peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/series
/test_ufunc.py
from collections import deque | |
import re | |
import string | |
import numpy as np | |
import pytest | |
import pandas.util._test_decorators as td | |
import pandas as pd | |
import pandas._testing as tm | |
from pandas.arrays import SparseArray | |
def ufunc(request): | |
# dunder op | |
return request.param | |
def sparse(request): | |
return request.param | |
def arrays_for_binary_ufunc(): | |
""" | |
A pair of random, length-100 integer-dtype arrays, that are mostly 0. | |
""" | |
a1 = np.random.default_rng(2).integers(0, 10, 100, dtype="int64") | |
a2 = np.random.default_rng(2).integers(0, 10, 100, dtype="int64") | |
a1[::3] = 0 | |
a2[::4] = 0 | |
return a1, a2 | |
def test_unary_ufunc(ufunc, sparse): | |
# Test that ufunc(pd.Series) == pd.Series(ufunc) | |
arr = np.random.default_rng(2).integers(0, 10, 10, dtype="int64") | |
arr[::2] = 0 | |
if sparse: | |
arr = SparseArray(arr, dtype=pd.SparseDtype("int64", 0)) | |
index = list(string.ascii_letters[:10]) | |
name = "name" | |
series = pd.Series(arr, index=index, name=name) | |
result = ufunc(series) | |
expected = pd.Series(ufunc(arr), index=index, name=name) | |
tm.assert_series_equal(result, expected) | |
def test_binary_ufunc_with_array(flip, sparse, ufunc, arrays_for_binary_ufunc): | |
# Test that ufunc(pd.Series(a), array) == pd.Series(ufunc(a, b)) | |
a1, a2 = arrays_for_binary_ufunc | |
if sparse: | |
a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0)) | |
a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0)) | |
name = "name" # op(pd.Series, array) preserves the name. | |
series = pd.Series(a1, name=name) | |
other = a2 | |
array_args = (a1, a2) | |
series_args = (series, other) # ufunc(series, array) | |
if flip: | |
array_args = reversed(array_args) | |
series_args = reversed(series_args) # ufunc(array, series) | |
expected = pd.Series(ufunc(*array_args), name=name) | |
result = ufunc(*series_args) | |
tm.assert_series_equal(result, expected) | |
def test_binary_ufunc_with_index(flip, sparse, ufunc, arrays_for_binary_ufunc): | |
# Test that | |
# * func(pd.Series(a), pd.Series(b)) == pd.Series(ufunc(a, b)) | |
# * ufunc(Index, pd.Series) dispatches to pd.Series (returns a pd.Series) | |
a1, a2 = arrays_for_binary_ufunc | |
if sparse: | |
a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0)) | |
a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0)) | |
name = "name" # op(pd.Series, array) preserves the name. | |
series = pd.Series(a1, name=name) | |
other = pd.Index(a2, name=name).astype("int64") | |
array_args = (a1, a2) | |
series_args = (series, other) # ufunc(series, array) | |
if flip: | |
array_args = reversed(array_args) | |
series_args = reversed(series_args) # ufunc(array, series) | |
expected = pd.Series(ufunc(*array_args), name=name) | |
result = ufunc(*series_args) | |
tm.assert_series_equal(result, expected) | |
def test_binary_ufunc_with_series( | |
flip, shuffle, sparse, ufunc, arrays_for_binary_ufunc | |
): | |
# Test that | |
# * func(pd.Series(a), pd.Series(b)) == pd.Series(ufunc(a, b)) | |
# with alignment between the indices | |
a1, a2 = arrays_for_binary_ufunc | |
if sparse: | |
a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0)) | |
a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0)) | |
name = "name" # op(pd.Series, array) preserves the name. | |
series = pd.Series(a1, name=name) | |
other = pd.Series(a2, name=name) | |
idx = np.random.default_rng(2).permutation(len(a1)) | |
if shuffle: | |
other = other.take(idx) | |
if flip: | |
index = other.align(series)[0].index | |
else: | |
index = series.align(other)[0].index | |
else: | |
index = series.index | |
array_args = (a1, a2) | |
series_args = (series, other) # ufunc(series, array) | |
if flip: | |
array_args = tuple(reversed(array_args)) | |
series_args = tuple(reversed(series_args)) # ufunc(array, series) | |
expected = pd.Series(ufunc(*array_args), index=index, name=name) | |
result = ufunc(*series_args) | |
tm.assert_series_equal(result, expected) | |
def test_binary_ufunc_scalar(ufunc, sparse, flip, arrays_for_binary_ufunc): | |
