peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/series
/test_arithmetic.py
from datetime import ( | |
date, | |
timedelta, | |
timezone, | |
) | |
from decimal import Decimal | |
import operator | |
import numpy as np | |
import pytest | |
from pandas._libs import lib | |
from pandas._libs.tslibs import IncompatibleFrequency | |
import pandas as pd | |
from pandas import ( | |
Categorical, | |
DatetimeTZDtype, | |
Index, | |
Series, | |
Timedelta, | |
bdate_range, | |
date_range, | |
isna, | |
) | |
import pandas._testing as tm | |
from pandas.core import ops | |
from pandas.core.computation import expressions as expr | |
from pandas.core.computation.check import NUMEXPR_INSTALLED | |
def switch_numexpr_min_elements(request, monkeypatch): | |
with monkeypatch.context() as m: | |
m.setattr(expr, "_MIN_ELEMENTS", request.param) | |
yield | |
def _permute(obj): | |
return obj.take(np.random.default_rng(2).permutation(len(obj))) | |
class TestSeriesFlexArithmetic: | |
def test_flex_method_equivalence(self, opname, ts): | |
# check that Series.{opname} behaves like Series.__{opname}__, | |
tser = Series( | |
np.arange(20, dtype=np.float64), | |
index=date_range("2020-01-01", periods=20), | |
name="ts", | |
) | |
series = ts[0](tser) | |
other = ts[1](tser) | |
check_reverse = ts[2] | |
op = getattr(Series, opname) | |
alt = getattr(operator, opname) | |
result = op(series, other) | |
expected = alt(series, other) | |
tm.assert_almost_equal(result, expected) | |
if check_reverse: | |
rop = getattr(Series, "r" + opname) | |
result = rop(series, other) | |
expected = alt(other, series) | |
tm.assert_almost_equal(result, expected) | |
def test_flex_method_subclass_metadata_preservation(self, all_arithmetic_operators): | |
# GH 13208 | |
class MySeries(Series): | |
_metadata = ["x"] | |
def _constructor(self): | |
return MySeries | |
opname = all_arithmetic_operators | |
op = getattr(Series, opname) | |
m = MySeries([1, 2, 3], name="test") | |
m.x = 42 | |
result = op(m, 1) | |
assert result.x == 42 | |
def test_flex_add_scalar_fill_value(self): | |
# GH12723 | |
ser = Series([0, 1, np.nan, 3, 4, 5]) | |
exp = ser.fillna(0).add(2) | |
res = ser.add(2, fill_value=0) | |
tm.assert_series_equal(res, exp) | |
pairings = [(Series.div, operator.truediv, 1), (Series.rdiv, ops.rtruediv, 1)] | |
for op in ["add", "sub", "mul", "pow", "truediv", "floordiv"]: | |
fv = 0 | |
lop = getattr(Series, op) | |
lequiv = getattr(operator, op) | |
rop = getattr(Series, "r" + op) | |
# bind op at definition time... | |
requiv = lambda x, y, op=op: getattr(operator, op)(y, x) | |
pairings.append((lop, lequiv, fv)) | |
pairings.append((rop, requiv, fv)) | |
def test_operators_combine(self, op, equiv_op, fv): | |
def _check_fill(meth, op, a, b, fill_value=0): | |
exp_index = a.index.union(b.index) | |
a = a.reindex(exp_index) | |
b = b.reindex(exp_index) | |
amask = isna(a) | |
bmask = isna(b) | |
exp_values = [] | |
for i in range(len(exp_index)): | |
with np.errstate(all="ignore"): | |
if amask[i]: | |
if bmask[i]: | |
exp_values.append(np.nan) | |
continue | |
exp_values.append(op(fill_value, b[i])) | |
elif bmask[i]: | |
if amask[i]: | |
exp_values.append(np.nan) | |
continue | |
exp_values.append(op(a[i], fill_value)) | |
else: | |
exp_values.append(op(a[i], b[i])) | |
result = meth(a, b, fill_value=fill_value) | |
expected = Series(exp_values, exp_index) | |
tm.assert_series_equal(result, expected) | |
