm.assert_numpy_array_equal(result, exp)
|
184 |
+
|
185 |
+
def test_isna_numpy_nat(self):
|
186 |
+
arr = np.array(
|
187 |
+
[
|
188 |
+
NaT,
|
189 |
+
np.datetime64("NaT"),
|
190 |
+
np.timedelta64("NaT"),
|
191 |
+
np.datetime64("NaT", "s"),
|
192 |
+
]
|
193 |
+
)
|
194 |
+
result = isna(arr)
|
195 |
+
expected = np.array([True] * 4)
|
196 |
+
tm.assert_numpy_array_equal(result, expected)
|
197 |
+
|
198 |
+
def test_isna_datetime(self):
|
199 |
+
assert not isna(datetime.now())
|
200 |
+
assert notna(datetime.now())
|
201 |
+
|
202 |
+
idx = date_range("1/1/1990", periods=20)
|
203 |
+
exp = np.ones(len(idx), dtype=bool)
|
204 |
+
tm.assert_numpy_array_equal(notna(idx), exp)
|
205 |
+
|
206 |
+
idx = np.asarray(idx)
|
207 |
+
idx[0] = iNaT
|
208 |
+
idx = DatetimeIndex(idx)
|
209 |
+
mask = isna(idx)
|
210 |
+
assert mask[0]
|
211 |
+
exp = np.array([True] + [False] * (len(idx) - 1), dtype=bool)
|
212 |
+
tm.assert_numpy_array_equal(mask, exp)
|
213 |
+
|
214 |
+
# GH 9129
|
215 |
+
pidx = idx.to_period(freq="M")
|
216 |
+
mask = isna(pidx)
|
217 |
+
assert mask[0]
|
218 |
+
exp = np.array([True] + [False] * (len(idx) - 1), dtype=bool)
|
219 |
+
tm.assert_numpy_array_equal(mask, exp)
|
220 |
+
|
221 |
+
mask = isna(pidx[1:])
|
222 |
+
exp = np.zeros(len(mask), dtype=bool)
|
223 |
+
tm.assert_numpy_array_equal(mask, exp)
|
224 |
+
|
225 |
+
def test_isna_old_datetimelike(self):
|
226 |
+
# isna_old should work for dt64tz, td64, and period, not just tznaive
|
227 |
+
dti = date_range("2016-01-01", periods=3)
|
228 |
+
dta = dti._data
|
229 |
+
dta[-1] = NaT
|
230 |
+
expected = np.array([False, False, True], dtype=bool)
|
231 |
+
|
232 |
+
objs = [dta, dta.tz_localize("US/Eastern"), dta - dta, dta.to_period("D")]
|
233 |
+
|
234 |
+
for obj in objs:
|
235 |
+
msg = "use_inf_as_na option is deprecated"
|
236 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
237 |
+
with cf.option_context("mode.use_inf_as_na", True):
|
238 |
+
result = isna(obj)
|
239 |
+
|
240 |
+
tm.assert_numpy_array_equal(result, expected)
|
241 |
+
|
242 |
+
@pytest.mark.parametrize(
|
243 |
+
"value, expected",
|
244 |
+
[
|
245 |
+
(np.complex128(np.nan), True),
|
246 |
+
(np.float64(1), False),
|
247 |
+
(np.array([1, 1 + 0j, np.nan, 3]), np.array([False, False, True, False])),
|
248 |
+
(
|
249 |
+
np.array([1, 1 + 0j, np.nan, 3], dtype=object),
|
250 |
+
np.array([False, False, True, False]),
|
251 |
+
),
|
252 |
+
(
|
253 |
+
np.array([1, 1 + 0j, np.nan, 3]).astype(object),
|
254 |
+
np.array([False, False, True, False]),
|
255 |
+
),
|
256 |
+
],
|
257 |
+
)
|
258 |
+
def test_complex(self, value, expected):
|
259 |
+
result = isna(value)
|
260 |
+
if is_scalar(result):
|
261 |
+
assert result is expected
|
262 |
+
else:
|
263 |
+
tm.assert_numpy_array_equal(result, expected)
|
264 |
+
|
265 |
+
def test_datetime_other_units(self):
|
266 |
+
idx = DatetimeIndex(["2011-01-01", "NaT", "2011-01-02"])
|
267 |
+
exp = np.array([False, True, False])
|
268 |
+
tm.assert_numpy_array_equal(isna(idx), exp)
|
269 |
+
tm.assert_numpy_array_equal(notna(idx), ~exp)
|
270 |
+
tm.assert_numpy_array_equal(isna(idx.values), exp)
|
271 |
+
tm.assert_numpy_array_equal(notna(idx.values), ~exp)
|
272 |
+
|
273 |
+
@pytest.mark.parametrize(
|
274 |
+
"dtype",
|
275 |
+
[
|
276 |
+
"datetime64[D]",
|
277 |
+
"datetime64[h]",
|
278 |
+
"datetime64[m]",
|
279 |
+
"datetime64[s]",
|
280 |
+
"datetime64[ms]",
|
281 |
+
"datetime64[us]",
|
282 |
+
"datetime64[ns]",
|
283 |
+
],
|
284 |
+
)
|
285 |
+
def test_datetime_other_units_astype(self, dtype):
|
286 |
+
idx = DatetimeIndex(["2011-01-01", "NaT", "2011-01-02"])
|
287 |
+
values = idx.values.astype(dtype)
|
288 |
+
|
289 |
+
exp = np.array([False, True, False])
|
290 |
+
tm.assert_numpy_array_equal(isna(values), exp)
|
291 |
+
tm.assert_numpy_array_equal(notna(values), ~exp)
|
292 |
+
|
293 |
+
exp = Series([False, True, False])
|
294 |
+
s = Series(values)
|
295 |
+
tm.assert_series_equal(isna(s), exp)
|
296 |
+
tm.assert_series_equal(notna(s), ~exp)
|
297 |
+
s = Series(values, dtype=object)
|
298 |
+
tm.assert_series_equal(isna(s), exp)
|
299 |
+
tm.assert_series_equal(notna(s), ~exp)
|
300 |
+
|
301 |
+
def test_timedelta_other_units(self):
|
302 |
+
idx = TimedeltaIndex(["1 days", "NaT", "2 days"])
|
303 |
+
exp = np.array([False, True, False])
|
304 |
+
tm.assert_numpy_array_equal(isna(idx), exp)
|
305 |
+
tm.assert_numpy_array_equal(notna(idx), ~exp)
|
306 |
+
tm.assert_numpy_array_equal(isna(idx.values), exp)
|
307 |
+
tm.assert_numpy_array_equal(notna(idx.values), ~exp)
|
308 |
+
|
309 |
+
@pytest.mark.parametrize(
|
310 |
+
"dtype",
|
311 |
+
[
|
312 |
+
"timedelta64[D]",
|
313 |
+
"timedelta64[h]",
|
314 |
+
"timedelta64[m]",
|
315 |
+
"timedelta64[s]",
|
316 |
+
"timedelta64[ms]",
|
317 |
+
"timedelta64[us]",
|
318 |
+
"timedelta64[ns]",
|
319 |
+
],
|
320 |
+
)
|
321 |
+
def test_timedelta_other_units_dtype(self, dtype):
|
322 |
+
idx = TimedeltaIndex(["1 days", "NaT", "2 days"])
|
323 |
+
values = idx.values.astype(dtype)
|
324 |
+
|
325 |
+
exp = np.array([False, True, False])
|
326 |
+
tm.assert_numpy_array_equal(isna(values), exp)
|
327 |
+
tm.assert_numpy_array_equal(notna(values), ~exp)
|
328 |
+
|
329 |
+
exp = Series([False, True, False])
|
330 |
+
s = Series(values)
|
331 |
+
tm.assert_series_equal(isna(s), exp)
|
332 |
+
tm.assert_series_equal(notna(s), ~exp)
|
333 |
+
s = Series(values, dtype=object)
|
334 |
+
tm.assert_series_equal(isna(s), exp)
|
335 |
+
tm.assert_series_equal(notna(s), ~exp)
|
336 |
+
|
337 |
+
def test_period(self):
|
338 |
+
idx = pd.PeriodIndex(["2011-01", "NaT", "2012-01"], freq="M")
|
339 |
+
exp = np.array([False, True, False])
|
340 |
+
tm.assert_numpy_array_equal(isna(idx), exp)
|
341 |
+
tm.assert_numpy_array_equal(notna(idx), ~exp)
|
342 |
+
|
343 |
+
exp = Series([False, True, False])
|
344 |
+
s = Series(idx)
|
345 |
+
tm.assert_series_equal(isna(s), exp)
|
346 |
+
tm.assert_series_equal(notna(s), ~exp)
|
347 |
+
s = Series(idx, dtype=object)
|
348 |
+
tm.assert_series_equal(isna(s), exp)
|
349 |
+
tm.assert_series_equal(notna(s), ~exp)
|
350 |
+
|
351 |
+
def test_decimal(self):
|
352 |
+
# scalars GH#23530
|
353 |
+
a = Decimal(1.0)
|
354 |
+
assert isna(a) is False
|
355 |
+
assert notna(a) is True
|
356 |
+
|
357 |
+
b = Decimal("NaN")
|
358 |
+
assert isna(b) is True
|
359 |
+
assert notna(b) is False
|
360 |
+
|
361 |
+
# array
|
362 |
+
arr = np.array([a, b])
|
363 |
+
expected = np.array([False, True])
|
364 |
+
result = isna(arr)
|
365 |
+
tm.assert_numpy_array_equal(result, expected)
|
366 |
+
|
367 |
+
result = notna(arr)
|
368 |
+
tm.assert_numpy_array_equal(result, ~expected)
|
369 |
+
|
370 |
+
# series
|
371 |
+
ser = Series(arr)
|
372 |
+
expected = Series(expected)
|
373 |
+
result = isna(ser)
|
374 |
+
tm.assert_series_equal(result, expected)
|
375 |
+
|
376 |
+
result = notna(ser)
|
377 |
+
tm.assert_series_equal(result, ~expected)
|
378 |
+
|
379 |
+
# index
|
380 |
+
idx = Index(arr)
|
381 |
+
expected = np.array([False, True])
|
382 |
+
result = isna(idx)
|
383 |
+
tm.assert_numpy_array_equal(result, expected)
|
384 |
+
|
385 |
+
result = notna(idx)
|
386 |
+
tm.assert_numpy_array_equal(result, ~expected)
|
387 |
+
|
388 |
+
|
389 |
+
@pytest.mark.parametrize("dtype_equal", [True, False])
|
390 |
+
def test_array_equivalent(dtype_equal):
|
391 |
+
assert array_equivalent(
|
392 |
+
np.array([np.nan, np.nan]), np.array([np.nan, np.nan]), dtype_equal=dtype_equal
|
393 |
+
)
|
394 |
+
assert array_equivalent(
|
395 |
+
np.array([np.nan, 1, np.nan]),
|
396 |
+
np.array([np.nan, 1, np.nan]),
|
397 |
+
dtype_equal=dtype_equal,
|
398 |
+
)
|
399 |
+
assert array_equivalent(
|
400 |
+
np.array([np.nan, None], dtype="object"),
|
401 |
+
np.array([np.nan, None], dtype="object"),
|
402 |
+
dtype_equal=dtype_equal,
|
403 |
+
)
|
404 |
+
# Check the handling of nested arrays in array_equivalent_object
|
405 |
+
assert array_equivalent(
|
406 |
+
np.array([np.array([np.nan, None], dtype="object"), None], dtype="object"),
|
407 |
+
np.array([np.array([np.nan, None], dtype="object"), None], dtype="object"),
|
408 |
+
dtype_equal=dtype_equal,
|
409 |
+
)
|
410 |
+
assert array_equivalent(
|
411 |
+
np.array([np.nan, 1 + 1j], dtype="complex"),
|
412 |
+
np.array([np.nan, 1 + 1j], dtype="complex"),
|
413 |
+
dtype_equal=dtype_equal,
|
414 |
+
)
|
415 |
+
assert not array_equivalent(
|
416 |
+
np.array([np.nan, 1 + 1j], dtype="complex"),
|
417 |
+
np.array([np.nan, 1 + 2j], dtype="complex"),
|
418 |
+
dtype_equal=dtype_equal,
|
419 |
+
)
|
420 |
+
assert not array_equivalent(
|
421 |
+
np.array([np.nan, 1, np.nan]),
|
422 |
+
np.array([np.nan, 2, np.nan]),
|
423 |
+
dtype_equal=dtype_equal,
|
424 |
+
)
|
425 |
+
assert not array_equivalent(
|
426 |
+
np.array(["a", "b", "c", "d"]), np.array(["e", "e"]), dtype_equal=dtype_equal
|
427 |
+
)
|
428 |
+
assert array_equivalent(
|
429 |
+
Index([0, np.nan]), Index([0, np.nan]), dtype_equal=dtype_equal
|
430 |
+
)
|
431 |
+
assert not array_equivalent(
|
432 |
+
Index([0, np.nan]), Index([1, np.nan]), dtype_equal=dtype_equal
|
433 |
+
)
|
434 |
+
|
435 |
+
|
436 |
+
@pytest.mark.parametrize("dtype_equal", [True, False])
|
437 |
+
def test_array_equivalent_tdi(dtype_equal):
|
438 |
+
assert array_equivalent(
|
439 |
+
TimedeltaIndex([0, np.nan]),
|
440 |
+
TimedeltaIndex([0, np.nan]),
|
441 |
+
dtype_equal=dtype_equal,
|
442 |
+
)
|
443 |
+
assert not array_equivalent(
|
444 |
+
TimedeltaIndex([0, np.nan]),
|
445 |
+
TimedeltaIndex([1, np.nan]),
|
446 |
+
dtype_equal=dtype_equal,
|
447 |
+
)
|
448 |
+
|
449 |
+
|
450 |
+
@pytest.mark.parametrize("dtype_equal", [True, False])
|
451 |
+
def test_array_equivalent_dti(dtype_equal):
|
452 |
+
assert array_equivalent(
|
453 |
+
DatetimeIndex([0, np.nan]), DatetimeIndex([0, np.nan]), dtype_equal=dtype_equal
|
454 |
+
)
|
455 |
+
assert not array_equivalent(
|
456 |
+
DatetimeIndex([0, np.nan]), DatetimeIndex([1, np.nan]), dtype_equal=dtype_equal
|
457 |
+
)
|
458 |
+
|
459 |
+
dti1 = DatetimeIndex([0, np.nan], tz="US/Eastern")
|
460 |
+
dti2 = DatetimeIndex([0, np.nan], tz="CET")
|
461 |
+
dti3 = DatetimeIndex([1, np.nan], tz="US/Eastern")
|
462 |
+
|
463 |
+
assert array_equivalent(
|
464 |
+
dti1,
|
465 |
+
dti1,
|
466 |
+
dtype_equal=dtype_equal,
|
467 |
+
)
|
468 |
+
assert not array_equivalent(
|
469 |
+
dti1,
|
470 |
+
dti3,
|
471 |
+
dtype_equal=dtype_equal,
|
472 |
+
)
|
473 |
+
# The rest are not dtype_equal
|
474 |
+
assert not array_equivalent(DatetimeIndex([0, np.nan]), dti1)
|
475 |
+
assert array_equivalent(
|
476 |
+
dti2,
|
477 |
+
dti1,
|
478 |
+
)
|
479 |
+
|
480 |
+
assert not array_equivalent(DatetimeIndex([0, np.nan]), TimedeltaIndex([0, np.nan]))
|
481 |
+
|
482 |
+
|
483 |
+
@pytest.mark.parametrize(
|
484 |
+
"val", [1, 1.1, 1 + 1j, True, "abc", [1, 2], (1, 2), {1, 2}, {"a": 1}, None]
|
485 |
+
)
|
486 |
+
def test_array_equivalent_series(val):
|
487 |
+
arr = np.array([1, 2])
|
488 |
+
msg = "elementwise comparison failed"
|
489 |
+
cm = (
|
490 |
+
# stacklevel is chosen to make sense when called from .equals
|
491 |
+
tm.assert_produces_warning(FutureWarning, match=msg, check_stacklevel=False)
|
492 |
+
if isinstance(val, str) and not np_version_gte1p25
|
493 |
+
else nullcontext()
|
494 |
+
)
|
495 |
+
with cm:
|
496 |
+
assert not array_equivalent(Series([arr, arr]), Series([arr, val]))
|
497 |
+
|
498 |
+
|
499 |
+
def test_array_equivalent_array_mismatched_shape():
|
500 |
+
# to trigger the motivating bug, the first N elements of the arrays need
|
501 |
+
# to match
|
502 |
+
first = np.array([1, 2, 3])
|
503 |
+
second = np.array([1, 2])
|
504 |
+
|
505 |
+
left = Series([first, "a"], dtype=object)
|
506 |
+
right = Series([second, "a"], dtype=object)
|
507 |
+
assert not array_equivalent(left, right)
|
508 |
+
|
509 |
+
|
510 |
+
def test_array_equivalent_array_mismatched_dtype():
|
511 |
+
# same shape, different dtype can still be equivalent
|
512 |
+
first = np.array([1, 2], dtype=np.float64)
|
513 |
+
second = np.array([1, 2])
|
514 |
+
|
515 |
+
left = Series([first, "a"], dtype=object)
|
516 |
+
right = Series([second, "a"], dtype=object)
|
517 |
+
assert array_equivalent(left, right)
|
518 |
+
|
519 |
+
|
520 |
+
def test_array_equivalent_different_dtype_but_equal():
|
521 |
+
# Unclear if this is exposed anywhere in the public-facing API
|
522 |
+
assert array_equivalent(np.array([1, 2]), np.array([1.0, 2.0]))
