peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/window
/test_numba.py
import numpy as np | |
import pytest | |
from pandas.errors import NumbaUtilError | |
import pandas.util._test_decorators as td | |
from pandas import ( | |
DataFrame, | |
Series, | |
option_context, | |
to_datetime, | |
) | |
import pandas._testing as tm | |
pytestmark = pytest.mark.single_cpu | |
def method(request): | |
"""method keyword in rolling/expanding/ewm constructor""" | |
return request.param | |
def arithmetic_numba_supported_operators(request): | |
return request.param | |
# Filter warnings when parallel=True and the function can't be parallelized by Numba | |
class TestEngine: | |
def test_numba_vs_cython_apply(self, jit, nogil, parallel, nopython, center, step): | |
def f(x, *args): | |
arg_sum = 0 | |
for arg in args: | |
arg_sum += arg | |
return np.mean(x) + arg_sum | |
if jit: | |
import numba | |
f = numba.jit(f) | |
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} | |
args = (2,) | |
s = Series(range(10)) | |
result = s.rolling(2, center=center, step=step).apply( | |
f, args=args, engine="numba", engine_kwargs=engine_kwargs, raw=True | |
) | |
expected = s.rolling(2, center=center, step=step).apply( | |
f, engine="cython", args=args, raw=True | |
) | |
tm.assert_series_equal(result, expected) | |
def test_numba_vs_cython_rolling_methods( | |
self, | |
data, | |
nogil, | |
parallel, | |
nopython, | |
arithmetic_numba_supported_operators, | |
step, | |
): | |
method, kwargs = arithmetic_numba_supported_operators | |
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} | |
roll = data.rolling(3, step=step) | |
result = getattr(roll, method)( | |
engine="numba", engine_kwargs=engine_kwargs, **kwargs | |
) | |
expected = getattr(roll, method)(engine="cython", **kwargs) | |
tm.assert_equal(result, expected) | |
def test_numba_vs_cython_expanding_methods( | |
self, data, nogil, parallel, nopython, arithmetic_numba_supported_operators | |
): | |
method, kwargs = arithmetic_numba_supported_operators | |
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} | |
data = DataFrame(np.eye(5)) | |
expand = data.expanding() | |
result = getattr(expand, method)( | |
engine="numba", engine_kwargs=engine_kwargs, **kwargs | |
) | |
expected = getattr(expand, method)(engine="cython", **kwargs) | |
tm.assert_equal(result, expected) | |
def test_cache_apply(self, jit, nogil, parallel, nopython, step): | |
# Test that the functions are cached correctly if we switch functions | |
def func_1(x): | |
return np.mean(x) + 4 | |
def func_2(x): | |
return np.std(x) * 5 | |
if jit: | |
import numba | |
func_1 = numba.jit(func_1) | |
func_2 = numba.jit(func_2) | |
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} | |
roll = Series(range(10)).rolling(2, step=step) | |
result = roll.apply( | |
func_1, engine="numba", engine_kwargs=engine_kwargs, raw=True | |
) | |
expected = roll.apply(func_1, engine="cython", raw=True) | |
tm.assert_series_equal(result, expected) | |
result = roll.apply( | |
func_2, engine="numba", engine_kwargs=engine_kwargs, raw=True | |
) | |
expected = roll.apply(func_2, engine="cython", raw=True) | |
tm.assert_series_equal(result, expected) | |
# This run should use the cached func_1 | |
result = roll.apply( | |
func_1, engine="numba", engine_kwargs=engine_kwargs, raw=True | |
) | |
expected = roll.apply(func_1, engine="cython", raw=True) | |
tm.assert_series_equal(result, expected) | |
def test_dont_cache_args( | |
self, window, window_kwargs, nogil, parallel, nopython, method | |
): | |
# GH 42287 | |
def add(values, x): | |
return np.sum(values) + x | |
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel} | |
df = DataFrame({"value": [0, 0, 0]}) | |
result = getattr(df, window)(method=method, **window_kwargs).apply( | |
add, raw=True, engine="numba", engine_kwargs=engine_kwargs, args=(1,) | |
) | |
expected = DataFrame({"value": [1.0, 1.0, 1.0]}) | |
tm.assert_frame_equal(result, expected) | |
result = getattr(df, window)(method=method, **window_kwargs).apply( | |