a = Series([np.nan, 1.0, 2.0, 3.0, np.nan], index=np.arange(5)) | |
b = Series([np.nan, 1, np.nan, 3, np.nan, 4.0], index=np.arange(6)) | |
result = op(a, b) | |
exp = equiv_op(a, b) | |
tm.assert_series_equal(result, exp) | |
_check_fill(op, equiv_op, a, b, fill_value=fv) | |
# should accept axis=0 or axis='rows' | |
op(a, b, axis=0) | |
class TestSeriesArithmetic: | |
# Some of these may end up in tests/arithmetic, but are not yet sorted | |
def test_add_series_with_period_index(self): | |
rng = pd.period_range("1/1/2000", "1/1/2010", freq="Y") | |
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) | |
result = ts + ts[::2] | |
expected = ts + ts | |
expected.iloc[1::2] = np.nan | |
tm.assert_series_equal(result, expected) | |
result = ts + _permute(ts[::2]) | |
tm.assert_series_equal(result, expected) | |
msg = "Input has different freq=D from Period\\(freq=Y-DEC\\)" | |
with pytest.raises(IncompatibleFrequency, match=msg): | |
ts + ts.asfreq("D", how="end") | |
def test_string_addition(self, target_add, input_value, expected_value): | |
# GH28658 - ensure adding 'm' does not raise an error | |
a = Series(input_value) | |
result = a + target_add | |
expected = Series(expected_value) | |
tm.assert_series_equal(result, expected) | |
def test_divmod(self): | |
# GH#25557 | |
a = Series([1, 1, 1, np.nan], index=["a", "b", "c", "d"]) | |
b = Series([2, np.nan, 1, np.nan], index=["a", "b", "d", "e"]) | |
result = a.divmod(b) | |
expected = divmod(a, b) | |
tm.assert_series_equal(result[0], expected[0]) | |
tm.assert_series_equal(result[1], expected[1]) | |
result = a.rdivmod(b) | |
expected = divmod(b, a) | |
tm.assert_series_equal(result[0], expected[0]) | |
tm.assert_series_equal(result[1], expected[1]) | |
def test_series_integer_mod(self, index): | |
# GH#24396 | |
s1 = Series(range(1, 10)) | |
s2 = Series("foo", index=index) | |
msg = "not all arguments converted during string formatting|mod not" | |
with pytest.raises((TypeError, NotImplementedError), match=msg): | |
s2 % s1 | |
def test_add_with_duplicate_index(self): | |
# GH14227 | |
s1 = Series([1, 2], index=[1, 1]) | |
s2 = Series([10, 10], index=[1, 2]) | |
result = s1 + s2 | |
expected = Series([11, 12, np.nan], index=[1, 1, 2]) | |
tm.assert_series_equal(result, expected) | |
def test_add_na_handling(self): | |
ser = Series( | |
[Decimal("1.3"), Decimal("2.3")], index=[date(2012, 1, 1), date(2012, 1, 2)] | |
) | |
result = ser + ser.shift(1) | |
result2 = ser.shift(1) + ser | |
assert isna(result.iloc[0]) | |
assert isna(result2.iloc[0]) | |
def test_add_corner_cases(self, datetime_series): | |
empty = Series([], index=Index([]), dtype=np.float64) | |
result = datetime_series + empty | |
assert np.isnan(result).all() | |
result = empty + empty.copy() | |
assert len(result) == 0 | |
def test_add_float_plus_int(self, datetime_series): | |
# float + int | |
int_ts = datetime_series.astype(int)[:-5] | |
added = datetime_series + int_ts | |
expected = Series( | |
datetime_series.values[:-5] + int_ts.values, | |
index=datetime_series.index[:-5], | |
name="ts", | |
) | |
tm.assert_series_equal(added[:-5], expected) | |
def test_mul_empty_int_corner_case(self): | |
s1 = Series([], [], dtype=np.int32) | |
s2 = Series({"x": 0.0}) | |
tm.assert_series_equal(s1 * s2, Series([np.nan], index=["x"])) | |
def test_sub_datetimelike_align(self): | |
# GH#7500 | |
# datetimelike ops need to align | |
dt = Series(date_range("2012-1-1", periods=3, freq="D")) | |