|
523 |
+
|
524 |
+
|
525 |
+
@pytest.mark.parametrize(
|
526 |
+
"lvalue, rvalue",
|
527 |
+
[
|
528 |
+
# There are 3 variants for each of lvalue and rvalue. We include all
|
529 |
+
# three for the tz-naive `now` and exclude the datetim64 variant
|
530 |
+
# for utcnow because it drops tzinfo.
|
531 |
+
(fix_now, fix_utcnow),
|
532 |
+
(fix_now.to_datetime64(), fix_utcnow),
|
533 |
+
(fix_now.to_pydatetime(), fix_utcnow),
|
534 |
+
(fix_now, fix_utcnow),
|
535 |
+
(fix_now.to_datetime64(), fix_utcnow.to_pydatetime()),
|
536 |
+
(fix_now.to_pydatetime(), fix_utcnow.to_pydatetime()),
|
537 |
+
],
|
538 |
+
)
|
539 |
+
def test_array_equivalent_tzawareness(lvalue, rvalue):
|
540 |
+
# we shouldn't raise if comparing tzaware and tznaive datetimes
|
541 |
+
left = np.array([lvalue], dtype=object)
|
542 |
+
right = np.array([rvalue], dtype=object)
|
543 |
+
|
544 |
+
assert not array_equivalent(left, right, strict_nan=True)
|
545 |
+
assert not array_equivalent(left, right, strict_nan=False)
|
546 |
+
|
547 |
+
|
548 |
+
def test_array_equivalent_compat():
|
549 |
+
# see gh-13388
|
550 |
+
m = np.array([(1, 2), (3, 4)], dtype=[("a", int), ("b", float)])
|
551 |
+
n = np.array([(1, 2), (3, 4)], dtype=[("a", int), ("b", float)])
|
552 |
+
assert array_equivalent(m, n, strict_nan=True)
|
553 |
+
assert array_equivalent(m, n, strict_nan=False)
|
554 |
+
|
555 |
+
m = np.array([(1, 2), (3, 4)], dtype=[("a", int), ("b", float)])
|
556 |
+
n = np.array([(1, 2), (4, 3)], dtype=[("a", int), ("b", float)])
|
557 |
+
assert not array_equivalent(m, n, strict_nan=True)
|
558 |
+
assert not array_equivalent(m, n, strict_nan=False)
|
559 |
+
|
560 |
+
m = np.array([(1, 2), (3, 4)], dtype=[("a", int), ("b", float)])
|
561 |
+
n = np.array([(1, 2), (3, 4)], dtype=[("b", int), ("a", float)])
|
562 |
+
assert not array_equivalent(m, n, strict_nan=True)
|
563 |
+
assert not array_equivalent(m, n, strict_nan=False)
|
564 |
+
|
565 |
+
|
566 |
+
@pytest.mark.parametrize("dtype", ["O", "S", "U"])
|
567 |
+
def test_array_equivalent_str(dtype):
|
568 |
+
assert array_equivalent(
|
569 |
+
np.array(["A", "B"], dtype=dtype), np.array(["A", "B"], dtype=dtype)
|
570 |
+
)
|
571 |
+
assert not array_equivalent(
|
572 |
+
np.array(["A", "B"], dtype=dtype), np.array(["A", "X"], dtype=dtype)
|
573 |
+
)
|
574 |
+
|
575 |
+
|
576 |
+
@pytest.mark.parametrize("strict_nan", [True, False])
|
577 |
+
def test_array_equivalent_nested(strict_nan):
|
578 |
+
# reached in groupby aggregations, make sure we use np.any when checking
|
579 |
+
# if the comparison is truthy
|
580 |
+
left = np.array([np.array([50, 70, 90]), np.array([20, 30])], dtype=object)
|
581 |
+
right = np.array([np.array([50, 70, 90]), np.array([20, 30])], dtype=object)
|
582 |
+
|
583 |
+
assert array_equivalent(left, right, strict_nan=strict_nan)
|
584 |
+
assert not array_equivalent(left, right[::-1], strict_nan=strict_nan)
|
585 |
+
|
586 |
+
left = np.empty(2, dtype=object)
|
587 |
+
left[:] = [np.array([50, 70, 90]), np.array([20, 30, 40])]
|
588 |
+
right = np.empty(2, dtype=object)
|
589 |
+
right[:] = [np.array([50, 70, 90]), np.array([20, 30, 40])]
|
590 |
+
assert array_equivalent(left, right, strict_nan=strict_nan)
|
591 |
+
assert not array_equivalent(left, right[::-1], strict_nan=strict_nan)
|
592 |
+
|
593 |
+
left = np.array([np.array([50, 50, 50]), np.array([40, 40])], dtype=object)
|
594 |
+
right = np.array([50, 40])
|
595 |
+
assert not array_equivalent(left, right, strict_nan=strict_nan)
|
596 |
+
|
597 |
+
|
598 |
+
@pytest.mark.filterwarnings("ignore:elementwise comparison failed:DeprecationWarning")
|
599 |
+
@pytest.mark.parametrize("strict_nan", [True, False])
|
600 |
+
def test_array_equivalent_nested2(strict_nan):
|
601 |
+
# more than one level of nesting
|
602 |
+
left = np.array(
|
603 |
+
[
|
604 |
+
np.array([np.array([50, 70]), np.array([90])], dtype=object),
|
605 |
+
np.array([np.array([20, 30])], dtype=object),
|
606 |
+
],
|
607 |
+
dtype=object,
|
608 |
+
)
|
609 |
+
right = np.array(
|
610 |
+
[
|
611 |
+
np.array([np.array([50, 70]), np.array([90])], dtype=object),
|
612 |
+
np.array([np.array([20, 30])], dtype=object),
|
613 |
+
],
|
614 |
+
dtype=object,
|
615 |
+
)
|
616 |
+
assert array_equivalent(left, right, strict_nan=strict_nan)
|
617 |
+
assert not array_equivalent(left, right[::-1], strict_nan=strict_nan)
|
618 |
+
|
619 |
+
left = np.array([np.array([np.array([50, 50, 50])], dtype=object)], dtype=object)
|
620 |
+
right = np.array([50])
|
621 |
+
assert not array_equivalent(left, right, strict_nan=strict_nan)
|
622 |
+
|
623 |
+
|
624 |
+
@pytest.mark.parametrize("strict_nan", [True, False])
|
625 |
+
def test_array_equivalent_nested_list(strict_nan):
|
626 |
+
left = np.array([[50, 70, 90], [20, 30]], dtype=object)
|
627 |
+
right = np.array([[50, 70, 90], [20, 30]], dtype=object)
|
628 |
+
|
629 |
+
assert array_equivalent(left, right, strict_nan=strict_nan)
|
630 |
+
assert not array_equivalent(left, right[::-1], strict_nan=strict_nan)
|
631 |
+
|
632 |
+
left = np.array([[50, 50, 50], [40, 40]], dtype=object)
|
633 |
+
right = np.array([50, 40])
|
634 |
+
assert not array_equivalent(left, right, strict_nan=strict_nan)
|
635 |
+
|
636 |
+
|
637 |
+
@pytest.mark.filterwarnings("ignore:elementwise comparison failed:DeprecationWarning")
|
638 |
+
@pytest.mark.xfail(reason="failing")
|
639 |
+
@pytest.mark.parametrize("strict_nan", [True, False])
|
640 |
+
def test_array_equivalent_nested_mixed_list(strict_nan):
|
641 |
+
# mixed arrays / lists in left and right
|
642 |
+
# https://github.com/pandas-dev/pandas/issues/50360
|
643 |
+
left = np.array([np.array([1, 2, 3]), np.array([4, 5])], dtype=object)
|
644 |
+
right = np.array([[1, 2, 3], [4, 5]], dtype=object)
|
645 |
+
|
646 |
+
assert array_equivalent(left, right, strict_nan=strict_nan)
|
647 |
+
assert not array_equivalent(left, right[::-1], strict_nan=strict_nan)
|
648 |
+
|
649 |
+
# multiple levels of nesting
|
650 |
+
left = np.array(
|
651 |
+
[
|
652 |
+
np.array([np.array([1, 2, 3]), np.array([4, 5])], dtype=object),
|
653 |
+
np.array([np.array([6]), np.array([7, 8]), np.array([9])], dtype=object),
|
654 |
+
],
|
655 |
+
dtype=object,
|
656 |
+
)
|
657 |
+
right = np.array([[[1, 2, 3], [4, 5]], [[6], [7, 8], [9]]], dtype=object)
|
658 |
+
assert array_equivalent(left, right, strict_nan=strict_nan)
|
659 |
+
assert not array_equivalent(left, right[::-1], strict_nan=strict_nan)
|
660 |
+
|
661 |
+
# same-length lists
|
662 |
+
subarr = np.empty(2, dtype=object)
|
663 |
+
subarr[:] = [
|
664 |
+
np.array([None, "b"], dtype=object),
|
665 |
+
np.array(["c", "d"], dtype=object),
|
666 |
+
]
|
667 |
+
left = np.array([subarr, None], dtype=object)
|
668 |
+
right = np.array([[[None, "b"], ["c", "d"]], None], dtype=object)
|
669 |
+
assert array_equivalent(left, right, strict_nan=strict_nan)
|
670 |
+
assert not array_equivalent(left, right[::-1], strict_nan=strict_nan)
|
671 |
+
|
672 |
+
|
673 |
+
@pytest.mark.xfail(reason="failing")
|
674 |
+
@pytest.mark.parametrize("strict_nan", [True, False])
|
675 |
+
def test_array_equivalent_nested_dicts(strict_nan):
|
676 |
+
left = np.array([{"f1": 1, "f2": np.array(["a", "b"], dtype=object)}], dtype=object)
|
677 |
+
right = np.array(
|
678 |
+
[{"f1": 1, "f2": np.array(["a", "b"], dtype=object)}], dtype=object
|
679 |
+
)
|
680 |
+
assert array_equivalent(left, right, strict_nan=strict_nan)
|
681 |
+
assert not array_equivalent(left, right[::-1], strict_nan=strict_nan)
|
682 |
+
|
683 |
+
right2 = np.array([{"f1": 1, "f2": ["a", "b"]}], dtype=object)
|
684 |
+
assert array_equivalent(left, right2, strict_nan=strict_nan)
|
685 |
+
assert not array_equivalent(left, right2[::-1], strict_nan=strict_nan)
|
686 |
+
|
687 |
+
|
688 |
+
def test_array_equivalent_index_with_tuples():
|
689 |
+
# GH#48446
|
690 |
+
idx1 = Index(np.array([(pd.NA, 4), (1, 1)], dtype="object"))
|
691 |
+
idx2 = Index(np.array([(1, 1), (pd.NA, 4)], dtype="object"))
|
692 |
+
assert not array_equivalent(idx1, idx2)
|
693 |
+
assert not idx1.equals(idx2)
|
694 |
+
assert not array_equivalent(idx2, idx1)
|
695 |
+
assert not idx2.equals(idx1)
|
696 |
+
|
697 |
+
idx1 = Index(np.array([(4, pd.NA), (1, 1)], dtype="object"))
|
698 |
+
idx2 = Index(np.array([(1, 1), (4, pd.NA)], dtype="object"))
|
699 |
+
assert not array_equivalent(idx1, idx2)
|
700 |
+
assert not idx1.equals(idx2)
|
701 |
+
assert not array_equivalent(idx2, idx1)
|
702 |
+
assert not idx2.equals(idx1)
|
703 |
+
|
704 |
+
|
705 |
+
@pytest.mark.parametrize(
|
706 |
+
"dtype, na_value",
|
707 |
+
[
|
708 |
+
# Datetime-like
|
709 |
+
(np.dtype("M8[ns]"), np.datetime64("NaT", "ns")),
|
710 |
+
(np.dtype("m8[ns]"), np.timedelta64("NaT", "ns")),
|
711 |
+
(DatetimeTZDtype.construct_from_string("datetime64[ns, US/Eastern]"), NaT),
|
712 |
+
(PeriodDtype("M"), NaT),
|
713 |
+
# Integer
|
714 |
+
("u1", 0),
|
715 |
+
("u2", 0),
|
716 |
+
("u4", 0),
|
717 |
+
("u8", 0),
|
718 |
+
("i1", 0),
|
719 |
+
("i2", 0),
|
720 |
+
("i4", 0),
|
721 |
+
("i8", 0),
|
722 |
+
# Bool
|
723 |
+
("bool", False),
|
724 |
+
# Float
|
725 |
+
("f2", np.nan),
|
726 |
+
("f4", np.nan),
|
727 |
+
("f8", np.nan),
|
728 |
+
# Object
|
729 |
+
("O", np.nan),
|
730 |
+
# Interval
|
731 |
+
(IntervalDtype(), np.nan),
|
732 |
+
],
|
733 |
+
)
|
734 |
+
def test_na_value_for_dtype(dtype, na_value):
|
735 |
+
result = na_value_for_dtype(pandas_dtype(dtype))
|
736 |
+
# identify check doesn't work for datetime64/timedelta64("NaT") bc they
|
737 |
+
# are not singletons
|
738 |
+
assert result is na_value or (
|
739 |
+
isna(result) and isna(na_value) and type(result) is type(na_value)
|
740 |
+
)
|
741 |
+
|
742 |
+
|
743 |
+
class TestNAObj:
|
744 |
+
def _check_behavior(self, arr, expected):
|
745 |
+
result = libmissing.isnaobj(arr)
|
746 |
+
tm.assert_numpy_array_equal(result, expected)
|
747 |
+
result = libmissing.isnaobj(arr, inf_as_na=True)
|
748 |
+
tm.assert_numpy_array_equal(result, expected)
|
749 |
+
|
750 |
+
arr = np.atleast_2d(arr)
|
751 |
+
expected = np.atleast_2d(expected)
|
752 |
+
|
753 |
+
result = libmissing.isnaobj(arr)
|
754 |
+
tm.assert_numpy_array_equal(result, expected)
|
755 |
+
result = libmissing.isnaobj(arr, inf_as_na=True)
|
756 |
+
tm.assert_numpy_array_equal(result, expected)
|
757 |
+
|
758 |
+
# Test fortran order
|
759 |
+
arr = arr.copy(order="F")
|
760 |
+
result = libmissing.isnaobj(arr)
|
761 |
+
tm.assert_numpy_array_equal(result, expected)
|
762 |
+
result = libmissing.isnaobj(arr, inf_as_na=True)
|
763 |
+
tm.assert_numpy_array_equal(result, expected)
|
764 |
+
|
765 |
+
def test_basic(self):
|
766 |
+
arr = np.array([1, None, "foo", -5.1, NaT, np.nan])
|
767 |
+
expected = np.array([False, True, False, False, True, True])
|
768 |
+
|
769 |
+
self._check_behavior(arr, expected)
|
770 |
+
|
771 |
+
def test_non_obj_dtype(self):
|
772 |
+
arr = np.array([1, 3, np.nan, 5], dtype=float)
|
773 |
+
expected = np.array([False, False, True, False])
|
774 |
+
|
775 |
+
self._check_behavior(arr, expected)
|
776 |
+
|
777 |
+
def test_empty_arr(self):
|
778 |
+
arr = np.array([])
|
779 |
+
expected = np.array([], dtype=bool)
|
780 |
+
|
781 |
+
self._check_behavior(arr, expected)
|
782 |
+
|
783 |
+
def test_empty_str_inp(self):
|
784 |
+
arr = np.array([""]) # empty but not na
|
785 |
+
expected = np.array([False])
|
786 |
+
|
787 |
+
self._check_behavior(arr, expected)
|
788 |
+
|
789 |
+
def test_empty_like(self):