add, raw=True, engine="numba", engine_kwargs=engine_kwargs, args=(2,) | |
) | |
expected = DataFrame({"value": [2.0, 2.0, 2.0]}) | |
tm.assert_frame_equal(result, expected) | |
def test_dont_cache_engine_kwargs(self): | |
# If the user passes a different set of engine_kwargs don't return the same | |
# jitted function | |
nogil = False | |
parallel = True | |
nopython = True | |
def func(x): | |
return nogil + parallel + nopython | |
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel} | |
df = DataFrame({"value": [0, 0, 0]}) | |
result = df.rolling(1).apply( | |
func, raw=True, engine="numba", engine_kwargs=engine_kwargs | |
) | |
expected = DataFrame({"value": [2.0, 2.0, 2.0]}) | |
tm.assert_frame_equal(result, expected) | |
parallel = False | |
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel} | |
result = df.rolling(1).apply( | |
func, raw=True, engine="numba", engine_kwargs=engine_kwargs | |
) | |
expected = DataFrame({"value": [1.0, 1.0, 1.0]}) | |
tm.assert_frame_equal(result, expected) | |
class TestEWM: | |
def test_invalid_engine(self, grouper, method): | |
df = DataFrame({"A": ["a", "b", "a", "b"], "B": range(4)}) | |
with pytest.raises(ValueError, match="engine must be either"): | |
getattr(grouper(df).ewm(com=1.0), method)(engine="foo") | |
def test_invalid_engine_kwargs(self, grouper, method): | |
df = DataFrame({"A": ["a", "b", "a", "b"], "B": range(4)}) | |
with pytest.raises(ValueError, match="cython engine does not"): | |
getattr(grouper(df).ewm(com=1.0), method)( | |
engine="cython", engine_kwargs={"nopython": True} | |
) | |
def test_cython_vs_numba( | |
self, grouper, method, nogil, parallel, nopython, ignore_na, adjust | |
): | |
df = DataFrame({"B": range(4)}) | |
if grouper == "None": | |
grouper = lambda x: x | |
else: | |
df["A"] = ["a", "b", "a", "b"] | |
grouper = lambda x: x.groupby("A") | |
if method == "sum": | |
adjust = True | |
ewm = grouper(df).ewm(com=1.0, adjust=adjust, ignore_na=ignore_na) | |
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} | |
result = getattr(ewm, method)(engine="numba", engine_kwargs=engine_kwargs) | |
expected = getattr(ewm, method)(engine="cython") | |
tm.assert_frame_equal(result, expected) | |
def test_cython_vs_numba_times(self, grouper, nogil, parallel, nopython, ignore_na): | |
# GH 40951 | |
df = DataFrame({"B": [0, 0, 1, 1, 2, 2]}) | |
if grouper == "None": | |
grouper = lambda x: x | |
else: | |
grouper = lambda x: x.groupby("A") | |
df["A"] = ["a", "b", "a", "b", "b", "a"] | |
halflife = "23 days" | |
times = to_datetime( | |
[ | |
"2020-01-01", | |
"2020-01-01", | |
"2020-01-02", | |
"2020-01-10", | |
"2020-02-23", | |
"2020-01-03", | |
] | |
) | |
ewm = grouper(df).ewm( | |
halflife=halflife, adjust=True, ignore_na=ignore_na, times=times | |
) | |
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} | |
result = ewm.mean(engine="numba", engine_kwargs=engine_kwargs) | |
expected = ewm.mean(engine="cython") | |
tm.assert_frame_equal(result, expected) | |
def test_use_global_config(): | |
def f(x): | |
return np.mean(x) + 2 | |
s = Series(range(10)) | |
with option_context("compute.use_numba", True): | |
result = s.rolling(2).apply(f, engine=None, raw=True) | |
expected = s.rolling(2).apply(f, engine="numba", raw=True) | |
tm.assert_series_equal(expected, result) | |
def test_invalid_kwargs_nopython(): | |
with pytest.raises(NumbaUtilError, match="numba does not support kwargs with"): | |
Series(range(1)).rolling(1).apply( | |
lambda x: x, kwargs={"a": 1}, engine="numba", raw=True | |
) | |
# Filter warnings when parallel=True and the function can't be parallelized by Numba | |
class TestTableMethod: | |
def test_table_series_valueerror(self): | |
def f(x): | |
return np.sum(x, axis=0) + 1 | |
with pytest.raises( | |
ValueError, match="method='table' not applicable for Series objects." | |
): | |
Series(range(1)).rolling(1, method="table").apply( | |
f, engine="numba", raw=True | |
) | |
def test_table_method_rolling_methods( | |
self, | |
axis, | |
nogil, | |
parallel, | |
nopython, | |