dt.iloc[2] = np.nan | |
dt2 = dt[::-1] | |
expected = Series([timedelta(0), timedelta(0), pd.NaT]) | |
# name is reset | |
result = dt2 - dt | |
tm.assert_series_equal(result, expected) | |
expected = Series(expected, name=0) | |
result = (dt2.to_frame() - dt.to_frame())[0] | |
tm.assert_series_equal(result, expected) | |
def test_alignment_doesnt_change_tz(self): | |
# GH#33671 | |
dti = date_range("2016-01-01", periods=10, tz="CET") | |
dti_utc = dti.tz_convert("UTC") | |
ser = Series(10, index=dti) | |
ser_utc = Series(10, index=dti_utc) | |
# we don't care about the result, just that original indexes are unchanged | |
ser * ser_utc | |
assert ser.index is dti | |
assert ser_utc.index is dti_utc | |
def test_alignment_categorical(self): | |
# GH13365 | |
cat = Categorical(["3z53", "3z53", "LoJG", "LoJG", "LoJG", "N503"]) | |
ser1 = Series(2, index=cat) | |
ser2 = Series(2, index=cat[:-1]) | |
result = ser1 * ser2 | |
exp_index = ["3z53"] * 4 + ["LoJG"] * 9 + ["N503"] | |
exp_index = pd.CategoricalIndex(exp_index, categories=cat.categories) | |
exp_values = [4.0] * 13 + [np.nan] | |
expected = Series(exp_values, exp_index) | |
tm.assert_series_equal(result, expected) | |
def test_arithmetic_with_duplicate_index(self): | |
# GH#8363 | |
# integer ops with a non-unique index | |
index = [2, 2, 3, 3, 4] | |
ser = Series(np.arange(1, 6, dtype="int64"), index=index) | |
other = Series(np.arange(5, dtype="int64"), index=index) | |
result = ser - other | |
expected = Series(1, index=[2, 2, 3, 3, 4]) | |
tm.assert_series_equal(result, expected) | |
# GH#8363 | |
# datetime ops with a non-unique index | |
ser = Series(date_range("20130101 09:00:00", periods=5), index=index) | |
other = Series(date_range("20130101", periods=5), index=index) | |
result = ser - other | |
expected = Series(Timedelta("9 hours"), index=[2, 2, 3, 3, 4]) | |
tm.assert_series_equal(result, expected) | |
def test_masked_and_non_masked_propagate_na(self): | |
# GH#45810 | |
ser1 = Series([0, np.nan], dtype="float") | |
ser2 = Series([0, 1], dtype="Int64") | |
result = ser1 * ser2 | |
expected = Series([0, pd.NA], dtype="Float64") | |
tm.assert_series_equal(result, expected) | |
def test_mask_div_propagate_na_for_non_na_dtype(self): | |
# GH#42630 | |
ser1 = Series([15, pd.NA, 5, 4], dtype="Int64") | |
ser2 = Series([15, 5, np.nan, 4]) | |
result = ser1 / ser2 | |
expected = Series([1.0, pd.NA, pd.NA, 1.0], dtype="Float64") | |
tm.assert_series_equal(result, expected) | |
result = ser2 / ser1 | |
tm.assert_series_equal(result, expected) | |
def test_add_list_to_masked_array(self, val, dtype): | |
# GH#22962 | |
ser = Series([1, None, 3], dtype="Int64") | |
result = ser + [1, None, val] | |
expected = Series([2, None, 3 + val], dtype=dtype) | |
tm.assert_series_equal(result, expected) | |
result = [1, None, val] + ser | |
tm.assert_series_equal(result, expected) | |
def test_add_list_to_masked_array_boolean(self, request): | |
# GH#22962 | |
warning = ( | |
UserWarning | |
if request.node.callspec.id == "numexpr" and NUMEXPR_INSTALLED | |
else None | |
) | |
ser = Series([True, None, False], dtype="boolean") | |
with tm.assert_produces_warning(warning): | |
result = ser + [True, None, True] | |
expected = Series([True, None, True], dtype="boolean") | |
tm.assert_series_equal(result, expected) | |
with tm.assert_produces_warning(warning): | |
result = [True, None, True] + ser | |
tm.assert_series_equal(result, expected) | |