|
790 |
+
# see gh-13717: no segfaults!
|
791 |
+
arr = np.empty_like([None])
|
792 |
+
expected = np.array([True])
|
793 |
+
|
794 |
+
self._check_behavior(arr, expected)
|
795 |
+
|
796 |
+
|
797 |
+
m8_units = ["as", "ps", "ns", "us", "ms", "s", "m", "h", "D", "W", "M", "Y"]
|
798 |
+
|
799 |
+
na_vals = (
|
800 |
+
[
|
801 |
+
None,
|
802 |
+
NaT,
|
803 |
+
float("NaN"),
|
804 |
+
complex("NaN"),
|
805 |
+
np.nan,
|
806 |
+
np.float64("NaN"),
|
807 |
+
np.float32("NaN"),
|
808 |
+
np.complex64(np.nan),
|
809 |
+
np.complex128(np.nan),
|
810 |
+
np.datetime64("NaT"),
|
811 |
+
np.timedelta64("NaT"),
|
812 |
+
]
|
813 |
+
+ [np.datetime64("NaT", unit) for unit in m8_units]
|
814 |
+
+ [np.timedelta64("NaT", unit) for unit in m8_units]
|
815 |
+
)
|
816 |
+
|
817 |
+
inf_vals = [
|
818 |
+
float("inf"),
|
819 |
+
float("-inf"),
|
820 |
+
complex("inf"),
|
821 |
+
complex("-inf"),
|
822 |
+
np.inf,
|
823 |
+
-np.inf,
|
824 |
+
]
|
825 |
+
|
826 |
+
int_na_vals = [
|
827 |
+
# Values that match iNaT, which we treat as null in specific cases
|
828 |
+
np.int64(NaT._value),
|
829 |
+
int(NaT._value),
|
830 |
+
]
|
831 |
+
|
832 |
+
sometimes_na_vals = [Decimal("NaN")]
|
833 |
+
|
834 |
+
never_na_vals = [
|
835 |
+
# float/complex values that when viewed as int64 match iNaT
|
836 |
+
-0.0,
|
837 |
+
np.float64("-0.0"),
|
838 |
+
-0j,
|
839 |
+
np.complex64(-0j),
|
840 |
+
]
|
841 |
+
|
842 |
+
|
843 |
+
class TestLibMissing:
|
844 |
+
@pytest.mark.parametrize("func", [libmissing.checknull, isna])
|
845 |
+
@pytest.mark.parametrize(
|
846 |
+
"value", na_vals + sometimes_na_vals # type: ignore[operator]
|
847 |
+
)
|
848 |
+
def test_checknull_na_vals(self, func, value):
|
849 |
+
assert func(value)
|
850 |
+
|
851 |
+
@pytest.mark.parametrize("func", [libmissing.checknull, isna])
|
852 |
+
@pytest.mark.parametrize("value", inf_vals)
|
853 |
+
def test_checknull_inf_vals(self, func, value):
|
854 |
+
assert not func(value)
|
855 |
+
|
856 |
+
@pytest.mark.parametrize("func", [libmissing.checknull, isna])
|
857 |
+
@pytest.mark.parametrize("value", int_na_vals)
|
858 |
+
def test_checknull_intna_vals(self, func, value):
|
859 |
+
assert not func(value)
|
860 |
+
|
861 |
+
@pytest.mark.parametrize("func", [libmissing.checknull, isna])
|
862 |
+
@pytest.mark.parametrize("value", never_na_vals)
|
863 |
+
def test_checknull_never_na_vals(self, func, value):
|
864 |
+
assert not func(value)
|
865 |
+
|
866 |
+
@pytest.mark.parametrize(
|
867 |
+
"value", na_vals + sometimes_na_vals # type: ignore[operator]
|
868 |
+
)
|
869 |
+
def test_checknull_old_na_vals(self, value):
|
870 |
+
assert libmissing.checknull(value, inf_as_na=True)
|
871 |
+
|
872 |
+
@pytest.mark.parametrize("value", inf_vals)
|
873 |
+
def test_checknull_old_inf_vals(self, value):
|
874 |
+
assert libmissing.checknull(value, inf_as_na=True)
|
875 |
+
|
876 |
+
@pytest.mark.parametrize("value", int_na_vals)
|
877 |
+
def test_checknull_old_intna_vals(self, value):
|
878 |
+
assert not libmissing.checknull(value, inf_as_na=True)
|
879 |
+
|
880 |
+
@pytest.mark.parametrize("value", int_na_vals)
|
881 |
+
def test_checknull_old_never_na_vals(self, value):
|
882 |
+
assert not libmissing.checknull(value, inf_as_na=True)
|
883 |
+
|
884 |
+
def test_is_matching_na(self, nulls_fixture, nulls_fixture2):
|
885 |
+
left = nulls_fixture
|
886 |
+
right = nulls_fixture2
|
887 |
+
|
888 |
+
assert libmissing.is_matching_na(left, left)
|
889 |
+
|
890 |
+
if left is right:
|
891 |
+
assert libmissing.is_matching_na(left, right)
|
892 |
+
elif is_float(left) and is_float(right):
|
893 |
+
# np.nan vs float("NaN") we consider as matching
|
894 |
+
assert libmissing.is_matching_na(left, right)
|
895 |
+
elif type(left) is type(right):
|
896 |
+
# e.g. both Decimal("NaN")
|
897 |
+
assert libmissing.is_matching_na(left, right)
|
898 |
+
else:
|
899 |
+
assert not libmissing.is_matching_na(left, right)
|
900 |
+
|
901 |
+
def test_is_matching_na_nan_matches_none(self):
|
902 |
+
assert not libmissing.is_matching_na(None, np.nan)
|
903 |
+
assert not libmissing.is_matching_na(np.nan, None)
|
904 |
+
|
905 |
+
assert libmissing.is_matching_na(None, np.nan, nan_matches_none=True)
|
906 |
+
assert libmissing.is_matching_na(np.nan, None, nan_matches_none=True)
|
907 |
+
|
908 |
+
|
909 |
+
class TestIsValidNAForDtype:
|
910 |
+
def test_is_valid_na_for_dtype_interval(self):
|
911 |
+
dtype = IntervalDtype("int64", "left")
|
912 |
+
assert not is_valid_na_for_dtype(NaT, dtype)
|
913 |
+
|
914 |
+
dtype = IntervalDtype("datetime64[ns]", "both")
|
915 |
+
assert not is_valid_na_for_dtype(NaT, dtype)
|
916 |
+
|
917 |
+
def test_is_valid_na_for_dtype_categorical(self):
|
918 |
+
dtype = CategoricalDtype(categories=[0, 1, 2])
|
919 |
+
assert is_valid_na_for_dtype(np.nan, dtype)
|
920 |
+
|
921 |
+
assert not is_valid_na_for_dtype(NaT, dtype)
|
922 |
+
assert not is_valid_na_for_dtype(np.datetime64("NaT", "ns"), dtype)
|
923 |
+
assert not is_valid_na_for_dtype(np.timedelta64("NaT", "ns"), dtype)
|
venv/lib/python3.10/site-packages/pandas/tests/scalar/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/pandas/tests/scalar/period/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/pandas/tests/scalar/period/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (194 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/scalar/period/__pycache__/test_arithmetic.cpython-310.pyc
ADDED
Binary file (13.1 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/scalar/period/__pycache__/test_asfreq.cpython-310.pyc
ADDED
Binary file (22.1 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/scalar/period/__pycache__/test_period.cpython-310.pyc
ADDED
Binary file (33.7 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/scalar/period/test_arithmetic.py
ADDED
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import timedelta
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas._libs.tslibs.period import IncompatibleFrequency
|
7 |
+
|
8 |
+
from pandas import (
|
9 |
+
NaT,
|
10 |
+
Period,
|
11 |
+
Timedelta,
|
12 |
+
Timestamp,
|
13 |
+
offsets,
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
class TestPeriodArithmetic:
|
18 |
+
def test_add_overflow_raises(self):
|
19 |
+
# GH#55503
|
20 |
+
per = Timestamp.max.to_period("ns")
|
21 |
+
|
22 |
+
msg = "|".join(
|
23 |
+
[
|
24 |
+
"Python int too large to convert to C long",
|
25 |
+
# windows, 32bit linux builds
|
26 |
+
"int too big to convert",
|
27 |
+
]
|
28 |
+
)
|
29 |
+
with pytest.raises(OverflowError, match=msg):
|
30 |
+
per + 1
|
31 |
+
|
32 |
+
msg = "value too large"
|
33 |
+
with pytest.raises(OverflowError, match=msg):
|
34 |
+
per + Timedelta(1)
|
35 |
+
with pytest.raises(OverflowError, match=msg):
|
36 |
+
per + offsets.Nano(1)
|
37 |
+
|
38 |
+
def test_period_add_integer(self):
|
39 |
+
per1 = Period(freq="D", year=2008, month=1, day=1)
|
40 |
+
per2 = Period(freq="D", year=2008, month=1, day=2)
|
41 |
+
assert per1 + 1 == per2
|
42 |
+
assert 1 + per1 == per2
|
43 |
+
|
44 |
+
def test_period_add_invalid(self):
|
45 |
+
# GH#4731
|
46 |
+
per1 = Period(freq="D", year=2008, month=1, day=1)
|
47 |
+
per2 = Period(freq="D", year=2008, month=1, day=2)
|
48 |
+
|
49 |
+
msg = "|".join(
|
50 |
+
[
|
51 |
+
r"unsupported operand type\(s\)",
|
52 |
+
"can only concatenate str",
|
53 |
+
"must be str, not Period",
|
54 |
+
]
|
55 |
+
)
|
56 |
+
with pytest.raises(TypeError, match=msg):
|
57 |
+
per1 + "str"
|
58 |
+
with pytest.raises(TypeError, match=msg):
|
59 |
+
"str" + per1
|
60 |
+
with pytest.raises(TypeError, match=msg):
|
61 |
+
per1 + per2
|
62 |
+
|
63 |
+
def test_period_sub_period_annual(self):
|
64 |
+
left, right = Period("2011", freq="Y"), Period("2007", freq="Y")
|
65 |
+
result = left - right
|
66 |
+
assert result == 4 * right.freq
|
67 |
+
|
68 |
+
msg = r"Input has different freq=M from Period\(freq=Y-DEC\)"
|
69 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
70 |
+
left - Period("2007-01", freq="M")
|
71 |
+
|
72 |
+
def test_period_sub_period(self):
|
73 |
+
per1 = Period("2011-01-01", freq="D")
|
74 |
+
per2 = Period("2011-01-15", freq="D")
|
75 |
+
|
76 |
+
off = per1.freq
|
77 |
+
assert per1 - per2 == -14 * off
|
78 |
+
assert per2 - per1 == 14 * off
|
79 |
+
|
80 |
+
msg = r"Input has different freq=M from Period\(freq=D\)"
|
81 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
82 |
+
per1 - Period("2011-02", freq="M")
|
83 |
+
|
84 |
+
@pytest.mark.parametrize("n", [1, 2, 3, 4])
|
85 |
+
def test_sub_n_gt_1_ticks(self, tick_classes, n):
|
86 |
+
# GH#23878
|
87 |
+
p1 = Period("19910905", freq=tick_classes(n))
|
88 |
+
p2 = Period("19920406", freq=tick_classes(n))
|
89 |
+
|
90 |
+
expected = Period(str(p2), freq=p2.freq.base) - Period(
|
91 |
+
str(p1), freq=p1.freq.base
|
92 |
+
)
|
93 |
+
|
94 |
+
assert (p2 - p1) == expected
|
95 |
+
|
96 |
+
@pytest.mark.parametrize("normalize", [True, False])
|
97 |
+
@pytest.mark.parametrize("n", [1, 2, 3, 4])
|
98 |
+
@pytest.mark.parametrize(
|
99 |
+
"offset, kwd_name",
|
100 |
+
[
|
101 |
+
(offsets.YearEnd, "month"),
|
102 |
+
(offsets.QuarterEnd, "startingMonth"),
|
103 |
+
(offsets.MonthEnd, None),
|
104 |
+
(offsets.Week, "weekday"),
|
105 |
+
],
|
106 |
+
)
|
107 |
+
def test_sub_n_gt_1_offsets(self, offset, kwd_name, n, normalize):
|
108 |
+
# GH#23878
|
109 |
+
kwds = {kwd_name: 3} if kwd_name is not None else {}
|
110 |
+
p1_d = "19910905"
|
111 |
+
p2_d = "19920406"
|
112 |
+
p1 = Period(p1_d, freq=offset(n, normalize, **kwds))
|
113 |
+
