peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/window
/test_rolling.py
from datetime import ( | |
datetime, | |
timedelta, | |
) | |
import numpy as np | |
import pytest | |
from pandas.compat import ( | |
IS64, | |
is_platform_arm, | |
is_platform_power, | |
) | |
from pandas import ( | |
DataFrame, | |
DatetimeIndex, | |
MultiIndex, | |
Series, | |
Timedelta, | |
Timestamp, | |
date_range, | |
period_range, | |
to_datetime, | |
to_timedelta, | |
) | |
import pandas._testing as tm | |
from pandas.api.indexers import BaseIndexer | |
from pandas.core.indexers.objects import VariableOffsetWindowIndexer | |
from pandas.tseries.offsets import BusinessDay | |
def test_doc_string(): | |
df = DataFrame({"B": [0, 1, 2, np.nan, 4]}) | |
df | |
df.rolling(2).sum() | |
df.rolling(2, min_periods=1).sum() | |
def test_constructor(frame_or_series): | |
# GH 12669 | |
c = frame_or_series(range(5)).rolling | |
# valid | |
c(0) | |
c(window=2) | |
c(window=2, min_periods=1) | |
c(window=2, min_periods=1, center=True) | |
c(window=2, min_periods=1, center=False) | |
# GH 13383 | |
msg = "window must be an integer 0 or greater" | |
with pytest.raises(ValueError, match=msg): | |
c(-1) | |
def test_invalid_constructor(frame_or_series, w): | |
# not valid | |
c = frame_or_series(range(5)).rolling | |
msg = "|".join( | |
[ | |
"window must be an integer", | |
"passed window foo is not compatible with a datetimelike index", | |
] | |
) | |
with pytest.raises(ValueError, match=msg): | |
c(window=w) | |
msg = "min_periods must be an integer" | |
with pytest.raises(ValueError, match=msg): | |
c(window=2, min_periods=w) | |
msg = "center must be a boolean" | |
with pytest.raises(ValueError, match=msg): | |
c(window=2, min_periods=1, center=w) | |
def test_freq_window_not_implemented(window): | |
# GH 15354 | |
df = DataFrame( | |
np.arange(10), | |
index=date_range("2015-12-24", periods=10, freq="D"), | |
) | |
with pytest.raises( | |
NotImplementedError, match="^step (not implemented|is not supported)" | |
): | |
df.rolling(window, step=3).sum() | |
def test_step_not_implemented_for_cov_corr(agg): | |
# GH 15354 | |
roll = DataFrame(range(2)).rolling(1, step=2) | |
with pytest.raises(NotImplementedError, match="step not implemented"): | |
getattr(roll, agg)() | |
def test_constructor_with_timedelta_window(window): | |
# GH 15440 | |
n = 10 | |
df = DataFrame( | |
{"value": np.arange(n)}, | |
index=date_range("2015-12-24", periods=n, freq="D"), | |
) | |
expected_data = np.append([0.0, 1.0], np.arange(3.0, 27.0, 3)) | |
result = df.rolling(window=window).sum() | |
expected = DataFrame( | |
{"value": expected_data}, | |
index=date_range("2015-12-24", periods=n, freq="D"), | |
) | |
tm.assert_frame_equal(result, expected) | |
expected = df.rolling("3D").sum() | |
tm.assert_frame_equal(result, expected) | |
def test_constructor_timedelta_window_and_minperiods(window, raw): | |
# GH 15305 | |
n = 10 | |
df = DataFrame( | |
{"value": np.arange(n)}, | |
index=date_range("2017-08-08", periods=n, freq="D"), | |
) | |
expected = DataFrame( | |
{"value": np.append([np.nan, 1.0], np.arange(3.0, 27.0, 3))}, | |
index=date_range("2017-08-08", periods=n, freq="D"), | |
) | |
result_roll_sum = df.rolling(window=window, min_periods=2).sum() | |
result_roll_generic = df.rolling(window=window, min_periods=2).apply(sum, raw=raw) | |
tm.assert_frame_equal(result_roll_sum, expected) | |
tm.assert_frame_equal(result_roll_generic, expected) | |
def test_closed_fixed(closed, arithmetic_win_operators): | |
# GH 34315 | |
func_name = arithmetic_win_operators | |
df_fixed = DataFrame({"A": [0, 1, 2, 3, 4]}) | |
df_time = DataFrame({"A": [0, 1, 2, 3, 4]}, index=date_range("2020", periods=5)) | |
result = getattr( | |
df_fixed.rolling(2, closed=closed, min_periods=1), | |
func_name, | |
)() | |
expected = getattr( | |
df_time.rolling("2D", closed=closed, min_periods=1), | |
func_name, | |
)().reset_index(drop=True) | |
tm.assert_frame_equal(result, expected) | |
def test_datetimelike_centered_selections( | |