# ------------------------------------------------------------------ | |
# Comparisons | |
class TestSeriesFlexComparison: | |
def test_comparison_flex_basic(self, axis, comparison_op): | |
left = Series(np.random.default_rng(2).standard_normal(10)) | |
right = Series(np.random.default_rng(2).standard_normal(10)) | |
result = getattr(left, comparison_op.__name__)(right, axis=axis) | |
expected = comparison_op(left, right) | |
tm.assert_series_equal(result, expected) | |
def test_comparison_bad_axis(self, comparison_op): | |
left = Series(np.random.default_rng(2).standard_normal(10)) | |
right = Series(np.random.default_rng(2).standard_normal(10)) | |
msg = "No axis named 1 for object type" | |
with pytest.raises(ValueError, match=msg): | |
getattr(left, comparison_op.__name__)(right, axis=1) | |
def test_comparison_flex_alignment(self, values, op): | |
left = Series([1, 3, 2], index=list("abc")) | |
right = Series([2, 2, 2], index=list("bcd")) | |
result = getattr(left, op)(right) | |
expected = Series(values, index=list("abcd")) | |
tm.assert_series_equal(result, expected) | |
def test_comparison_flex_alignment_fill(self, values, op, fill_value): | |
left = Series([1, 3, 2], index=list("abc")) | |
right = Series([2, 2, 2], index=list("bcd")) | |
result = getattr(left, op)(right, fill_value=fill_value) | |
expected = Series(values, index=list("abcd")) | |
tm.assert_series_equal(result, expected) | |
class TestSeriesComparison: | |
def test_comparison_different_length(self): | |
a = Series(["a", "b", "c"]) | |
b = Series(["b", "a"]) | |
msg = "only compare identically-labeled Series" | |
with pytest.raises(ValueError, match=msg): | |
a < b | |
a = Series([1, 2]) | |
b = Series([2, 3, 4]) | |
with pytest.raises(ValueError, match=msg): | |
a == b | |
def test_ser_flex_cmp_return_dtypes(self, opname): | |
# GH#15115 | |
ser = Series([1, 3, 2], index=range(3)) | |
const = 2 | |
result = getattr(ser, opname)(const).dtypes | |
expected = np.dtype("bool") | |
assert result == expected | |
def test_ser_flex_cmp_return_dtypes_empty(self, opname): | |
# GH#15115 empty Series case | |
ser = Series([1, 3, 2], index=range(3)) | |
empty = ser.iloc[:0] | |
const = 2 | |
result = getattr(empty, opname)(const).dtypes | |
expected = np.dtype("bool") | |
assert result == expected | |
def test_ser_cmp_result_names(self, names, comparison_op): | |
# datetime64 dtype | |
op = comparison_op | |
dti = date_range("1949-06-07 03:00:00", freq="h", periods=5, name=names[0]) | |
ser = Series(dti).rename(names[1]) | |
result = op(ser, dti) | |
assert result.name == names[2] | |
# datetime64tz dtype | |
dti = dti.tz_localize("US/Central") | |
dti = pd.DatetimeIndex(dti, freq="infer") # freq not preserved by tz_localize | |
ser = Series(dti).rename(names[1]) | |
result = op(ser, dti) | |
assert result.name == names[2] | |
# timedelta64 dtype | |
tdi = dti - dti.shift(1) | |
ser = Series(tdi).rename(names[1]) | |
result = op(ser, tdi) | |
assert result.name == names[2] | |
# interval dtype | |
if op in [operator.eq, operator.ne]: | |
# interval dtype comparisons not yet implemented | |
ii = pd.interval_range(start=0, periods=5, name=names[0]) | |
ser = Series(ii).rename(names[1]) | |
result = op(ser, ii) | |
assert result.name == names[2] | |
# categorical | |
if op in [operator.eq, operator.ne]: | |
# categorical dtype comparisons raise for inequalities | |
cidx = tdi.astype("category") | |
ser = Series(cidx).rename(names[1]) | |
result = op(ser, cidx) | |