arithmetic_numba_supported_operators, | |
step, | |
): | |
method, kwargs = arithmetic_numba_supported_operators | |
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} | |
df = DataFrame(np.eye(3)) | |
roll_table = df.rolling(2, method="table", axis=axis, min_periods=0, step=step) | |
if method in ("var", "std"): | |
with pytest.raises(NotImplementedError, match=f"{method} not supported"): | |
getattr(roll_table, method)( | |
engine_kwargs=engine_kwargs, engine="numba", **kwargs | |
) | |
else: | |
roll_single = df.rolling( | |
2, method="single", axis=axis, min_periods=0, step=step | |
) | |
result = getattr(roll_table, method)( | |
engine_kwargs=engine_kwargs, engine="numba", **kwargs | |
) | |
expected = getattr(roll_single, method)( | |
engine_kwargs=engine_kwargs, engine="numba", **kwargs | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_table_method_rolling_apply(self, axis, nogil, parallel, nopython, step): | |
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} | |
def f(x): | |
return np.sum(x, axis=0) + 1 | |
df = DataFrame(np.eye(3)) | |
result = df.rolling( | |
2, method="table", axis=axis, min_periods=0, step=step | |
).apply(f, raw=True, engine_kwargs=engine_kwargs, engine="numba") | |
expected = df.rolling( | |
2, method="single", axis=axis, min_periods=0, step=step | |
).apply(f, raw=True, engine_kwargs=engine_kwargs, engine="numba") | |
tm.assert_frame_equal(result, expected) | |
def test_table_method_rolling_weighted_mean(self, step): | |
def weighted_mean(x): | |
arr = np.ones((1, x.shape[1])) | |
arr[:, :2] = (x[:, :2] * x[:, 2]).sum(axis=0) / x[:, 2].sum() | |
return arr | |
df = DataFrame([[1, 2, 0.6], [2, 3, 0.4], [3, 4, 0.2], [4, 5, 0.7]]) | |
result = df.rolling(2, method="table", min_periods=0, step=step).apply( | |
weighted_mean, raw=True, engine="numba" | |
) | |
expected = DataFrame( | |
[ | |
[1.0, 2.0, 1.0], | |
[1.8, 2.0, 1.0], | |
[3.333333, 2.333333, 1.0], | |
[1.555556, 7, 1.0], | |
] | |
)[::step] | |
tm.assert_frame_equal(result, expected) | |
def test_table_method_expanding_apply(self, axis, nogil, parallel, nopython): | |
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} | |
def f(x): | |
return np.sum(x, axis=0) + 1 | |
df = DataFrame(np.eye(3)) | |
result = df.expanding(method="table", axis=axis).apply( | |
f, raw=True, engine_kwargs=engine_kwargs, engine="numba" | |
) | |
expected = df.expanding(method="single", axis=axis).apply( | |
f, raw=True, engine_kwargs=engine_kwargs, engine="numba" | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_table_method_expanding_methods( | |
self, axis, nogil, parallel, nopython, arithmetic_numba_supported_operators | |
): | |
method, kwargs = arithmetic_numba_supported_operators | |
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} | |
df = DataFrame(np.eye(3)) | |
expand_table = df.expanding(method="table", axis=axis) | |
if method in ("var", "std"): | |
with pytest.raises(NotImplementedError, match=f"{method} not supported"): | |
getattr(expand_table, method)( | |
engine_kwargs=engine_kwargs, engine="numba", **kwargs | |
) | |
else: | |
expand_single = df.expanding(method="single", axis=axis) | |
result = getattr(expand_table, method)( | |
engine_kwargs=engine_kwargs, engine="numba", **kwargs | |
) | |
expected = getattr(expand_single, method)( | |
engine_kwargs=engine_kwargs, engine="numba", **kwargs | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_table_method_ewm(self, data, method, axis, nogil, parallel, nopython): | |
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} | |
df = DataFrame(data) | |
result = getattr(df.ewm(com=1, method="table", axis=axis), method)( | |
engine_kwargs=engine_kwargs, engine="numba" | |
) | |
expected = getattr(df.ewm(com=1, method="single", axis=axis), method)( | |
engine_kwargs=engine_kwargs, engine="numba" | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_npfunc_no_warnings(): | |
df = DataFrame({"col1": [1, 2, 3, 4, 5]}) | |
with tm.assert_produces_warning(False): | |
df.col1.rolling(2).apply(np.prod, raw=True, engine="numba") | |