closed, window_selections, arithmetic_win_operators | |
): | |
# GH 34315 | |
func_name = arithmetic_win_operators | |
df_time = DataFrame( | |
{"A": [0.0, 1.0, 2.0, 3.0, 4.0]}, index=date_range("2020", periods=5) | |
) | |
expected = DataFrame( | |
{"A": [getattr(df_time["A"].iloc[s], func_name)() for s in window_selections]}, | |
index=date_range("2020", periods=5), | |
) | |
if func_name == "sem": | |
kwargs = {"ddof": 0} | |
else: | |
kwargs = {} | |
result = getattr( | |
df_time.rolling("2D", closed=closed, min_periods=1, center=True), | |
func_name, | |
)(**kwargs) | |
tm.assert_frame_equal(result, expected, check_dtype=False) | |
def test_datetimelike_centered_offset_covers_all( | |
window, closed, expected, frame_or_series | |
): | |
# GH 42753 | |
index = [ | |
Timestamp("20130101 09:00:01"), | |
Timestamp("20130101 09:00:02"), | |
Timestamp("20130101 09:00:02"), | |
] | |
df = frame_or_series([1, 1, 1], index=index) | |
result = df.rolling(window, closed=closed, center=True).sum() | |
expected = frame_or_series(expected, index=index) | |
tm.assert_equal(result, expected) | |
def test_datetimelike_nonunique_index_centering( | |
window, closed, expected, frame_or_series | |
): | |
index = DatetimeIndex( | |
[ | |
"2020-01-01", | |
"2020-01-01", | |
"2020-01-02", | |
"2020-01-02", | |
"2020-01-03", | |
"2020-01-03", | |
"2020-01-04", | |
"2020-01-04", | |
] | |
) | |
df = frame_or_series([1] * 8, index=index, dtype=float) | |
expected = frame_or_series(expected, index=index, dtype=float) | |
result = df.rolling(window, center=True, closed=closed).sum() | |
tm.assert_equal(result, expected) | |
def test_variable_window_nonunique(closed, expected, frame_or_series): | |
# GH 20712 | |
index = DatetimeIndex( | |
[ | |
"2011-01-01", | |
"2011-01-01", | |
"2011-01-02", | |
"2011-01-02", | |
"2011-01-02", | |
"2011-01-03", | |
"2011-01-04", | |
"2011-01-04", | |
"2011-01-05", | |
"2011-01-06", | |
] | |
) | |
df = frame_or_series(range(10), index=index, dtype=float) | |
expected = frame_or_series(expected, index=index, dtype=float) | |
result = df.rolling("2D", closed=closed).sum() | |
tm.assert_equal(result, expected) | |
def test_variable_offset_window_nonunique(closed, expected, frame_or_series): | |
# GH 20712 | |
index = DatetimeIndex( | |
[ | |
"2011-01-01", | |
"2011-01-01", | |
"2011-01-02", | |
"2011-01-02", | |
"2011-01-02", | |
"2011-01-03", | |
"2011-01-04", | |
"2011-01-04", | |
"2011-01-05", | |
"2011-01-06", | |
] | |
) | |
df = frame_or_series(range(10), index=index, dtype=float) | |
expected = frame_or_series(expected, index=index, dtype=float) | |
offset = BusinessDay(2) | |
indexer = VariableOffsetWindowIndexer(index=index, offset=offset) | |
result = df.rolling(indexer, closed=closed, min_periods=1).sum() | |
tm.assert_equal(result, expected) | |
def test_even_number_window_alignment(): | |
# see discussion in GH 38780 | |
s = Series(range(3), index=date_range(start="2020-01-01", freq="D", periods=3)) | |
# behavior of index- and datetime-based windows differs here! | |
# s.rolling(window=2, min_periods=1, center=True).mean() | |
result = s.rolling(window="2D", min_periods=1, center=True).mean() | |
expected = Series([0.5, 1.5, 2], index=s.index) | |
tm.assert_series_equal(result, expected) | |
def test_closed_fixed_binary_col(center, step): | |
# GH 34315 | |
data = [0, 1, 1, 0, 0, 1, 0, 1] | |
df = DataFrame( | |
{"binary_col": data}, | |
index=date_range(start="2020-01-01", freq="min", periods=len(data)), | |
) | |
if center: | |
expected_data = [2 / 3, 0.5, 0.4, 0.5, 0.428571, 0.5, 0.571429, 0.5] | |
else: | |
expected_data = [np.nan, 0, 0.5, 2 / 3, 0.5, 0.4, 0.5, 0.428571] | |
expected = DataFrame( | |
expected_data, | |
columns=["binary_col"], | |
index=date_range(start="2020-01-01", freq="min", periods=len(expected_data)), | |
)[::step] | |
rolling = df.rolling( | |
window=len(df), closed="left", min_periods=1, center=center, step=step | |
) | |
result = rolling.mean() | |
tm.assert_frame_equal(result, expected) | |