assert result.name == names[2] | |
def test_comparisons(self, using_infer_string): | |
s = Series(["a", "b", "c"]) | |
s2 = Series([False, True, False]) | |
# it works! | |
exp = Series([False, False, False]) | |
if using_infer_string: | |
import pyarrow as pa | |
msg = "has no kernel" | |
# TODO(3.0) GH56008 | |
with pytest.raises(pa.lib.ArrowNotImplementedError, match=msg): | |
s == s2 | |
with tm.assert_produces_warning( | |
DeprecationWarning, match="comparison", check_stacklevel=False | |
): | |
with pytest.raises(pa.lib.ArrowNotImplementedError, match=msg): | |
s2 == s | |
else: | |
tm.assert_series_equal(s == s2, exp) | |
tm.assert_series_equal(s2 == s, exp) | |
# ----------------------------------------------------------------- | |
# Categorical Dtype Comparisons | |
def test_categorical_comparisons(self): | |
# GH#8938 | |
# allow equality comparisons | |
a = Series(list("abc"), dtype="category") | |
b = Series(list("abc"), dtype="object") | |
c = Series(["a", "b", "cc"], dtype="object") | |
d = Series(list("acb"), dtype="object") | |
e = Categorical(list("abc")) | |
f = Categorical(list("acb")) | |
# vs scalar | |
assert not (a == "a").all() | |
assert ((a != "a") == ~(a == "a")).all() | |
assert not ("a" == a).all() | |
assert (a == "a")[0] | |
assert ("a" == a)[0] | |
assert not ("a" != a)[0] | |
# vs list-like | |
assert (a == a).all() | |
assert not (a != a).all() | |
assert (a == list(a)).all() | |
assert (a == b).all() | |
assert (b == a).all() | |
assert ((~(a == b)) == (a != b)).all() | |
assert ((~(b == a)) == (b != a)).all() | |
assert not (a == c).all() | |
assert not (c == a).all() | |
assert not (a == d).all() | |
assert not (d == a).all() | |
# vs a cat-like | |
assert (a == e).all() | |
assert (e == a).all() | |
assert not (a == f).all() | |
assert not (f == a).all() | |
assert (~(a == e) == (a != e)).all() | |
assert (~(e == a) == (e != a)).all() | |
assert (~(a == f) == (a != f)).all() | |
assert (~(f == a) == (f != a)).all() | |
# non-equality is not comparable | |
msg = "can only compare equality or not" | |
with pytest.raises(TypeError, match=msg): | |
a < b | |
with pytest.raises(TypeError, match=msg): | |
b < a | |
with pytest.raises(TypeError, match=msg): | |
a > b | |
with pytest.raises(TypeError, match=msg): | |
b > a | |
def test_unequal_categorical_comparison_raises_type_error(self): | |
# unequal comparison should raise for unordered cats | |
cat = Series(Categorical(list("abc"))) | |
msg = "can only compare equality or not" | |
with pytest.raises(TypeError, match=msg): | |
cat > "b" | |
cat = Series(Categorical(list("abc"), ordered=False)) | |
with pytest.raises(TypeError, match=msg): | |
cat > "b" | |
# https://github.com/pandas-dev/pandas/issues/9836#issuecomment-92123057 | |
# and following comparisons with scalars not in categories should raise | |
# for unequal comps, but not for equal/not equal | |
cat = Series(Categorical(list("abc"), ordered=True)) | |
msg = "Invalid comparison between dtype=category and str" | |
with pytest.raises(TypeError, match=msg): | |
cat < "d" | |
with pytest.raises(TypeError, match=msg): | |
cat > "d" | |
with pytest.raises(TypeError, match=msg): | |
"d" < cat | |
with pytest.raises(TypeError, match=msg): | |
"d" > cat | |
tm.assert_series_equal(cat == "d", Series([False, False, False])) | |
tm.assert_series_equal(cat != "d", Series([True, True, True])) | |
# ----------------------------------------------------------------- | |
def test_comparison_tuples(self): | |