# Test that | |
# * ufunc(pd.Series, scalar) == pd.Series(ufunc(array, scalar)) | |
# * ufunc(pd.Series, scalar) == ufunc(scalar, pd.Series) | |
arr, _ = arrays_for_binary_ufunc | |
if sparse: | |
arr = SparseArray(arr) | |
other = 2 | |
series = pd.Series(arr, name="name") | |
series_args = (series, other) | |
array_args = (arr, other) | |
if flip: | |
series_args = tuple(reversed(series_args)) | |
array_args = tuple(reversed(array_args)) | |
expected = pd.Series(ufunc(*array_args), name="name") | |
result = ufunc(*series_args) | |
tm.assert_series_equal(result, expected) | |
# TODO: np.modf, np.frexp | |
def test_multiple_output_binary_ufuncs(ufunc, sparse, shuffle, arrays_for_binary_ufunc): | |
# Test that | |
# the same conditions from binary_ufunc_scalar apply to | |
# ufuncs with multiple outputs. | |
a1, a2 = arrays_for_binary_ufunc | |
# work around https://github.com/pandas-dev/pandas/issues/26987 | |
a1[a1 == 0] = 1 | |
a2[a2 == 0] = 1 | |
if sparse: | |
a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0)) | |
a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0)) | |
s1 = pd.Series(a1) | |
s2 = pd.Series(a2) | |
if shuffle: | |
# ensure we align before applying the ufunc | |
s2 = s2.sample(frac=1) | |
expected = ufunc(a1, a2) | |
assert isinstance(expected, tuple) | |
result = ufunc(s1, s2) | |
assert isinstance(result, tuple) | |
tm.assert_series_equal(result[0], pd.Series(expected[0])) | |
tm.assert_series_equal(result[1], pd.Series(expected[1])) | |
def test_multiple_output_ufunc(sparse, arrays_for_binary_ufunc): | |
# Test that the same conditions from unary input apply to multi-output | |
# ufuncs | |
arr, _ = arrays_for_binary_ufunc | |
if sparse: | |
arr = SparseArray(arr) | |
series = pd.Series(arr, name="name") | |
result = np.modf(series) | |
expected = np.modf(arr) | |
assert isinstance(result, tuple) | |
assert isinstance(expected, tuple) | |
tm.assert_series_equal(result[0], pd.Series(expected[0], name="name")) | |
tm.assert_series_equal(result[1], pd.Series(expected[1], name="name")) | |
def test_binary_ufunc_drops_series_name(ufunc, sparse, arrays_for_binary_ufunc): | |
# Drop the names when they differ. | |
a1, a2 = arrays_for_binary_ufunc | |
s1 = pd.Series(a1, name="a") | |
s2 = pd.Series(a2, name="b") | |
result = ufunc(s1, s2) | |
assert result.name is None | |
def test_object_series_ok(): | |
class Dummy: | |
def __init__(self, value) -> None: | |
self.value = value | |
def __add__(self, other): | |
return self.value + other.value | |
arr = np.array([Dummy(0), Dummy(1)]) | |
ser = pd.Series(arr) | |
tm.assert_series_equal(np.add(ser, ser), pd.Series(np.add(ser, arr))) | |
tm.assert_series_equal(np.add(ser, Dummy(1)), pd.Series(np.add(ser, Dummy(1)))) | |
def values_for_np_reduce(request): | |
# min/max tests assume that these are monotonic increasing | |
return request.param | |
class TestNumpyReductions: | |
# TODO: cases with NAs, axis kwarg for DataFrame | |
def test_multiply(self, values_for_np_reduce, box_with_array, request): | |
box = box_with_array | |
values = values_for_np_reduce | |
with tm.assert_produces_warning(None): | |
obj = box(values) | |
if isinstance(values, pd.core.arrays.SparseArray): | |
mark = pytest.mark.xfail(reason="SparseArray has no 'prod'") | |
request.applymarker(mark) | |
if values.dtype.kind in "iuf": | |
result = np.multiply.reduce(obj) | |
if box is pd.DataFrame: | |
expected = obj.prod(numeric_only=False) | |
tm.assert_series_equal(result, expected) | |
elif box is pd.Index: | |
# Index has no 'prod' | |
expected = obj._values.prod() | |
assert result == expected | |
else: | |
expected = obj.prod() | |
assert result == expected | |
else: | |
msg = "|".join( | |
[ | |
"does not support reduction", | |
"unsupported operand type", | |
"ufunc 'multiply' cannot use operands", | |
] | |
) | |
with pytest.raises(TypeError, match=msg): | |
np.multiply.reduce(obj) | |
def test_add(self, values_for_np_reduce, box_with_array): | |
box = box_with_array | |
values = values_for_np_reduce | |
with tm.assert_produces_warning(None): | |
obj = box(values) | |
if values.dtype.kind in "miuf": | |