p2 = Period(p2_d, freq=offset(n, normalize, **kwds))
|
114 |
+
|
115 |
+
expected = Period(p2_d, freq=p2.freq.base) - Period(p1_d, freq=p1.freq.base)
|
116 |
+
|
117 |
+
assert (p2 - p1) == expected
|
118 |
+
|
119 |
+
def test_period_add_offset(self):
|
120 |
+
# freq is DateOffset
|
121 |
+
for freq in ["Y", "2Y", "3Y"]:
|
122 |
+
per = Period("2011", freq=freq)
|
123 |
+
exp = Period("2013", freq=freq)
|
124 |
+
assert per + offsets.YearEnd(2) == exp
|
125 |
+
assert offsets.YearEnd(2) + per == exp
|
126 |
+
|
127 |
+
for off in [
|
128 |
+
offsets.YearBegin(2),
|
129 |
+
offsets.MonthBegin(1),
|
130 |
+
offsets.Minute(),
|
131 |
+
np.timedelta64(365, "D"),
|
132 |
+
timedelta(365),
|
133 |
+
]:
|
134 |
+
msg = "Input has different freq|Input cannot be converted to Period"
|
135 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
136 |
+
per + off
|
137 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
138 |
+
off + per
|
139 |
+
|
140 |
+
for freq in ["M", "2M", "3M"]:
|
141 |
+
per = Period("2011-03", freq=freq)
|
142 |
+
exp = Period("2011-05", freq=freq)
|
143 |
+
assert per + offsets.MonthEnd(2) == exp
|
144 |
+
assert offsets.MonthEnd(2) + per == exp
|
145 |
+
|
146 |
+
exp = Period("2012-03", freq=freq)
|
147 |
+
assert per + offsets.MonthEnd(12) == exp
|
148 |
+
assert offsets.MonthEnd(12) + per == exp
|
149 |
+
|
150 |
+
msg = "|".join(
|
151 |
+
[
|
152 |
+
"Input has different freq",
|
153 |
+
"Input cannot be converted to Period",
|
154 |
+
]
|
155 |
+
)
|
156 |
+
|
157 |
+
for off in [
|
158 |
+
offsets.YearBegin(2),
|
159 |
+
offsets.MonthBegin(1),
|
160 |
+
offsets.Minute(),
|
161 |
+
np.timedelta64(365, "D"),
|
162 |
+
timedelta(365),
|
163 |
+
]:
|
164 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
165 |
+
per + off
|
166 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
167 |
+
off + per
|
168 |
+
|
169 |
+
# freq is Tick
|
170 |
+
for freq in ["D", "2D", "3D"]:
|
171 |
+
per = Period("2011-04-01", freq=freq)
|
172 |
+
|
173 |
+
exp = Period("2011-04-06", freq=freq)
|
174 |
+
assert per + offsets.Day(5) == exp
|
175 |
+
assert offsets.Day(5) + per == exp
|
176 |
+
|
177 |
+
exp = Period("2011-04-02", freq=freq)
|
178 |
+
assert per + offsets.Hour(24) == exp
|
179 |
+
assert offsets.Hour(24) + per == exp
|
180 |
+
|
181 |
+
exp = Period("2011-04-03", freq=freq)
|
182 |
+
assert per + np.timedelta64(2, "D") == exp
|
183 |
+
assert np.timedelta64(2, "D") + per == exp
|
184 |
+
|
185 |
+
exp = Period("2011-04-02", freq=freq)
|
186 |
+
assert per + np.timedelta64(3600 * 24, "s") == exp
|
187 |
+
assert np.timedelta64(3600 * 24, "s") + per == exp
|
188 |
+
|
189 |
+
exp = Period("2011-03-30", freq=freq)
|
190 |
+
assert per + timedelta(-2) == exp
|
191 |
+
assert timedelta(-2) + per == exp
|
192 |
+
|
193 |
+
exp = Period("2011-04-03", freq=freq)
|
194 |
+
assert per + timedelta(hours=48) == exp
|
195 |
+
assert timedelta(hours=48) + per == exp
|
196 |
+
|
197 |
+
msg = "|".join(
|
198 |
+
[
|
199 |
+
"Input has different freq",
|
200 |
+
"Input cannot be converted to Period",
|
201 |
+
]
|
202 |
+
)
|
203 |
+
|
204 |
+
for off in [
|
205 |
+
offsets.YearBegin(2),
|
206 |
+
offsets.MonthBegin(1),
|
207 |
+
offsets.Minute(),
|
208 |
+
np.timedelta64(4, "h"),
|
209 |
+
timedelta(hours=23),
|
210 |
+
]:
|
211 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
212 |
+
per + off
|
213 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
214 |
+
off + per
|
215 |
+
|
216 |
+
for freq in ["h", "2h", "3h"]:
|
217 |
+
per = Period("2011-04-01 09:00", freq=freq)
|
218 |
+
|
219 |
+
exp = Period("2011-04-03 09:00", freq=freq)
|
220 |
+
assert per + offsets.Day(2) == exp
|
221 |
+
assert offsets.Day(2) + per == exp
|
222 |
+
|
223 |
+
exp = Period("2011-04-01 12:00", freq=freq)
|
224 |
+
assert per + offsets.Hour(3) == exp
|
225 |
+
assert offsets.Hour(3) + per == exp
|
226 |
+
|
227 |
+
msg = "cannot use operands with types"
|
228 |
+
exp = Period("2011-04-01 12:00", freq=freq)
|
229 |
+
assert per + np.timedelta64(3, "h") == exp
|
230 |
+
assert np.timedelta64(3, "h") + per == exp
|
231 |
+
|
232 |
+
exp = Period("2011-04-01 10:00", freq=freq)
|
233 |
+
assert per + np.timedelta64(3600, "s") == exp
|
234 |
+
assert np.timedelta64(3600, "s") + per == exp
|
235 |
+
|
236 |
+
exp = Period("2011-04-01 11:00", freq=freq)
|
237 |
+
assert per + timedelta(minutes=120) == exp
|
238 |
+
assert timedelta(minutes=120) + per == exp
|
239 |
+
|
240 |
+
exp = Period("2011-04-05 12:00", freq=freq)
|
241 |
+
assert per + timedelta(days=4, minutes=180) == exp
|
242 |
+
assert timedelta(days=4, minutes=180) + per == exp
|
243 |
+
|
244 |
+
msg = "|".join(
|
245 |
+
[
|
246 |
+
"Input has different freq",
|
247 |
+
"Input cannot be converted to Period",
|
248 |
+
]
|
249 |
+
)
|
250 |
+
|
251 |
+
for off in [
|
252 |
+
offsets.YearBegin(2),
|
253 |
+
offsets.MonthBegin(1),
|
254 |
+
offsets.Minute(),
|
255 |
+
np.timedelta64(3200, "s"),
|
256 |
+
timedelta(hours=23, minutes=30),
|
257 |
+
]:
|
258 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
259 |
+
per + off
|
260 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
261 |
+
off + per
|
262 |
+
|
263 |
+
def test_period_sub_offset(self):
|
264 |
+
# freq is DateOffset
|
265 |
+
msg = "|".join(
|
266 |
+
[
|
267 |
+
"Input has different freq",
|
268 |
+
"Input cannot be converted to Period",
|
269 |
+
]
|
270 |
+
)
|
271 |
+
|
272 |
+
for freq in ["Y", "2Y", "3Y"]:
|
273 |
+
per = Period("2011", freq=freq)
|
274 |
+
assert per - offsets.YearEnd(2) == Period("2009", freq=freq)
|
275 |
+
|
276 |
+
for off in [
|
277 |
+
offsets.YearBegin(2),
|
278 |
+
offsets.MonthBegin(1),
|
279 |
+
offsets.Minute(),
|
280 |
+
np.timedelta64(365, "D"),
|
281 |
+
timedelta(365),
|
282 |
+
]:
|
283 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
284 |
+
per - off
|
285 |
+
|
286 |
+
for freq in ["M", "2M", "3M"]:
|
287 |
+
per = Period("2011-03", freq=freq)
|
288 |
+
assert per - offsets.MonthEnd(2) == Period("2011-01", freq=freq)
|
289 |
+
assert per - offsets.MonthEnd(12) == Period("2010-03", freq=freq)
|
290 |
+
|
291 |
+
for off in [
|
292 |
+
offsets.YearBegin(2),
|
293 |
+
offsets.MonthBegin(1),
|
294 |
+
offsets.Minute(),
|
295 |
+
np.timedelta64(365, "D"),
|
296 |
+
timedelta(365),
|
297 |
+
]:
|
298 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
299 |
+
per - off
|
300 |
+
|
301 |
+
# freq is Tick
|
302 |
+
for freq in ["D", "2D", "3D"]:
|
303 |
+
per = Period("2011-04-01", freq=freq)
|
304 |
+
assert per - offsets.Day(5) == Period("2011-03-27", freq=freq)
|
305 |
+
assert per - offsets.Hour(24) == Period("2011-03-31", freq=freq)
|
306 |
+
assert per - np.timedelta64(2, "D") == Period("2011-03-30", freq=freq)
|
307 |
+
assert per - np.timedelta64(3600 * 24, "s") == Period(
|
308 |
+
"2011-03-31", freq=freq
|
309 |
+
)
|
310 |
+
assert per - timedelta(-2) == Period("2011-04-03", freq=freq)
|
311 |
+
assert per - timedelta(hours=48) == Period("2011-03-30", freq=freq)
|
312 |
+
|
313 |
+
for off in [
|
314 |
+
offsets.YearBegin(2),
|
315 |
+
offsets.MonthBegin(1),
|
316 |
+
offsets.Minute(),
|
317 |
+
np.timedelta64(4, "h"),
|
318 |
+
timedelta(hours=23),
|
319 |
+
]:
|
320 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
321 |
+
per - off
|
322 |
+
|
323 |
+
for freq in ["h", "2h", "3h"]:
|
324 |
+
per = Period("2011-04-01 09:00", freq=freq)
|
325 |
+
assert per - offsets.Day(2) == Period("2011-03-30 09:00", freq=freq)
|
326 |
+
assert per - offsets.Hour(3) == Period("2011-04-01 06:00", freq=freq)
|
327 |
+
assert per - np.timedelta64(3, "h") == Period("2011-04-01 06:00", freq=freq)
|
328 |
+
assert per - np.timedelta64(3600, "s") == Period(
|
329 |
+
"2011-04-01 08:00", freq=freq
|
330 |
+
)
|
331 |
+
assert per - timedelta(minutes=120) == Period("2011-04-01 07:00", freq=freq)
|
332 |
+
assert per - timedelta(days=4, minutes=180) == Period(
|
333 |
+
"2011-03-28 06:00", freq=freq
|
334 |
+
)
|
335 |
+
|
336 |
+
for off in [
|
337 |
+
offsets.YearBegin(2),
|
338 |
+
offsets.MonthBegin(1),
|
339 |
+
offsets.Minute(),
|
340 |
+
np.timedelta64(3200, "s"),
|
341 |
+
timedelta(hours=23, minutes=30),
|
342 |
+
]:
|
343 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
344 |
+
per - off
|
345 |
+
|
346 |
+
@pytest.mark.parametrize("freq", ["M", "2M", "3M"])
|
347 |
+
def test_period_addsub_nat(self, freq):
|
348 |
+
# GH#13071
|
349 |
+
per = Period("2011-01", freq=freq)
|
350 |
+
|
351 |
+
# For subtraction, NaT is treated as another Period object
|
352 |
+
assert NaT - per is NaT
|
353 |
+
assert per - NaT is NaT
|
354 |
+
|
355 |
+
# For addition, NaT is treated as offset-like
|
356 |
+
assert NaT + per is NaT
|
357 |
+
assert per + NaT is NaT
|
358 |
+
|
359 |
+
@pytest.mark.parametrize("unit", ["ns", "us", "ms", "s", "m"])
|
360 |
+
def test_period_add_sub_td64_nat(self, unit):
|
361 |
+
# GH#47196
|
362 |
+
per = Period("2022-06-01", "D")
|
363 |
+
nat = np.timedelta64("NaT", unit)
|
364 |
+
|
365 |
+
assert per + nat is NaT
|
366 |
+
assert nat + per is NaT
|
367 |
+
assert per - nat is NaT
|
368 |
+
|
369 |
+
with pytest.raises(TypeError, match="unsupported operand"):
|
370 |
+
nat - per
|
371 |
+
|
372 |
+
def test_period_ops_offset(self):
|
373 |
+
per = Period("2011-04-01", freq="D")
|
374 |
+
result = per + offsets.Day()
|
375 |
+
exp = Period("2011-04-02", freq="D")
|
376 |
+
assert result == exp
|
377 |
+
|
378 |
+
result = per - offsets.Day(2)
|
379 |
+
exp = Period("2011-03-30", freq="D")
|
380 |
+
assert result == exp
|
381 |
+
|
382 |
+