# GH#11339 | |
# comparisons vs tuple | |
s = Series([(1, 1), (1, 2)]) | |
result = s == (1, 2) | |
expected = Series([False, True]) | |
tm.assert_series_equal(result, expected) | |
result = s != (1, 2) | |
expected = Series([True, False]) | |
tm.assert_series_equal(result, expected) | |
result = s == (0, 0) | |
expected = Series([False, False]) | |
tm.assert_series_equal(result, expected) | |
result = s != (0, 0) | |
expected = Series([True, True]) | |
tm.assert_series_equal(result, expected) | |
s = Series([(1, 1), (1, 1)]) | |
result = s == (1, 1) | |
expected = Series([True, True]) | |
tm.assert_series_equal(result, expected) | |
result = s != (1, 1) | |
expected = Series([False, False]) | |
tm.assert_series_equal(result, expected) | |
def test_comparison_frozenset(self): | |
ser = Series([frozenset([1]), frozenset([1, 2])]) | |
result = ser == frozenset([1]) | |
expected = Series([True, False]) | |
tm.assert_series_equal(result, expected) | |
def test_comparison_operators_with_nas(self, comparison_op): | |
ser = Series(bdate_range("1/1/2000", periods=10), dtype=object) | |
ser[::2] = np.nan | |
# test that comparisons work | |
val = ser[5] | |
result = comparison_op(ser, val) | |
expected = comparison_op(ser.dropna(), val).reindex(ser.index) | |
msg = "Downcasting object dtype arrays" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
if comparison_op is operator.ne: | |
expected = expected.fillna(True).astype(bool) | |
else: | |
expected = expected.fillna(False).astype(bool) | |
tm.assert_series_equal(result, expected) | |
def test_ne(self): | |
ts = Series([3, 4, 5, 6, 7], [3, 4, 5, 6, 7], dtype=float) | |
expected = np.array([True, True, False, True, True]) | |
tm.assert_numpy_array_equal(ts.index != 5, expected) | |
tm.assert_numpy_array_equal(~(ts.index == 5), expected) | |
def test_comp_ops_df_compat(self, left, right, frame_or_series): | |
# GH 1134 | |
# GH 50083 to clarify that index and columns must be identically labeled | |
if frame_or_series is not Series: | |
msg = ( | |
rf"Can only compare identically-labeled \(both index and columns\) " | |
f"{frame_or_series.__name__} objects" | |
) | |
left = left.to_frame() | |
right = right.to_frame() | |
else: | |
msg = ( | |
f"Can only compare identically-labeled {frame_or_series.__name__} " | |
f"objects" | |
) | |
with pytest.raises(ValueError, match=msg): | |
left == right | |
with pytest.raises(ValueError, match=msg): | |
right == left | |
with pytest.raises(ValueError, match=msg): | |
left != right | |
with pytest.raises(ValueError, match=msg): | |
right != left | |
with pytest.raises(ValueError, match=msg): | |
left < right | |
with pytest.raises(ValueError, match=msg): | |
right < left | |
def test_compare_series_interval_keyword(self): | |
# GH#25338 | |
ser = Series(["IntervalA", "IntervalB", "IntervalC"]) | |
result = ser == "IntervalA" | |
expected = Series([True, False, False]) | |
tm.assert_series_equal(result, expected) | |
# ------------------------------------------------------------------ | |
# Unsorted | |
# These arithmetic tests were previously in other files, eventually | |
# should be parametrized and put into tests.arithmetic | |
class TestTimeSeriesArithmetic: | |
def test_series_add_tz_mismatch_converts_to_utc(self): | |
rng = date_range("1/1/2011", periods=100, freq="h", tz="utc") | |
perm = np.random.default_rng(2).permutation(100)[:90] | |
ser1 = Series( | |