result = np.add.reduce(obj) | |
if box is pd.DataFrame: | |
expected = obj.sum(numeric_only=False) | |
tm.assert_series_equal(result, expected) | |
elif box is pd.Index: | |
# Index has no 'sum' | |
expected = obj._values.sum() | |
assert result == expected | |
else: | |
expected = obj.sum() | |
assert result == expected | |
else: | |
msg = "|".join( | |
[ | |
"does not support reduction", | |
"unsupported operand type", | |
"ufunc 'add' cannot use operands", | |
] | |
) | |
with pytest.raises(TypeError, match=msg): | |
np.add.reduce(obj) | |
def test_max(self, values_for_np_reduce, box_with_array): | |
box = box_with_array | |
values = values_for_np_reduce | |
same_type = True | |
if box is pd.Index and values.dtype.kind in ["i", "f"]: | |
# ATM Index casts to object, so we get python ints/floats | |
same_type = False | |
with tm.assert_produces_warning(None): | |
obj = box(values) | |
result = np.maximum.reduce(obj) | |
if box is pd.DataFrame: | |
# TODO: cases with axis kwarg | |
expected = obj.max(numeric_only=False) | |
tm.assert_series_equal(result, expected) | |
else: | |
expected = values[1] | |
assert result == expected | |
if same_type: | |
# check we have e.g. Timestamp instead of dt64 | |
assert type(result) == type(expected) | |
def test_min(self, values_for_np_reduce, box_with_array): | |
box = box_with_array | |
values = values_for_np_reduce | |
same_type = True | |
if box is pd.Index and values.dtype.kind in ["i", "f"]: | |
# ATM Index casts to object, so we get python ints/floats | |
same_type = False | |
with tm.assert_produces_warning(None): | |
obj = box(values) | |
result = np.minimum.reduce(obj) | |
if box is pd.DataFrame: | |
expected = obj.min(numeric_only=False) | |
tm.assert_series_equal(result, expected) | |
else: | |
expected = values[0] | |
assert result == expected | |
if same_type: | |
# check we have e.g. Timestamp instead of dt64 | |
assert type(result) == type(expected) | |
def test_binary_ufunc_other_types(type_): | |
a = pd.Series([1, 2, 3], name="name") | |
b = type_([3, 4, 5]) | |
result = np.add(a, b) | |
expected = pd.Series(np.add(a.to_numpy(), b), name="name") | |
tm.assert_series_equal(result, expected) | |
def test_object_dtype_ok(): | |
class Thing: | |
def __init__(self, value) -> None: | |
self.value = value | |
def __add__(self, other): | |
other = getattr(other, "value", other) | |
return type(self)(self.value + other) | |
def __eq__(self, other) -> bool: | |
return type(other) is Thing and self.value == other.value | |
def __repr__(self) -> str: | |
return f"Thing({self.value})" | |
s = pd.Series([Thing(1), Thing(2)]) | |
result = np.add(s, Thing(1)) | |
expected = pd.Series([Thing(2), Thing(3)]) | |
tm.assert_series_equal(result, expected) | |
def test_outer(): | |
# https://github.com/pandas-dev/pandas/issues/27186 | |
ser = pd.Series([1, 2, 3]) | |
obj = np.array([1, 2, 3]) | |
with pytest.raises(NotImplementedError, match=""): | |
np.subtract.outer(ser, obj) | |
def test_np_matmul(): | |
# GH26650 | |
df1 = pd.DataFrame(data=[[-1, 1, 10]]) | |
df2 = pd.DataFrame(data=[-1, 1, 10]) | |
expected = pd.DataFrame(data=[102]) | |
result = np.matmul(df1, df2) | |
tm.assert_frame_equal(expected, result) | |
def test_array_ufuncs_for_many_arguments(): | |
# GH39853 | |
def add3(x, y, z): | |
return x + y + z | |
ufunc = np.frompyfunc(add3, 3, 1) | |
ser = pd.Series([1, 2]) | |
result = ufunc(ser, ser, 1) | |
expected = pd.Series([3, 5], dtype=object) | |
tm.assert_series_equal(result, expected) | |
df = pd.DataFrame([[1, 2]]) | |
msg = ( | |
"Cannot apply ufunc <ufunc 'add3 (vectorized)'> " | |
"to mixed DataFrame and Series inputs." | |
) | |
with pytest.raises(NotImplementedError, match=re.escape(msg)): | |
ufunc(ser, ser, df) | |
# TODO(CoW) see https://github.com/pandas-dev/pandas/pull/51082 | |
def test_np_fix(): | |
# np.fix is not a ufunc but is composed of several ufunc calls under the hood | |
# with `out` and `where` keywords | |
ser = pd.Series([-1.5, -0.5, 0.5, 1.5]) | |
result = np.fix(ser) | |
expected = pd.Series([-1.0, -0.0, 0.0, 1.0]) | |
tm.assert_series_equal(result, expected) | |