msg = r"Input cannot be converted to Period\(freq=D\)"
|
383 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
384 |
+
per + offsets.Hour(2)
|
385 |
+
|
386 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
387 |
+
per - offsets.Hour(2)
|
388 |
+
|
389 |
+
def test_period_add_timestamp_raises(self):
|
390 |
+
# GH#17983
|
391 |
+
ts = Timestamp("2017")
|
392 |
+
per = Period("2017", freq="M")
|
393 |
+
|
394 |
+
msg = r"unsupported operand type\(s\) for \+: 'Timestamp' and 'Period'"
|
395 |
+
with pytest.raises(TypeError, match=msg):
|
396 |
+
ts + per
|
397 |
+
|
398 |
+
msg = r"unsupported operand type\(s\) for \+: 'Period' and 'Timestamp'"
|
399 |
+
with pytest.raises(TypeError, match=msg):
|
400 |
+
per + ts
|
401 |
+
|
402 |
+
|
403 |
+
class TestPeriodComparisons:
|
404 |
+
def test_period_comparison_same_freq(self):
|
405 |
+
jan = Period("2000-01", "M")
|
406 |
+
feb = Period("2000-02", "M")
|
407 |
+
|
408 |
+
assert not jan == feb
|
409 |
+
assert jan != feb
|
410 |
+
assert jan < feb
|
411 |
+
assert jan <= feb
|
412 |
+
assert not jan > feb
|
413 |
+
assert not jan >= feb
|
414 |
+
|
415 |
+
def test_period_comparison_same_period_different_object(self):
|
416 |
+
# Separate Period objects for the same period
|
417 |
+
left = Period("2000-01", "M")
|
418 |
+
right = Period("2000-01", "M")
|
419 |
+
|
420 |
+
assert left == right
|
421 |
+
assert left >= right
|
422 |
+
assert left <= right
|
423 |
+
assert not left < right
|
424 |
+
assert not left > right
|
425 |
+
|
426 |
+
def test_period_comparison_mismatched_freq(self):
|
427 |
+
jan = Period("2000-01", "M")
|
428 |
+
day = Period("2012-01-01", "D")
|
429 |
+
|
430 |
+
assert not jan == day
|
431 |
+
assert jan != day
|
432 |
+
msg = r"Input has different freq=D from Period\(freq=M\)"
|
433 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
434 |
+
jan < day
|
435 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
436 |
+
jan <= day
|
437 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
438 |
+
jan > day
|
439 |
+
with pytest.raises(IncompatibleFrequency, match=msg):
|
440 |
+
jan >= day
|
441 |
+
|
442 |
+
def test_period_comparison_invalid_type(self):
|
443 |
+
jan = Period("2000-01", "M")
|
444 |
+
|
445 |
+
assert not jan == 1
|
446 |
+
assert jan != 1
|
447 |
+
|
448 |
+
int_or_per = "'(Period|int)'"
|
449 |
+
msg = f"not supported between instances of {int_or_per} and {int_or_per}"
|
450 |
+
for left, right in [(jan, 1), (1, jan)]:
|
451 |
+
with pytest.raises(TypeError, match=msg):
|
452 |
+
left > right
|
453 |
+
with pytest.raises(TypeError, match=msg):
|
454 |
+
left >= right
|
455 |
+
with pytest.raises(TypeError, match=msg):
|
456 |
+
left < right
|
457 |
+
with pytest.raises(TypeError, match=msg):
|
458 |
+
left <= right
|
459 |
+
|
460 |
+
def test_period_comparison_nat(self):
|
461 |
+
per = Period("2011-01-01", freq="D")
|
462 |
+
|
463 |
+
ts = Timestamp("2011-01-01")
|
464 |
+
# confirm Period('NaT') work identical with Timestamp('NaT')
|
465 |
+
for left, right in [
|
466 |
+
(NaT, per),
|
467 |
+
(per, NaT),
|
468 |
+
(NaT, ts),
|
469 |
+
(ts, NaT),
|
470 |
+
]:
|
471 |
+
assert not left < right
|
472 |
+
assert not left > right
|
473 |
+
assert not left == right
|
474 |
+
assert left != right
|
475 |
+
assert not left <= right
|
476 |
+
assert not left >= right
|
477 |
+
|
478 |
+
@pytest.mark.parametrize(
|
479 |
+
"zerodim_arr, expected",
|
480 |
+
((np.array(0), False), (np.array(Period("2000-01", "M")), True)),
|
481 |
+
)
|
482 |
+
def test_period_comparison_numpy_zerodim_arr(self, zerodim_arr, expected):
|
483 |
+
per = Period("2000-01", "M")
|
484 |
+
|
485 |
+
assert (per == zerodim_arr) is expected
|
486 |
+
assert (zerodim_arr == per) is expected
|
venv/lib/python3.10/site-packages/pandas/tests/scalar/period/test_asfreq.py
ADDED
@@ -0,0 +1,828 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG
|
4 |
+
from pandas.errors import OutOfBoundsDatetime
|
5 |
+
|
6 |
+
from pandas import (
|
7 |
+
Period,
|
8 |
+
Timestamp,
|
9 |
+
offsets,
|
10 |
+
)
|
11 |
+
import pandas._testing as tm
|
12 |
+
|
13 |
+
bday_msg = "Period with BDay freq is deprecated"
|
14 |
+
|
15 |
+
|
16 |
+
class TestFreqConversion:
|
17 |
+
"""Test frequency conversion of date objects"""
|
18 |
+
|
19 |
+
@pytest.mark.filterwarnings("ignore:Period with BDay:FutureWarning")
|
20 |
+
@pytest.mark.parametrize("freq", ["Y", "Q", "M", "W", "B", "D"])
|
21 |
+
def test_asfreq_near_zero(self, freq):
|
22 |
+
# GH#19643, GH#19650
|
23 |
+
per = Period("0001-01-01", freq=freq)
|
24 |
+
tup1 = (per.year, per.hour, per.day)
|
25 |
+
|
26 |
+
prev = per - 1
|
27 |
+
assert prev.ordinal == per.ordinal - 1
|
28 |
+
tup2 = (prev.year, prev.month, prev.day)
|
29 |
+
assert tup2 < tup1
|
30 |
+
|
31 |
+
def test_asfreq_near_zero_weekly(self):
|
32 |
+
# GH#19834
|
33 |
+
per1 = Period("0001-01-01", "D") + 6
|
34 |
+
per2 = Period("0001-01-01", "D") - 6
|
35 |
+
week1 = per1.asfreq("W")
|
36 |
+
week2 = per2.asfreq("W")
|
37 |
+
assert week1 != week2
|
38 |
+
assert week1.asfreq("D", "E") >= per1
|
39 |
+
assert week2.asfreq("D", "S") <= per2
|
40 |
+
|
41 |
+
def test_to_timestamp_out_of_bounds(self):
|
42 |
+
# GH#19643, used to incorrectly give Timestamp in 1754
|
43 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
44 |
+
per = Period("0001-01-01", freq="B")
|
45 |
+
msg = "Out of bounds nanosecond timestamp"
|
46 |
+
with pytest.raises(OutOfBoundsDatetime, match=msg):
|
47 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
48 |
+
per.to_timestamp()
|
49 |
+
|
50 |
+
def test_asfreq_corner(self):
|
51 |
+
val = Period(freq="Y", year=2007)
|
52 |
+
result1 = val.asfreq("5min")
|
53 |
+
result2 = val.asfreq("min")
|
54 |
+
expected = Period("2007-12-31 23:59", freq="min")
|
55 |
+
assert result1.ordinal == expected.ordinal
|
56 |
+
assert result1.freqstr == "5min"
|
57 |
+
assert result2.ordinal == expected.ordinal
|
58 |
+
assert result2.freqstr == "min"
|
59 |
+
|
60 |
+
def test_conv_annual(self):
|
61 |
+
# frequency conversion tests: from Annual Frequency
|
62 |
+
|
63 |
+
ival_A = Period(freq="Y", year=2007)
|
64 |
+
|
65 |
+
ival_AJAN = Period(freq="Y-JAN", year=2007)
|
66 |
+
ival_AJUN = Period(freq="Y-JUN", year=2007)
|
67 |
+
ival_ANOV = Period(freq="Y-NOV", year=2007)
|
68 |
+
|
69 |
+
ival_A_to_Q_start = Period(freq="Q", year=2007, quarter=1)
|
70 |
+
ival_A_to_Q_end = Period(freq="Q", year=2007, quarter=4)
|
71 |
+
ival_A_to_M_start = Period(freq="M", year=2007, month=1)
|
72 |
+
ival_A_to_M_end = Period(freq="M", year=2007, month=12)
|
73 |
+
ival_A_to_W_start = Period(freq="W", year=2007, month=1, day=1)
|
74 |
+
ival_A_to_W_end = Period(freq="W", year=2007, month=12, day=31)
|
75 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
76 |
+
ival_A_to_B_start = Period(freq="B", year=2007, month=1, day=1)
|
77 |
+
ival_A_to_B_end = Period(freq="B", year=2007, month=12, day=31)
|
78 |
+
ival_A_to_D_start = Period(freq="D", year=2007, month=1, day=1)
|
79 |
+
ival_A_to_D_end = Period(freq="D", year=2007, month=12, day=31)
|
80 |
+
ival_A_to_H_start = Period(freq="h", year=2007, month=1, day=1, hour=0)
|
81 |
+
ival_A_to_H_end = Period(freq="h", year=2007, month=12, day=31, hour=23)
|
82 |
+
ival_A_to_T_start = Period(
|
83 |
+
freq="Min", year=2007, month=1, day=1, hour=0, minute=0
|
84 |
+
)
|
85 |
+
ival_A_to_T_end = Period(
|
86 |
+
freq="Min", year=2007, month=12, day=31, hour=23, minute=59
|
87 |
+
)
|
88 |
+
ival_A_to_S_start = Period(
|
89 |
+
freq="s", year=2007, month=1, day=1, hour=0, minute=0, second=0
|
90 |
+
)
|
91 |
+
ival_A_to_S_end = Period(
|
92 |
+
freq="s", year=2007, month=12, day=31, hour=23, minute=59, second=59
|
93 |
+
)
|
94 |
+
|
95 |
+
ival_AJAN_to_D_end = Period(freq="D", year=2007, month=1, day=31)
|
96 |
+
ival_AJAN_to_D_start = Period(freq="D", year=2006, month=2, day=1)
|
97 |
+
ival_AJUN_to_D_end = Period(freq="D", year=2007, month=6, day=30)
|
98 |
+
ival_AJUN_to_D_start = Period(freq="D", year=2006, month=7, day=1)
|
99 |
+
ival_ANOV_to_D_end = Period(freq="D", year=2007, month=11, day=30)
|
100 |
+
ival_ANOV_to_D_start = Period(freq="D", year=2006, month=12, day=1)
|
101 |
+
|
102 |
+
assert ival_A.asfreq("Q", "s") == ival_A_to_Q_start
|
103 |
+
assert ival_A.asfreq("Q", "e") == ival_A_to_Q_end
|
104 |
+
assert ival_A.asfreq("M", "s") == ival_A_to_M_start
|
105 |
+
assert ival_A.asfreq("M", "E") == ival_A_to_M_end
|
106 |
+
assert ival_A.asfreq("W", "s") == ival_A_to_W_start
|
107 |
+
assert ival_A.asfreq("W", "E") == ival_A_to_W_end
|
108 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
109 |
+
assert ival_A.asfreq("B", "s") == ival_A_to_B_start
|
110 |
+
assert ival_A.asfreq("B", "E") == ival_A_to_B_end
|
111 |
+
assert ival_A.asfreq("D", "s") == ival_A_to_D_start
|
112 |
+
assert ival_A.asfreq("D", "E") == ival_A_to_D_end
|
113 |
+
msg = "'H' is deprecated and will be removed in a future version."
|
114 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
115 |
+
assert ival_A.asfreq("H", "s") == ival_A_to_H_start
|
116 |
+
assert ival_A.asfreq("H", "E") == ival_A_to_H_end
|
117 |
+
assert ival_A.asfreq("min", "s") == ival_A_to_T_start
|
118 |
+
assert ival_A.asfreq("min", "E") == ival_A_to_T_end
|
119 |
+
msg = "'T' is deprecated and will be removed in a future version."
|
120 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
121 |
+
assert ival_A.asfreq("T", "s") == ival_A_to_T_start
|
122 |
+
assert ival_A.asfreq("T", "E") == ival_A_to_T_end
|
123 |
+
msg = "'S' is deprecated and will be removed in a future version."
