peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/series
/test_reductions.py
import numpy as np | |
import pytest | |
import pandas as pd | |
from pandas import Series | |
import pandas._testing as tm | |
def test_reductions_series_strings(operation, expected): | |
# GH#31746 | |
ser = Series(["a", "b"], dtype="string") | |
res_operation_serie = getattr(ser, operation)() | |
assert res_operation_serie == expected | |
def test_mode_extension_dtype(as_period): | |
# GH#41927 preserve dt64tz dtype | |
ser = Series([pd.Timestamp(1979, 4, n) for n in range(1, 5)]) | |
if as_period: | |
ser = ser.dt.to_period("D") | |
else: | |
ser = ser.dt.tz_localize("US/Central") | |
res = ser.mode() | |
assert res.dtype == ser.dtype | |
tm.assert_series_equal(res, ser) | |
def test_mode_nullable_dtype(any_numeric_ea_dtype): | |
# GH#55340 | |
ser = Series([1, 3, 2, pd.NA, 3, 2, pd.NA], dtype=any_numeric_ea_dtype) | |
result = ser.mode(dropna=False) | |
expected = Series([2, 3, pd.NA], dtype=any_numeric_ea_dtype) | |
tm.assert_series_equal(result, expected) | |
result = ser.mode(dropna=True) | |
expected = Series([2, 3], dtype=any_numeric_ea_dtype) | |
tm.assert_series_equal(result, expected) | |
ser[-1] = pd.NA | |
result = ser.mode(dropna=True) | |
expected = Series([2, 3], dtype=any_numeric_ea_dtype) | |
tm.assert_series_equal(result, expected) | |
result = ser.mode(dropna=False) | |
expected = Series([pd.NA], dtype=any_numeric_ea_dtype) | |
tm.assert_series_equal(result, expected) | |
def test_mode_infer_string(): | |
# GH#56183 | |
pytest.importorskip("pyarrow") | |
ser = Series(["a", "b"], dtype=object) | |
with pd.option_context("future.infer_string", True): | |
result = ser.mode() | |
expected = Series(["a", "b"], dtype=object) | |
tm.assert_series_equal(result, expected) | |
def test_reductions_td64_with_nat(): | |
# GH#8617 | |
ser = Series([0, pd.NaT], dtype="m8[ns]") | |
exp = ser[0] | |
assert ser.median() == exp | |
assert ser.min() == exp | |
assert ser.max() == exp | |
def test_td64_sum_empty(skipna): | |
# GH#37151 | |
ser = Series([], dtype="timedelta64[ns]") | |
result = ser.sum(skipna=skipna) | |
assert isinstance(result, pd.Timedelta) | |
assert result == pd.Timedelta(0) | |
def test_td64_summation_overflow(): | |
# GH#9442 | |
ser = Series(pd.date_range("20130101", periods=100000, freq="h")) | |
ser[0] += pd.Timedelta("1s 1ms") | |
# mean | |
result = (ser - ser.min()).mean() | |
expected = pd.Timedelta((pd.TimedeltaIndex(ser - ser.min()).asi8 / len(ser)).sum()) | |
# the computation is converted to float so | |
# might be some loss of precision | |
assert np.allclose(result._value / 1000, expected._value / 1000) | |
# sum | |
msg = "overflow in timedelta operation" | |
with pytest.raises(ValueError, match=msg): | |
(ser - ser.min()).sum() | |
s1 = ser[0:10000] | |
with pytest.raises(ValueError, match=msg): | |
(s1 - s1.min()).sum() | |
s2 = ser[0:1000] | |
(s2 - s2.min()).sum() | |
def test_prod_numpy16_bug(): | |
ser = Series([1.0, 1.0, 1.0], index=range(3)) | |
result = ser.prod() | |
assert not isinstance(result, Series) | |
def test_validate_any_all_out_keepdims_raises(kwargs, func): | |
ser = Series([1, 2]) | |
param = next(iter(kwargs)) | |
name = func.__name__ | |
msg = ( | |
f"the '{param}' parameter is not " | |
"supported in the pandas " | |
rf"implementation of {name}\(\)" | |
) | |
with pytest.raises(ValueError, match=msg): | |
func(ser, **kwargs) | |
def test_validate_sum_initial(): | |
ser = Series([1, 2]) | |
msg = ( | |
r"the 'initial' parameter is not " | |
r"supported in the pandas " | |
r"implementation of sum\(\)" | |
) | |
with pytest.raises(ValueError, match=msg): | |
np.sum(ser, initial=10) | |
def test_validate_median_initial(): | |
ser = Series([1, 2]) | |
msg = ( | |
r"the 'overwrite_input' parameter is not " | |
r"supported in the pandas " | |
r"implementation of median\(\)" | |
) | |
with pytest.raises(ValueError, match=msg): | |
# It seems like np.median doesn't dispatch, so we use the | |
# method instead of the ufunc. | |
ser.median(overwrite_input=True) | |
def test_validate_stat_keepdims(): | |
ser = Series([1, 2]) | |
msg = ( | |
r"the 'keepdims' parameter is not " | |
r"supported in the pandas " | |
r"implementation of sum\(\)" | |
) | |
with pytest.raises(ValueError, match=msg): | |
np.sum(ser, keepdims=True) | |
def test_mean_with_convertible_string_raises(using_array_manager, using_infer_string): | |
# GH#44008 | |
ser = Series(["1", "2"]) | |
if using_infer_string: | |
msg = "does not support" | |
with pytest.raises(TypeError, match=msg): | |
ser.sum() | |
else: | |
assert ser.sum() == "12" | |
msg = "Could not convert string '12' to numeric|does not support" | |
with pytest.raises(TypeError, match=msg): | |
ser.mean() | |
df = ser.to_frame() | |
if not using_array_manager: | |
msg = r"Could not convert \['12'\] to numeric|does not support" | |
with pytest.raises(TypeError, match=msg): | |
df.mean() | |
def test_mean_dont_convert_j_to_complex(using_array_manager): | |
# GH#36703 | |
df = pd.DataFrame([{"db": "J", "numeric": 123}]) | |
if using_array_manager: | |
msg = "Could not convert string 'J' to numeric" | |
else: | |
msg = r"Could not convert \['J'\] to numeric|does not support" | |
with pytest.raises(TypeError, match=msg): | |
df.mean() | |
with pytest.raises(TypeError, match=msg): | |
df.agg("mean") | |
msg = "Could not convert string 'J' to numeric|does not support" | |
with pytest.raises(TypeError, match=msg): | |
df["db"].mean() | |
msg = "Could not convert string 'J' to numeric|ufunc 'divide'" | |
with pytest.raises(TypeError, match=msg): | |
np.mean(df["db"].astype("string").array) | |
def test_median_with_convertible_string_raises(using_array_manager): | |
# GH#34671 this _could_ return a string "2", but definitely not float 2.0 | |
msg = r"Cannot convert \['1' '2' '3'\] to numeric|does not support" | |
ser = Series(["1", "2", "3"]) | |
with pytest.raises(TypeError, match=msg): | |
ser.median() | |
if not using_array_manager: | |
msg = r"Cannot convert \[\['1' '2' '3'\]\] to numeric|does not support" | |
df = ser.to_frame() | |
with pytest.raises(TypeError, match=msg): | |
df.median() | |