np.random.default_rng(2).standard_normal(90), | |
index=rng.take(perm).tz_convert("US/Eastern"), | |
) | |
perm = np.random.default_rng(2).permutation(100)[:90] | |
ser2 = Series( | |
np.random.default_rng(2).standard_normal(90), | |
index=rng.take(perm).tz_convert("Europe/Berlin"), | |
) | |
result = ser1 + ser2 | |
uts1 = ser1.tz_convert("utc") | |
uts2 = ser2.tz_convert("utc") | |
expected = uts1 + uts2 | |
# sort since input indexes are not equal | |
expected = expected.sort_index() | |
assert result.index.tz is timezone.utc | |
tm.assert_series_equal(result, expected) | |
def test_series_add_aware_naive_raises(self): | |
rng = date_range("1/1/2011", periods=10, freq="h") | |
ser = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) | |
ser_utc = ser.tz_localize("utc") | |
msg = "Cannot join tz-naive with tz-aware DatetimeIndex" | |
with pytest.raises(Exception, match=msg): | |
ser + ser_utc | |
with pytest.raises(Exception, match=msg): | |
ser_utc + ser | |
# TODO: belongs in tests/arithmetic? | |
def test_datetime_understood(self, unit): | |
# Ensures it doesn't fail to create the right series | |
# reported in issue#16726 | |
series = Series(date_range("2012-01-01", periods=3, unit=unit)) | |
offset = pd.offsets.DateOffset(days=6) | |
result = series - offset | |
exp_dti = pd.to_datetime(["2011-12-26", "2011-12-27", "2011-12-28"]).as_unit( | |
unit | |
) | |
expected = Series(exp_dti) | |
tm.assert_series_equal(result, expected) | |
def test_align_date_objects_with_datetimeindex(self): | |
rng = date_range("1/1/2000", periods=20) | |
ts = Series(np.random.default_rng(2).standard_normal(20), index=rng) | |
ts_slice = ts[5:] | |
ts2 = ts_slice.copy() | |
ts2.index = [x.date() for x in ts2.index] | |
result = ts + ts2 | |
result2 = ts2 + ts | |
expected = ts + ts[5:] | |
expected.index = expected.index._with_freq(None) | |
tm.assert_series_equal(result, expected) | |
tm.assert_series_equal(result2, expected) | |
class TestNamePreservation: | |
def test_series_ops_name_retention(self, flex, box, names, all_binary_operators): | |
# GH#33930 consistent name-retention | |
op = all_binary_operators | |
left = Series(range(10), name=names[0]) | |
right = Series(range(10), name=names[1]) | |
name = op.__name__.strip("_") | |
is_logical = name in ["and", "rand", "xor", "rxor", "or", "ror"] | |
msg = ( | |
r"Logical ops \(and, or, xor\) between Pandas objects and " | |
"dtype-less sequences" | |
) | |
warn = None | |
if box in [list, tuple] and is_logical: | |
warn = FutureWarning | |
right = box(right) | |
if flex: | |
if is_logical: | |
# Series doesn't have these as flex methods | |
return | |
result = getattr(left, name)(right) | |
else: | |
# GH#37374 logical ops behaving as set ops deprecated | |
with tm.assert_produces_warning(warn, match=msg): | |
result = op(left, right) | |
assert isinstance(result, Series) | |
if box in [Index, Series]: | |
assert result.name is names[2] or result.name == names[2] | |
else: | |
assert result.name is names[0] or result.name == names[0] | |
def test_binop_maybe_preserve_name(self, datetime_series): | |
# names match, preserve | |
result = datetime_series * datetime_series | |
assert result.name == datetime_series.name | |
result = datetime_series.mul(datetime_series) | |
assert result.name == datetime_series.name | |
result = datetime_series * datetime_series[:-2] | |
assert result.name == datetime_series.name | |
# names don't match, don't preserve | |
cp = datetime_series.copy() | |