|
124 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
125 |
+
assert ival_A.asfreq("S", "S") == ival_A_to_S_start
|
126 |
+
assert ival_A.asfreq("S", "E") == ival_A_to_S_end
|
127 |
+
|
128 |
+
assert ival_AJAN.asfreq("D", "s") == ival_AJAN_to_D_start
|
129 |
+
assert ival_AJAN.asfreq("D", "E") == ival_AJAN_to_D_end
|
130 |
+
|
131 |
+
assert ival_AJUN.asfreq("D", "s") == ival_AJUN_to_D_start
|
132 |
+
assert ival_AJUN.asfreq("D", "E") == ival_AJUN_to_D_end
|
133 |
+
|
134 |
+
assert ival_ANOV.asfreq("D", "s") == ival_ANOV_to_D_start
|
135 |
+
assert ival_ANOV.asfreq("D", "E") == ival_ANOV_to_D_end
|
136 |
+
|
137 |
+
assert ival_A.asfreq("Y") == ival_A
|
138 |
+
|
139 |
+
def test_conv_quarterly(self):
|
140 |
+
# frequency conversion tests: from Quarterly Frequency
|
141 |
+
|
142 |
+
ival_Q = Period(freq="Q", year=2007, quarter=1)
|
143 |
+
ival_Q_end_of_year = Period(freq="Q", year=2007, quarter=4)
|
144 |
+
|
145 |
+
ival_QEJAN = Period(freq="Q-JAN", year=2007, quarter=1)
|
146 |
+
ival_QEJUN = Period(freq="Q-JUN", year=2007, quarter=1)
|
147 |
+
|
148 |
+
ival_Q_to_A = Period(freq="Y", year=2007)
|
149 |
+
ival_Q_to_M_start = Period(freq="M", year=2007, month=1)
|
150 |
+
ival_Q_to_M_end = Period(freq="M", year=2007, month=3)
|
151 |
+
ival_Q_to_W_start = Period(freq="W", year=2007, month=1, day=1)
|
152 |
+
ival_Q_to_W_end = Period(freq="W", year=2007, month=3, day=31)
|
153 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
154 |
+
ival_Q_to_B_start = Period(freq="B", year=2007, month=1, day=1)
|
155 |
+
ival_Q_to_B_end = Period(freq="B", year=2007, month=3, day=30)
|
156 |
+
ival_Q_to_D_start = Period(freq="D", year=2007, month=1, day=1)
|
157 |
+
ival_Q_to_D_end = Period(freq="D", year=2007, month=3, day=31)
|
158 |
+
ival_Q_to_H_start = Period(freq="h", year=2007, month=1, day=1, hour=0)
|
159 |
+
ival_Q_to_H_end = Period(freq="h", year=2007, month=3, day=31, hour=23)
|
160 |
+
ival_Q_to_T_start = Period(
|
161 |
+
freq="Min", year=2007, month=1, day=1, hour=0, minute=0
|
162 |
+
)
|
163 |
+
ival_Q_to_T_end = Period(
|
164 |
+
freq="Min", year=2007, month=3, day=31, hour=23, minute=59
|
165 |
+
)
|
166 |
+
ival_Q_to_S_start = Period(
|
167 |
+
freq="s", year=2007, month=1, day=1, hour=0, minute=0, second=0
|
168 |
+
)
|
169 |
+
ival_Q_to_S_end = Period(
|
170 |
+
freq="s", year=2007, month=3, day=31, hour=23, minute=59, second=59
|
171 |
+
)
|
172 |
+
|
173 |
+
ival_QEJAN_to_D_start = Period(freq="D", year=2006, month=2, day=1)
|
174 |
+
ival_QEJAN_to_D_end = Period(freq="D", year=2006, month=4, day=30)
|
175 |
+
|
176 |
+
ival_QEJUN_to_D_start = Period(freq="D", year=2006, month=7, day=1)
|
177 |
+
ival_QEJUN_to_D_end = Period(freq="D", year=2006, month=9, day=30)
|
178 |
+
|
179 |
+
assert ival_Q.asfreq("Y") == ival_Q_to_A
|
180 |
+
assert ival_Q_end_of_year.asfreq("Y") == ival_Q_to_A
|
181 |
+
|
182 |
+
assert ival_Q.asfreq("M", "s") == ival_Q_to_M_start
|
183 |
+
assert ival_Q.asfreq("M", "E") == ival_Q_to_M_end
|
184 |
+
assert ival_Q.asfreq("W", "s") == ival_Q_to_W_start
|
185 |
+
assert ival_Q.asfreq("W", "E") == ival_Q_to_W_end
|
186 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
187 |
+
assert ival_Q.asfreq("B", "s") == ival_Q_to_B_start
|
188 |
+
assert ival_Q.asfreq("B", "E") == ival_Q_to_B_end
|
189 |
+
assert ival_Q.asfreq("D", "s") == ival_Q_to_D_start
|
190 |
+
assert ival_Q.asfreq("D", "E") == ival_Q_to_D_end
|
191 |
+
assert ival_Q.asfreq("h", "s") == ival_Q_to_H_start
|
192 |
+
assert ival_Q.asfreq("h", "E") == ival_Q_to_H_end
|
193 |
+
assert ival_Q.asfreq("Min", "s") == ival_Q_to_T_start
|
194 |
+
assert ival_Q.asfreq("Min", "E") == ival_Q_to_T_end
|
195 |
+
assert ival_Q.asfreq("s", "s") == ival_Q_to_S_start
|
196 |
+
assert ival_Q.asfreq("s", "E") == ival_Q_to_S_end
|
197 |
+
|
198 |
+
assert ival_QEJAN.asfreq("D", "s") == ival_QEJAN_to_D_start
|
199 |
+
assert ival_QEJAN.asfreq("D", "E") == ival_QEJAN_to_D_end
|
200 |
+
assert ival_QEJUN.asfreq("D", "s") == ival_QEJUN_to_D_start
|
201 |
+
assert ival_QEJUN.asfreq("D", "E") == ival_QEJUN_to_D_end
|
202 |
+
|
203 |
+
assert ival_Q.asfreq("Q") == ival_Q
|
204 |
+
|
205 |
+
def test_conv_monthly(self):
|
206 |
+
# frequency conversion tests: from Monthly Frequency
|
207 |
+
|
208 |
+
ival_M = Period(freq="M", year=2007, month=1)
|
209 |
+
ival_M_end_of_year = Period(freq="M", year=2007, month=12)
|
210 |
+
ival_M_end_of_quarter = Period(freq="M", year=2007, month=3)
|
211 |
+
ival_M_to_A = Period(freq="Y", year=2007)
|
212 |
+
ival_M_to_Q = Period(freq="Q", year=2007, quarter=1)
|
213 |
+
ival_M_to_W_start = Period(freq="W", year=2007, month=1, day=1)
|
214 |
+
ival_M_to_W_end = Period(freq="W", year=2007, month=1, day=31)
|
215 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
216 |
+
ival_M_to_B_start = Period(freq="B", year=2007, month=1, day=1)
|
217 |
+
ival_M_to_B_end = Period(freq="B", year=2007, month=1, day=31)
|
218 |
+
ival_M_to_D_start = Period(freq="D", year=2007, month=1, day=1)
|
219 |
+
ival_M_to_D_end = Period(freq="D", year=2007, month=1, day=31)
|
220 |
+
ival_M_to_H_start = Period(freq="h", year=2007, month=1, day=1, hour=0)
|
221 |
+
ival_M_to_H_end = Period(freq="h", year=2007, month=1, day=31, hour=23)
|
222 |
+
ival_M_to_T_start = Period(
|
223 |
+
freq="Min", year=2007, month=1, day=1, hour=0, minute=0
|
224 |
+
)
|
225 |
+
ival_M_to_T_end = Period(
|
226 |
+
freq="Min", year=2007, month=1, day=31, hour=23, minute=59
|
227 |
+
)
|
228 |
+
ival_M_to_S_start = Period(
|
229 |
+
freq="s", year=2007, month=1, day=1, hour=0, minute=0, second=0
|
230 |
+
)
|
231 |
+
ival_M_to_S_end = Period(
|
232 |
+
freq="s", year=2007, month=1, day=31, hour=23, minute=59, second=59
|
233 |
+
)
|
234 |
+
|
235 |
+
assert ival_M.asfreq("Y") == ival_M_to_A
|
236 |
+
assert ival_M_end_of_year.asfreq("Y") == ival_M_to_A
|
237 |
+
assert ival_M.asfreq("Q") == ival_M_to_Q
|
238 |
+
assert ival_M_end_of_quarter.asfreq("Q") == ival_M_to_Q
|
239 |
+
|
240 |
+
assert ival_M.asfreq("W", "s") == ival_M_to_W_start
|
241 |
+
assert ival_M.asfreq("W", "E") == ival_M_to_W_end
|
242 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
243 |
+
assert ival_M.asfreq("B", "s") == ival_M_to_B_start
|
244 |
+
assert ival_M.asfreq("B", "E") == ival_M_to_B_end
|
245 |
+
assert ival_M.asfreq("D", "s") == ival_M_to_D_start
|
246 |
+
assert ival_M.asfreq("D", "E") == ival_M_to_D_end
|
247 |
+
assert ival_M.asfreq("h", "s") == ival_M_to_H_start
|
248 |
+
assert ival_M.asfreq("h", "E") == ival_M_to_H_end
|
249 |
+
assert ival_M.asfreq("Min", "s") == ival_M_to_T_start
|
250 |
+
assert ival_M.asfreq("Min", "E") == ival_M_to_T_end
|
251 |
+
assert ival_M.asfreq("s", "s") == ival_M_to_S_start
|
252 |
+
assert ival_M.asfreq("s", "E") == ival_M_to_S_end
|
253 |
+
|
254 |
+
assert ival_M.asfreq("M") == ival_M
|
255 |
+
|
256 |
+
def test_conv_weekly(self):
|
257 |
+
# frequency conversion tests: from Weekly Frequency
|
258 |
+
ival_W = Period(freq="W", year=2007, month=1, day=1)
|
259 |
+
|
260 |
+
ival_WSUN = Period(freq="W", year=2007, month=1, day=7)
|
261 |
+
ival_WSAT = Period(freq="W-SAT", year=2007, month=1, day=6)
|
262 |
+
ival_WFRI = Period(freq="W-FRI", year=2007, month=1, day=5)
|
263 |
+
ival_WTHU = Period(freq="W-THU", year=2007, month=1, day=4)
|
264 |
+
ival_WWED = Period(freq="W-WED", year=2007, month=1, day=3)
|
265 |
+
ival_WTUE = Period(freq="W-TUE", year=2007, month=1, day=2)
|
266 |
+
ival_WMON = Period(freq="W-MON", year=2007, month=1, day=1)
|
267 |
+
|
268 |
+
ival_WSUN_to_D_start = Period(freq="D", year=2007, month=1, day=1)
|
269 |
+
ival_WSUN_to_D_end = Period(freq="D", year=2007, month=1, day=7)
|
270 |
+
ival_WSAT_to_D_start = Period(freq="D", year=2006, month=12, day=31)
|
271 |
+
ival_WSAT_to_D_end = Period(freq="D", year=2007, month=1, day=6)
|
272 |
+
ival_WFRI_to_D_start = Period(freq="D", year=2006, month=12, day=30)
|
273 |
+
ival_WFRI_to_D_end = Period(freq="D", year=2007, month=1, day=5)
|
274 |
+
ival_WTHU_to_D_start = Period(freq="D", year=2006, month=12, day=29)
|
275 |
+
ival_WTHU_to_D_end = Period(freq="D", year=2007, month=1, day=4)
|
276 |
+
ival_WWED_to_D_start = Period(freq="D", year=2006, month=12, day=28)
|
277 |
+
ival_WWED_to_D_end = Period(freq="D", year=2007, month=1, day=3)
|
278 |
+
ival_WTUE_to_D_start = Period(freq="D", year=2006, month=12, day=27)
|
279 |
+
ival_WTUE_to_D_end = Period(freq="D", year=2007, month=1, day=2)
|
280 |
+
ival_WMON_to_D_start = Period(freq="D", year=2006, month=12, day=26)
|
281 |
+
ival_WMON_to_D_end = Period(freq="D", year=2007, month=1, day=1)
|
282 |
+
|
283 |
+
ival_W_end_of_year = Period(freq="W", year=2007, month=12, day=31)
|
284 |
+
ival_W_end_of_quarter = Period(freq="W", year=2007, month=3, day=31)
|
285 |
+
ival_W_end_of_month = Period(freq="W", year=2007, month=1, day=31)
|
286 |
+
ival_W_to_A = Period(freq="Y", year=2007)
|
287 |
+
ival_W_to_Q = Period(freq="Q", year=2007, quarter=1)
|
288 |
+
ival_W_to_M = Period(freq="M", year=2007, month=1)
|
289 |
+
|
290 |
+
if Period(freq="D", year=2007, month=12, day=31).weekday == 6:
|
291 |
+
ival_W_to_A_end_of_year = Period(freq="Y", year=2007)
|
292 |
+
else:
|
293 |
+
ival_W_to_A_end_of_year = Period(freq="Y", year=2008)
|
294 |
+
|
295 |
+
if Period(freq="D", year=2007, month=3, day=31).weekday == 6:
|
296 |
+
ival_W_to_Q_end_of_quarter = Period(freq="Q", year=2007, quarter=1)
|
297 |
+
else:
|
298 |
+
ival_W_to_Q_end_of_quarter = Period(freq="Q", year=2007, quarter=2)
|
299 |
+
|
300 |
+
if Period(freq="D", year=2007, month=1, day=31).weekday == 6:
|
301 |
+
ival_W_to_M_end_of_month = Period(freq="M", year=2007, month=1)
|
302 |
+
else:
|
303 |
+
ival_W_to_M_end_of_month = Period(freq="M", year=2007, month=2)
|
304 |
+
|
305 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
306 |
+
ival_W_to_B_start = Period(freq="B", year=2007, month=1, day=1)
|
307 |
+
ival_W_to_B_end = Period(freq="B", year=2007, month=1, day=5)
|
308 |
+
ival_W_to_D_start = Period(freq="D", year=2007, month=1, day=1)
|
309 |
+
ival_W_to_D_end = Period(freq="D", year=2007, month=1, day=7)
|
310 |
+
ival_W_to_H_start = Period(freq="h", year=2007, month=1, day=1, hour=0)
|
311 |
+
ival_W_to_H_end = Period(freq="h", year=2007, month=1, day=7, hour=23)
|
312 |
+
ival_W_to_T_start = Period(
|
313 |
+
freq="Min", year=2007, month=1, day=1, hour=0, minute=0
|
314 |
+
)
|
315 |
+
ival_W_to_T_end = Period(
|
316 |
+
freq="Min", year=2007, month=1, day=7, hour=23, minute=59
|
317 |
+
)
|
318 |
+
ival_W_to_S_start = Period(
|
319 |
+
freq="s", year=2007, month=1, day=1, hour=0, minute=0, second=0
|
320 |
+
)
|
321 |
+
ival_W_to_S_end = Period(
|
322 |
+
freq="s", year=2007, month=1, day=7, hour=23, minute=59, second=59
|
323 |
+
)
|
324 |
+
|
325 |
+
assert ival_W.asfreq("Y") == ival_W_to_A
|
326 |
+
assert ival_W_end_of_year.asfreq("Y") == ival_W_to_A_end_of_year
|
327 |
+
|
328 |
+
assert ival_W.asfreq("Q") == ival_W_to_Q
|
329 |
+
assert ival_W_end_of_quarter.asfreq("Q") == ival_W_to_Q_end_of_quarter
|
330 |
+
|
331 |
+
assert ival_W.asfreq("M") == ival_W_to_M
|
332 |
+
assert ival_W_end_of_month.asfreq("M") == ival_W_to_M_end_of_month
|
333 |
+
|
334 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
335 |
+
assert ival_W.asfreq("B", "s") == ival_W_to_B_start
|
336 |
+
assert ival_W.asfreq("B", "E") == ival_W_to_B_end
|
337 |
+
|
338 |
+
assert ival_W.asfreq("D", "s") == ival_W_to_D_start
|
339 |
+
assert ival_W.asfreq("D", "E") == ival_W_to_D_end
|
340 |
+
|
341 |
+
assert ival_WSUN.asfreq("D", "s") == ival_WSUN_to_D_start
|
342 |
+
assert ival_WSUN.asfreq("D", "E") == ival_WSUN_to_D_end
|
343 |
+
assert ival_WSAT.asfreq("D", "s") == ival_WSAT_to_D_start
|
344 |
+
assert ival_WSAT.asfreq("D", "E") == ival_WSAT_to_D_end
|
345 |
+
assert ival_WFRI.asfreq("D", "s") == ival_WFRI_to_D_start
|
346 |
+
assert ival_WFRI.asfreq("D", "E") == ival_WFRI_to_D_end
|
347 |
+
assert ival_WTHU.asfreq("D", "s") == ival_WTHU_to_D_start
|
348 |
+
assert ival_WTHU.asfreq("D", "E") == ival_WTHU_to_D_end
|
349 |
+
assert ival_WWED.asfreq("D", "s") == ival_WWED_to_D_start
|
350 |
+
assert ival_WWED.asfreq("D", "E") == ival_WWED_to_D_end
|
351 |
+
assert ival_WTUE.asfreq("D", "s") == ival_WTUE_to_D_start
|
352 |
+
assert ival_WTUE.asfreq("D", "E") == ival_WTUE_to_D_end
|
353 |
+
assert ival_WMON.asfreq("D", "s") == ival_WMON_to_D_start
|
354 |
+
assert ival_WMON.asfreq("D", "E") == ival_WMON_to_D_end
|
355 |
+
|
356 |
+
assert ival_W.asfreq("h", "s") == ival_W_to_H_start
|
357 |
+
assert ival_W.asfreq("h", "E") == ival_W_to_H_end
|
358 |
+
assert ival_W.asfreq("Min", "s") == ival_W_to_T_start
|
359 |
+
assert ival_W.asfreq("Min", "E") == ival_W_to_T_end
|
360 |
+
assert ival_W.asfreq("s", "s") == ival_W_to_S_start
|
361 |
+
assert ival_W.asfreq("s", "E") == ival_W_to_S_end
|
362 |
+
|
363 |
+
assert ival_W.asfreq("W") == ival_W
|
364 |
+
|
365 |
+
msg = INVALID_FREQ_ERR_MSG
|
366 |
+
with pytest.raises(ValueError, match=msg):
|
367 |
+
ival_W.asfreq("WK")
|
368 |
+
|
369 |
+
def test_conv_weekly_legacy(self):
|
370 |
+
# frequency conversion tests: from Weekly Frequency
|
371 |
+
msg = INVALID_FREQ_ERR_MSG
|
372 |
+
with pytest.raises(ValueError, match=msg):
|
373 |
+
Period(freq="WK", year=2007, month=1, day=1)
|
374 |
+
|
375 |
+
with pytest.raises(ValueError, match=msg):
|
376 |
+
Period(freq="WK-SAT", year=2007, month=1, day=6)
|
377 |
+
with pytest.raises(ValueError, match=msg):
|
378 |
+
Period(freq="WK-FRI", year=2007, month=1, day=5)
|
379 |
+
with pytest.raises(ValueError, match=msg):
|
380 |
+
Period(freq="WK-THU", year=2007, month=1, day=4)
|
381 |
+
with pytest.raises(ValueError, match=msg):
|
382 |
+
Period(freq="WK-WED", year=2007, month=1, day=3)
|
383 |
+
with pytest.raises(ValueError, match=msg):
|
384 |
+
Period(freq="WK-TUE", year=2007, month=1, day=2)
|
385 |
+
with pytest.raises(ValueError, match=msg):
|
386 |
+
Period(freq="WK-MON", year=2007, month=1, day=1)
|
387 |
+
|
388 |
+
def test_conv_business(self):
|
389 |
+
# frequency conversion tests: from Business Frequency"
|
390 |
+
|
391 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
392 |
+
ival_B = Period(freq="B", year=2007, month=1, day=1)
|
393 |
+
ival_B_end_of_year = Period(freq="B", year=2007, month=12, day=31)
|
394 |
+
ival_B_end_of_quarter = Period(freq="B", year=2007, month=3, day=30)
|
395 |
+
ival_B_end_of_month = Period(freq="B", year=2007, month=1, day=31)
|
396 |
+
ival_B_end_of_week = Period(freq="B", year=2007, month=1, day=5)
|
397 |
+
|
398 |
+
ival_B_to_A = Period(freq="Y", year=2007)
|
399 |
+
ival_B_to_Q = Period(freq="Q", year=2007, quarter=1)
|
400 |
+
ival_B_to_M = Period(freq="M", year=2007, month=1)
|
401 |
+
ival_B_to_W = Period(freq="W", year=2007, month=1, day=7)
|
402 |
+
ival_B_to_D = Period(freq="D", year=2007, month=1, day=1)
|
403 |
+
ival_B_to_H_start = Period(freq="h", year=2007, month=1, day=1, hour=0)
|
404 |
+
ival_B_to_H_end = Period(freq="h", year=2007, month=1, day=1, hour=23)
|
405 |
+
ival_B_to_T_start = Period(
|
406 |
+
freq="Min", year=2007, month=1, day=1, hour=0, minute=0
|
407 |
+
)
|
408 |
+
ival_B_to_T_end = Period(
|
409 |
+
freq="Min", year=2007, month=1, day=1, hour=23, minute=59
|
410 |
+
)
|
411 |
+
ival_B_to_S_start = Period(
|
412 |
+
freq="s", year=2007, month=1, day=1, hour=0, minute=0, second=0
|
413 |
+
)
|
414 |
+
ival_B_to_S_end = Period(
|
415 |
+
freq="s", year=2007, month=1, day=1, hour=23, minute=59, second=59
|
416 |
+
)
|
417 |
+
|
418 |
+
assert ival_B.asfreq("Y") == ival_B_to_A
|
419 |
+
assert ival_B_end_of_year.asfreq("Y") == ival_B_to_A
|
420 |
+
assert ival_B.asfreq("Q") == ival_B_to_Q
|
421 |
+
assert ival_B_end_of_quarter.asfreq("Q") == ival_B_to_Q
|
422 |
+
assert ival_B.asfreq("M") == ival_B_to_M
|
423 |
+
assert ival_B_end_of_month.asfreq("M") == ival_B_to_M
|
424 |
+
assert ival_B.asfreq("W") == ival_B_to_W
|
425 |
+
assert ival_B_end_of_week.asfreq("W") == ival_B_to_W
|
426 |
+
|
427 |
+
assert ival_B.asfreq("D") == ival_B_to_D
|
428 |
+
|
429 |
+
assert ival_B.asfreq("h", "s") == ival_B_to_H_start
|
430 |
+
assert ival_B.asfreq("h", "E") == ival_B_to_H_end
|
431 |
+
assert ival_B.asfreq("Min", "s") == ival_B_to_T_start
|
432 |
+
assert ival_B.asfreq("Min", "E") == ival_B_to_T_end
|
433 |
+
assert ival_B.asfreq("s", "s") == ival_B_to_S_start
|
434 |
+
assert ival_B.asfreq("s", "E") == ival_B_to_S_end
|
435 |
+
|
436 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
437 |
+
assert ival_B.asfreq("B") == ival_B
|
438 |
+
|
439 |
+
def test_conv_daily(self):
|
440 |
+
# frequency conversion tests: from Business Frequency"
|
441 |
+
|
442 |
+
ival_D = Period(freq="D", year=2007, month=1, day=1)
|
443 |
+
ival_D_end_of_year = Period(freq="D", year=2007, month=12, day=31)
|
444 |
+
ival_D_end_of_quarter = Period(freq="D", year=2007, month=3, day=31)
|
445 |
+
ival_D_end_of_month = Period(freq="D", year=2007, month=1, day=31)
|
446 |
+
ival_D_end_of_week = Period(freq="D", year=2007, month=1, day=7)
|
447 |
+
|
448 |
+
ival_D_friday = Period(freq="D", year=2007, month=1, day=5)
|
449 |
+
ival_D_saturday = Period(freq="D", year=2007, month=1, day=6)
|
450 |
+
ival_D_sunday = Period(freq="D", year=2007, month=1, day=7)
|
451 |
+
|
452 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
453 |
+
ival_B_friday = Period(freq="B", year=2007, month=1, day=5)
|
454 |
+
ival_B_monday = Period(freq="B", year=2007, month=1, day=8)
|
455 |
+
|
456 |
+
ival_D_to_A = Period(freq="Y", year=2007)
|
457 |
+
|
458 |
+
ival_Deoq_to_AJAN = Period(freq="Y-JAN", year=2008)
|
459 |
+
ival_Deoq_to_AJUN = Period(freq="Y-JUN", year=2007)
|
460 |
+
ival_Deoq_to_ADEC = Period(freq="Y-DEC", year=2007)
|
461 |
+
|
462 |
+
ival_D_to_QEJAN = Period(freq="Q-JAN", year=2007, quarter=4)
|
463 |
+
ival_D_to_QEJUN = Period(freq="Q-JUN", year=2007, quarter=3)
|
464 |
+
ival_D_to_QEDEC = Period(freq="Q-DEC", year=2007, quarter=1)
|
465 |
+
|
466 |
+
ival_D_to_M = Period(freq="M", year=2007, month=1)
|
467 |
+
ival_D_to_W = Period(freq="W", year=2007, month=1, day=7)
|
468 |
+
|
469 |
+
ival_D_to_H_start = Period(freq="h", year=2007, month=1, day=1, hour=0)
|
470 |
+
ival_D_to_H_end = Period(freq="h", year=2007, month=1, day=1, hour=23)
|
471 |
+
ival_D_to_T_start = Period(
|
472 |
+
freq="Min", year=2007, month=1, day=1, hour=0, minute=0
|
473 |
+
)
|
474 |
+
ival_D_to_T_end = Period(
|
475 |
+
freq="Min", year=2007, month=1, day=1, hour=23, minute=59
|
476 |
+
)
|
477 |
+
ival_D_to_S_start = Period(
|
478 |
+
freq="s", year=2007, month=1, day=1, hour=0, minute=0, second=0
|
479 |
+
)
|
480 |
+
ival_D_to_S_end = Period(
|
481 |
+
freq="s", year=2007, month=1, day=1, hour=23, minute=59, second=59
|
482 |
+
)
|
483 |
+
|
484 |
+
assert ival_D.asfreq("Y") == ival_D_to_A
|
485 |
+
|
486 |
+
assert ival_D_end_of_quarter.asfreq("Y-JAN") == ival_Deoq_to_AJAN
|
487 |
+
assert ival_D_end_of_quarter.asfreq("Y-JUN") == ival_Deoq_to_AJUN
|
488 |
+
assert ival_D_end_of_quarter.asfreq("Y-DEC") == ival_Deoq_to_ADEC
|
489 |
+
|
490 |
+
assert ival_D_end_of_year.asfreq("Y") == ival_D_to_A
|
491 |
+
assert ival_D_end_of_quarter.asfreq("Q") == ival_D_to_QEDEC
|
492 |
+
assert ival_D.asfreq("Q-JAN") == ival_D_to_QEJAN
|
493 |
+
assert ival_D.asfreq("Q-JUN") == ival_D_to_QEJUN
|
494 |
+
assert ival_D.asfreq("Q-DEC") == ival_D_to_QEDEC
|
495 |
+
assert ival_D.asfreq("M") == ival_D_to_M
|
496 |
+
assert ival_D_end_of_month.asfreq("M") == ival_D_to_M
|
497 |
+
assert ival_D.asfreq("W") == ival_D_to_W
|
498 |
+
assert ival_D_end_of_week.asfreq("W") == ival_D_to_W
|
499 |
+
|
500 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
501 |
+
assert ival_D_friday.asfreq("B") == ival_B_friday
|
502 |
+
assert ival_D_saturday.asfreq("B", "s") == ival_B_friday
|
503 |
+
assert ival_D_saturday.asfreq("B", "E") == ival_B_monday
|
504 |
+
assert ival_D_sunday.asfreq("B", "s") == ival_B_friday
|
505 |
+
assert ival_D_sunday.asfreq("B", "E") == ival_B_monday
|
506 |
+
|
507 |
+
assert ival_D.asfreq("h", "s") == ival_D_to_H_start
|
508 |
+
assert ival_D.asfreq("h", "E") == ival_D_to_H_end
|
509 |
+
assert ival_D.asfreq("Min", "s") == ival_D_to_T_start
|
510 |
+
assert ival_D.asfreq("Min", "E") == ival_D_to_T_end
|
511 |
+
assert ival_D.asfreq("s", "s") == ival_D_to_S_start
|
512 |
+
assert ival_D.asfreq("s", "E") == ival_D_to_S_end
|
513 |
+
|
514 |
+
assert ival_D.asfreq("D") == ival_D
|
515 |
+
|
516 |
+
def test_conv_hourly(self):
|
517 |
+
# frequency conversion tests: from Hourly Frequency"
|
518 |
+
|
519 |
+
ival_H = Period(freq="h", year=2007, month=1, day=1, hour=0)
|
520 |
+
ival_H_end_of_year = Period(freq="h", year=2007, month=12, day=31, hour=23)
|
521 |
+
ival_H_end_of_quarter = Period(freq="h", year=2007, month=3, day=31, hour=23)
|
522 |
+
ival_H_end_of_month = Period(freq="h", year=2007, month=1, day=31, hour=23)
|
523 |
+
ival_H_end_of_week = Period(freq="h", year=2007, month=1, day=7, hour=23)
|
524 |
+
ival_H_end_of_day = Period(freq="h", year=2007, month=1, day=1, hour=23)
|
525 |
+
ival_H_end_of_bus = Period(freq="h", year=2007, month=1, day=1, hour=23)
|
526 |
+
|
527 |
+
ival_H_to_A = Period(freq="Y", year=2007)
|
528 |
+
ival_H_to_Q = Period(freq="Q", year=2007, quarter=1)
|
529 |
+
ival_H_to_M = Period(freq="M", year=2007, month=1)
|
530 |
+
ival_H_to_W = Period(freq="W", year=2007, month=1, day=7)
|
531 |
+
ival_H_to_D = Period(freq="D", year=2007, month=1, day=1)
|
532 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
533 |
+
ival_H_to_B = Period(freq="B", year=2007, month=1, day=1)
|
534 |
+
|
535 |
+
ival_H_to_T_start = Period(
|
536 |
+
freq="Min", year=2007, month=1, day=1, hour=0, minute=0
|
537 |
+
)
|
538 |
+
ival_H_to_T_end = Period(
|
539 |
+
freq="Min", year=2007, month=1, day=1, hour=0, minute=59
|
540 |
+
)
|
541 |
+
ival_H_to_S_start = Period(
|
542 |
+
freq="s", year=2007, month=1, day=1, hour=0, minute=0, second=0
|
543 |
+
)
|
544 |
+
ival_H_to_S_end = Period(
|
545 |
+
freq="s", year=2007, month=1, day=1, hour=0, minute=59, second=59
|
546 |
+
)
|
547 |
+
|
548 |
+
assert ival_H.asfreq("Y") == ival_H_to_A
|
549 |
+
assert ival_H_end_of_year.asfreq("Y") == ival_H_to_A
|
550 |
+
assert ival_H.asfreq("Q") == ival_H_to_Q
|
551 |
+
assert ival_H_end_of_quarter.asfreq("Q") == ival_H_to_Q
|
552 |
+
assert ival_H.asfreq("M") == ival_H_to_M
|
553 |
+
assert ival_H_end_of_month.asfreq("M") == ival_H_to_M
|
554 |
+
assert ival_H.asfreq("W") == ival_H_to_W
|
555 |
+
assert ival_H_end_of_week.asfreq("W") == ival_H_to_W
|
556 |
+
assert ival_H.asfreq("D") == ival_H_to_D
|
557 |
+
assert ival_H_end_of_day.asfreq("D") == ival_H_to_D
|
558 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
559 |
+
assert ival_H.asfreq("B") == ival_H_to_B
|
560 |
+
assert ival_H_end_of_bus.asfreq("B") == ival_H_to_B
|
561 |
+
|
562 |
+
assert ival_H.asfreq("Min", "s") == ival_H_to_T_start
|
563 |
+
assert ival_H.asfreq("Min", "E") == ival_H_to_T_end