cp.name = "something else" | |
result = datetime_series + cp | |
assert result.name is None | |
result = datetime_series.add(cp) | |
assert result.name is None | |
ops = ["add", "sub", "mul", "div", "truediv", "floordiv", "mod", "pow"] | |
ops = ops + ["r" + op for op in ops] | |
for op in ops: | |
# names match, preserve | |
ser = datetime_series.copy() | |
result = getattr(ser, op)(ser) | |
assert result.name == datetime_series.name | |
# names don't match, don't preserve | |
cp = datetime_series.copy() | |
cp.name = "changed" | |
result = getattr(ser, op)(cp) | |
assert result.name is None | |
def test_scalarop_preserve_name(self, datetime_series): | |
result = datetime_series * 2 | |
assert result.name == datetime_series.name | |
class TestInplaceOperations: | |
def test_series_inplace_ops(self, dtype1, dtype2, dtype_expected, dtype_mul): | |
# GH 37910 | |
ser1 = Series([1], dtype=dtype1) | |
ser2 = Series([2], dtype=dtype2) | |
ser1 += ser2 | |
expected = Series([3], dtype=dtype_expected) | |
tm.assert_series_equal(ser1, expected) | |
ser1 -= ser2 | |
expected = Series([1], dtype=dtype_expected) | |
tm.assert_series_equal(ser1, expected) | |
ser1 *= ser2 | |
expected = Series([2], dtype=dtype_mul) | |
tm.assert_series_equal(ser1, expected) | |
def test_none_comparison(request, series_with_simple_index): | |
series = series_with_simple_index | |
if len(series) < 1: | |
request.applymarker( | |
pytest.mark.xfail(reason="Test doesn't make sense on empty data") | |
) | |
# bug brought up by #1079 | |
# changed from TypeError in 0.17.0 | |
series.iloc[0] = np.nan | |
# noinspection PyComparisonWithNone | |
result = series == None # noqa: E711 | |
assert not result.iat[0] | |
assert not result.iat[1] | |
# noinspection PyComparisonWithNone | |
result = series != None # noqa: E711 | |
assert result.iat[0] | |
assert result.iat[1] | |
result = None == series # noqa: E711 | |
assert not result.iat[0] | |
assert not result.iat[1] | |
result = None != series # noqa: E711 | |
assert result.iat[0] | |
assert result.iat[1] | |
if lib.is_np_dtype(series.dtype, "M") or isinstance(series.dtype, DatetimeTZDtype): | |
# Following DatetimeIndex (and Timestamp) convention, | |
# inequality comparisons with Series[datetime64] raise | |
msg = "Invalid comparison" | |
with pytest.raises(TypeError, match=msg): | |
None > series | |
with pytest.raises(TypeError, match=msg): | |
series > None | |
else: | |
result = None > series | |
assert not result.iat[0] | |
assert not result.iat[1] | |
result = series < None | |
assert not result.iat[0] | |
assert not result.iat[1] | |
def test_series_varied_multiindex_alignment(): | |
# GH 20414 | |
s1 = Series( | |
range(8), | |
index=pd.MultiIndex.from_product( | |
[list("ab"), list("xy"), [1, 2]], names=["ab", "xy", "num"] | |
), | |
) | |
s2 = Series( | |
[1000 * i for i in range(1, 5)], | |
index=pd.MultiIndex.from_product([list("xy"), [1, 2]], names=["xy", "num"]), | |
) | |
result = s1.loc[pd.IndexSlice[["a"], :, :]] + s2 | |
expected = Series( | |
[1000, 2001, 3002, 4003], | |
index=pd.MultiIndex.from_tuples( | |
[("a", "x", 1), ("a", "x", 2), ("a", "y", 1), ("a", "y", 2)], | |
names=["ab", "xy", "num"], | |
), | |
) | |
tm.assert_series_equal(result, expected) | |
def test_rmod_consistent_large_series(): | |
# GH 29602 | |
result = Series([2] * 10001).rmod(-1) | |
expected = Series([1] * 10001) | |
tm.assert_series_equal(result, expected) | |