|
564 |
+
assert ival_H.asfreq("s", "s") == ival_H_to_S_start
|
565 |
+
assert ival_H.asfreq("s", "E") == ival_H_to_S_end
|
566 |
+
|
567 |
+
assert ival_H.asfreq("h") == ival_H
|
568 |
+
|
569 |
+
def test_conv_minutely(self):
|
570 |
+
# frequency conversion tests: from Minutely Frequency"
|
571 |
+
|
572 |
+
ival_T = Period(freq="Min", year=2007, month=1, day=1, hour=0, minute=0)
|
573 |
+
ival_T_end_of_year = Period(
|
574 |
+
freq="Min", year=2007, month=12, day=31, hour=23, minute=59
|
575 |
+
)
|
576 |
+
ival_T_end_of_quarter = Period(
|
577 |
+
freq="Min", year=2007, month=3, day=31, hour=23, minute=59
|
578 |
+
)
|
579 |
+
ival_T_end_of_month = Period(
|
580 |
+
freq="Min", year=2007, month=1, day=31, hour=23, minute=59
|
581 |
+
)
|
582 |
+
ival_T_end_of_week = Period(
|
583 |
+
freq="Min", year=2007, month=1, day=7, hour=23, minute=59
|
584 |
+
)
|
585 |
+
ival_T_end_of_day = Period(
|
586 |
+
freq="Min", year=2007, month=1, day=1, hour=23, minute=59
|
587 |
+
)
|
588 |
+
ival_T_end_of_bus = Period(
|
589 |
+
freq="Min", year=2007, month=1, day=1, hour=23, minute=59
|
590 |
+
)
|
591 |
+
ival_T_end_of_hour = Period(
|
592 |
+
freq="Min", year=2007, month=1, day=1, hour=0, minute=59
|
593 |
+
)
|
594 |
+
|
595 |
+
ival_T_to_A = Period(freq="Y", year=2007)
|
596 |
+
ival_T_to_Q = Period(freq="Q", year=2007, quarter=1)
|
597 |
+
ival_T_to_M = Period(freq="M", year=2007, month=1)
|
598 |
+
ival_T_to_W = Period(freq="W", year=2007, month=1, day=7)
|
599 |
+
ival_T_to_D = Period(freq="D", year=2007, month=1, day=1)
|
600 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
601 |
+
ival_T_to_B = Period(freq="B", year=2007, month=1, day=1)
|
602 |
+
ival_T_to_H = Period(freq="h", year=2007, month=1, day=1, hour=0)
|
603 |
+
|
604 |
+
ival_T_to_S_start = Period(
|
605 |
+
freq="s", year=2007, month=1, day=1, hour=0, minute=0, second=0
|
606 |
+
)
|
607 |
+
ival_T_to_S_end = Period(
|
608 |
+
freq="s", year=2007, month=1, day=1, hour=0, minute=0, second=59
|
609 |
+
)
|
610 |
+
|
611 |
+
assert ival_T.asfreq("Y") == ival_T_to_A
|
612 |
+
assert ival_T_end_of_year.asfreq("Y") == ival_T_to_A
|
613 |
+
assert ival_T.asfreq("Q") == ival_T_to_Q
|
614 |
+
assert ival_T_end_of_quarter.asfreq("Q") == ival_T_to_Q
|
615 |
+
assert ival_T.asfreq("M") == ival_T_to_M
|
616 |
+
assert ival_T_end_of_month.asfreq("M") == ival_T_to_M
|
617 |
+
assert ival_T.asfreq("W") == ival_T_to_W
|
618 |
+
assert ival_T_end_of_week.asfreq("W") == ival_T_to_W
|
619 |
+
assert ival_T.asfreq("D") == ival_T_to_D
|
620 |
+
assert ival_T_end_of_day.asfreq("D") == ival_T_to_D
|
621 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
622 |
+
assert ival_T.asfreq("B") == ival_T_to_B
|
623 |
+
assert ival_T_end_of_bus.asfreq("B") == ival_T_to_B
|
624 |
+
assert ival_T.asfreq("h") == ival_T_to_H
|
625 |
+
assert ival_T_end_of_hour.asfreq("h") == ival_T_to_H
|
626 |
+
|
627 |
+
assert ival_T.asfreq("s", "s") == ival_T_to_S_start
|
628 |
+
assert ival_T.asfreq("s", "E") == ival_T_to_S_end
|
629 |
+
|
630 |
+
assert ival_T.asfreq("Min") == ival_T
|
631 |
+
|
632 |
+
def test_conv_secondly(self):
|
633 |
+
# frequency conversion tests: from Secondly Frequency"
|
634 |
+
|
635 |
+
ival_S = Period(freq="s", year=2007, month=1, day=1, hour=0, minute=0, second=0)
|
636 |
+
ival_S_end_of_year = Period(
|
637 |
+
freq="s", year=2007, month=12, day=31, hour=23, minute=59, second=59
|
638 |
+
)
|
639 |
+
ival_S_end_of_quarter = Period(
|
640 |
+
freq="s", year=2007, month=3, day=31, hour=23, minute=59, second=59
|
641 |
+
)
|
642 |
+
ival_S_end_of_month = Period(
|
643 |
+
freq="s", year=2007, month=1, day=31, hour=23, minute=59, second=59
|
644 |
+
)
|
645 |
+
ival_S_end_of_week = Period(
|
646 |
+
freq="s", year=2007, month=1, day=7, hour=23, minute=59, second=59
|
647 |
+
)
|
648 |
+
ival_S_end_of_day = Period(
|
649 |
+
freq="s", year=2007, month=1, day=1, hour=23, minute=59, second=59
|
650 |
+
)
|
651 |
+
ival_S_end_of_bus = Period(
|
652 |
+
freq="s", year=2007, month=1, day=1, hour=23, minute=59, second=59
|
653 |
+
)
|
654 |
+
ival_S_end_of_hour = Period(
|
655 |
+
freq="s", year=2007, month=1, day=1, hour=0, minute=59, second=59
|
656 |
+
)
|
657 |
+
ival_S_end_of_minute = Period(
|
658 |
+
freq="s", year=2007, month=1, day=1, hour=0, minute=0, second=59
|
659 |
+
)
|
660 |
+
|
661 |
+
ival_S_to_A = Period(freq="Y", year=2007)
|
662 |
+
ival_S_to_Q = Period(freq="Q", year=2007, quarter=1)
|
663 |
+
ival_S_to_M = Period(freq="M", year=2007, month=1)
|
664 |
+
ival_S_to_W = Period(freq="W", year=2007, month=1, day=7)
|
665 |
+
ival_S_to_D = Period(freq="D", year=2007, month=1, day=1)
|
666 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
667 |
+
ival_S_to_B = Period(freq="B", year=2007, month=1, day=1)
|
668 |
+
ival_S_to_H = Period(freq="h", year=2007, month=1, day=1, hour=0)
|
669 |
+
ival_S_to_T = Period(freq="Min", year=2007, month=1, day=1, hour=0, minute=0)
|
670 |
+
|
671 |
+
assert ival_S.asfreq("Y") == ival_S_to_A
|
672 |
+
assert ival_S_end_of_year.asfreq("Y") == ival_S_to_A
|
673 |
+
assert ival_S.asfreq("Q") == ival_S_to_Q
|
674 |
+
assert ival_S_end_of_quarter.asfreq("Q") == ival_S_to_Q
|
675 |
+
assert ival_S.asfreq("M") == ival_S_to_M
|
676 |
+
assert ival_S_end_of_month.asfreq("M") == ival_S_to_M
|
677 |
+
assert ival_S.asfreq("W") == ival_S_to_W
|
678 |
+
assert ival_S_end_of_week.asfreq("W") == ival_S_to_W
|
679 |
+
assert ival_S.asfreq("D") == ival_S_to_D
|
680 |
+
assert ival_S_end_of_day.asfreq("D") == ival_S_to_D
|
681 |
+
with tm.assert_produces_warning(FutureWarning, match=bday_msg):
|
682 |
+
assert ival_S.asfreq("B") == ival_S_to_B
|
683 |
+
assert ival_S_end_of_bus.asfreq("B") == ival_S_to_B
|
684 |
+
assert ival_S.asfreq("h") == ival_S_to_H
|
685 |
+
assert ival_S_end_of_hour.asfreq("h") == ival_S_to_H
|
686 |
+
assert ival_S.asfreq("Min") == ival_S_to_T
|
687 |
+
assert ival_S_end_of_minute.asfreq("Min") == ival_S_to_T
|
688 |
+
|
689 |
+
assert ival_S.asfreq("s") == ival_S
|
690 |
+
|
691 |
+
def test_conv_microsecond(self):
|
692 |
+
# GH#31475 Avoid floating point errors dropping the start_time to
|
693 |
+
# before the beginning of the Period
|
694 |
+
per = Period("2020-01-30 15:57:27.576166", freq="us")
|
695 |
+
assert per.ordinal == 1580399847576166
|
696 |
+
|
697 |
+
start = per.start_time
|
698 |
+
expected = Timestamp("2020-01-30 15:57:27.576166")
|
699 |
+
assert start == expected
|
700 |
+
assert start._value == per.ordinal * 1000
|
701 |
+
|
702 |
+
per2 = Period("2300-01-01", "us")
|
703 |
+
msg = "2300-01-01"
|
704 |
+
with pytest.raises(OutOfBoundsDatetime, match=msg):
|
705 |
+
per2.start_time
|
706 |
+
with pytest.raises(OutOfBoundsDatetime, match=msg):
|
707 |
+
per2.end_time
|
708 |
+
|
709 |
+
def test_asfreq_mult(self):
|
710 |
+
# normal freq to mult freq
|
711 |
+
p = Period(freq="Y", year=2007)
|
712 |
+
# ordinal will not change
|
713 |
+
for freq in ["3Y", offsets.YearEnd(3)]:
|
714 |
+
result = p.asfreq(freq)
|
715 |
+
expected = Period("2007", freq="3Y")
|
716 |
+
|
717 |
+
assert result == expected
|
718 |
+
assert result.ordinal == expected.ordinal
|
719 |
+
assert result.freq == expected.freq
|
720 |
+
# ordinal will not change
|
721 |
+
for freq in ["3Y", offsets.YearEnd(3)]:
|
722 |
+
result = p.asfreq(freq, how="S")
|
723 |
+
expected = Period("2007", freq="3Y")
|
724 |
+
|
725 |
+
assert result == expected
|
726 |
+
assert result.ordinal == expected.ordinal
|
727 |
+
assert result.freq == expected.freq
|
728 |
+
|
729 |
+
# mult freq to normal freq
|
730 |
+
p = Period(freq="3Y", year=2007)
|
731 |
+
# ordinal will change because how=E is the default
|
732 |
+
for freq in ["Y", offsets.YearEnd()]:
|
733 |
+
result = p.asfreq(freq)
|
734 |
+
expected = Period("2009", freq="Y")
|
735 |
+
|
736 |
+
assert result == expected
|
737 |
+
assert result.ordinal == expected.ordinal
|
738 |
+
assert result.freq == expected.freq
|
739 |
+
# ordinal will not change
|
740 |
+
for freq in ["Y", offsets.YearEnd()]:
|
741 |
+
result = p.asfreq(freq, how="s")
|
742 |
+
expected = Period("2007", freq="Y")
|
743 |
+
|
744 |
+
assert result == expected
|
745 |
+
assert result.ordinal == expected.ordinal
|
746 |
+
assert result.freq == expected.freq
|
747 |
+
|
748 |
+
p = Period(freq="Y", year=2007)
|
749 |
+
for freq in ["2M", offsets.MonthEnd(2)]:
|
750 |
+
result = p.asfreq(freq)
|
751 |
+
expected = Period("2007-12", freq="2M")
|
752 |
+
|
753 |
+
assert result == expected
|
754 |
+
assert result.ordinal == expected.ordinal
|
755 |
+
assert result.freq == expected.freq
|
756 |
+
for freq in ["2M", offsets.MonthEnd(2)]:
|
757 |
+
result = p.asfreq(freq, how="s")
|
758 |
+
expected = Period("2007-01", freq="2M")
|
759 |
+
|
760 |
+
assert result == expected
|
761 |
+
assert result.ordinal == expected.ordinal
|
762 |
+
assert result.freq == expected.freq
|
763 |
+
|
764 |
+
p = Period(freq="3Y", year=2007)
|
765 |
+
for freq in ["2M", offsets.MonthEnd(2)]:
|
766 |
+
result = p.asfreq(freq)
|
767 |
+
expected = Period("2009-12", freq="2M")
|
768 |
+
|
769 |
+
assert result == expected
|
770 |
+
assert result.ordinal == expected.ordinal
|
771 |
+
assert result.freq == expected.freq
|
772 |
+
for freq in ["2M", offsets.MonthEnd(2)]:
|
773 |
+
result = p.asfreq(freq, how="s")
|
774 |
+
expected = Period("2007-01", freq="2M")
|
775 |
+
|
776 |
+
assert result == expected
|
777 |
+
assert result.ordinal == expected.ordinal
|
778 |
+
assert result.freq == expected.freq
|
779 |
+
|
780 |
+
def test_asfreq_combined(self):
|
781 |
+
# normal freq to combined freq
|
782 |
+
p = Period("2007", freq="h")
|
783 |
+
|
784 |
+
# ordinal will not change
|
785 |
+
expected = Period("2007", freq="25h")
|
786 |
+
for freq, how in zip(["1D1h", "1h1D"], ["E", "S"]):
|
787 |
+
result = p.asfreq(freq, how=how)
|
788 |
+
assert result == expected
|
789 |
+
assert result.ordinal == expected.ordinal
|
790 |
+
assert result.freq == expected.freq
|
791 |
+
|
792 |
+
# combined freq to normal freq
|
793 |
+
p1 = Period(freq="1D1h", year=2007)
|
794 |
+
p2 = Period(freq="1h1D", year=2007)
|
795 |
+
|
796 |
+
# ordinal will change because how=E is the default
|
797 |
+
result1 = p1.asfreq("h")
|
798 |
+
result2 = p2.asfreq("h")
|
799 |
+
expected = Period("2007-01-02", freq="h")
|
800 |
+
assert result1 == expected
|
801 |
+
assert result1.ordinal == expected.ordinal
|
802 |
+
assert result1.freq == expected.freq
|
803 |
+
assert result2 == expected
|
804 |
+
assert result2.ordinal == expected.ordinal
|
805 |
+
assert result2.freq == expected.freq
|
806 |
+
|
807 |
+
# ordinal will not change
|
808 |
+
result1 = p1.asfreq("h", how="S")
|
809 |
+
result2 = p2.asfreq("h", how="S")
|
810 |
+
expected = Period("2007-01-01", freq="h")
|
811 |
+
assert result1 == expected
|
812 |
+
assert result1.ordinal == expected.ordinal
|
813 |
+
assert result1.freq == expected.freq
|
814 |
+
assert result2 == expected
|
815 |
+
assert result2.ordinal == expected.ordinal
|
816 |
+
assert result2.freq == expected.freq
|
817 |
+
|
818 |
+
def test_asfreq_MS(self):
|
819 |
+
initial = Period("2013")
|
820 |
+
|
821 |
+
assert initial.asfreq(freq="M", how="S") == Period("2013-01", "M")
|
822 |
+
|
823 |
+
msg = "MS is not supported as period frequency"
|
824 |
+
with pytest.raises(ValueError, match=msg):
|
825 |
+
initial.asfreq(freq="MS", how="S")
|
826 |
+
|
827 |
+
with pytest.raises(ValueError, match=msg):
|
828 |
+
Period("2013-01", "MS")
|