def test_closed_empty(closed, arithmetic_win_operators): | |
# GH 26005 | |
func_name = arithmetic_win_operators | |
ser = Series(data=np.arange(5), index=date_range("2000", periods=5, freq="2D")) | |
roll = ser.rolling("1D", closed=closed) | |
result = getattr(roll, func_name)() | |
expected = Series([np.nan] * 5, index=ser.index) | |
tm.assert_series_equal(result, expected) | |
def test_closed_one_entry(func): | |
# GH24718 | |
ser = Series(data=[2], index=date_range("2000", periods=1)) | |
result = getattr(ser.rolling("10D", closed="left"), func)() | |
tm.assert_series_equal(result, Series([np.nan], index=ser.index)) | |
def test_closed_one_entry_groupby(func): | |
# GH24718 | |
ser = DataFrame( | |
data={"A": [1, 1, 2], "B": [3, 2, 1]}, | |
index=date_range("2000", periods=3), | |
) | |
result = getattr( | |
ser.groupby("A", sort=False)["B"].rolling("10D", closed="left"), func | |
)() | |
exp_idx = MultiIndex.from_arrays(arrays=[[1, 1, 2], ser.index], names=("A", None)) | |
expected = Series(data=[np.nan, 3, np.nan], index=exp_idx, name="B") | |
tm.assert_series_equal(result, expected) | |
def test_closed_min_max_datetime(input_dtype, func, closed, expected): | |
# see gh-21704 | |
ser = Series( | |
data=np.arange(10).astype(input_dtype), | |
index=date_range("2000", periods=10), | |
) | |
result = getattr(ser.rolling("3D", closed=closed), func)() | |
expected = Series(expected, index=ser.index) | |
tm.assert_series_equal(result, expected) | |
def test_closed_uneven(): | |
# see gh-21704 | |
ser = Series(data=np.arange(10), index=date_range("2000", periods=10)) | |
# uneven | |
ser = ser.drop(index=ser.index[[1, 5]]) | |
result = ser.rolling("3D", closed="left").min() | |
expected = Series([np.nan, 0, 0, 2, 3, 4, 6, 6], index=ser.index) | |
tm.assert_series_equal(result, expected) | |
def test_closed_min_max_minp(func, closed, expected): | |
# see gh-21704 | |
ser = Series(data=np.arange(10), index=date_range("2000", periods=10)) | |
# Explicit cast to float to avoid implicit cast when setting nan | |
ser = ser.astype("float") | |
ser[ser.index[-3:]] = np.nan | |
result = getattr(ser.rolling("3D", min_periods=2, closed=closed), func)() | |
expected = Series(expected, index=ser.index) | |
tm.assert_series_equal(result, expected) | |
def test_closed_median_quantile(closed, expected): | |
# GH 26005 | |
ser = Series(data=np.arange(10), index=date_range("2000", periods=10)) | |
roll = ser.rolling("3D", closed=closed) | |
expected = Series(expected, index=ser.index) | |
result = roll.median() | |
tm.assert_series_equal(result, expected) | |
result = roll.quantile(0.5) | |
tm.assert_series_equal(result, expected) | |
def tests_empty_df_rolling(roller): | |
# GH 15819 Verifies that datetime and integer rolling windows can be | |
# applied to empty DataFrames | |
expected = DataFrame() | |
result = DataFrame().rolling(roller).sum() | |
tm.assert_frame_equal(result, expected) | |
# Verifies that datetime and integer rolling windows can be applied to | |
# empty DataFrames with datetime index | |
expected = DataFrame(index=DatetimeIndex([])) | |
result = DataFrame(index=DatetimeIndex([])).rolling(roller).sum() | |
tm.assert_frame_equal(result, expected) | |
def test_empty_window_median_quantile(): | |
# GH 26005 | |
expected = Series([np.nan, np.nan, np.nan]) | |
roll = Series(np.arange(3)).rolling(0) | |
result = roll.median() | |
tm.assert_series_equal(result, expected) | |
result = roll.quantile(0.1) | |
tm.assert_series_equal(result, expected) | |
def test_missing_minp_zero(): | |
# https://github.com/pandas-dev/pandas/pull/18921 | |
# minp=0 | |
x = Series([np.nan]) | |
result = x.rolling(1, min_periods=0).sum() | |
expected = Series([0.0]) | |
tm.assert_series_equal(result, expected) | |
# minp=1 | |
result = x.rolling(1, min_periods=1).sum() | |
expected = Series([np.nan]) | |
tm.assert_series_equal(result, expected) | |
def test_missing_minp_zero_variable(): | |
# https://github.com/pandas-dev/pandas/pull/18921 | |
x = Series( | |
[np.nan] * 4, | |
index=DatetimeIndex(["2017-01-01", "2017-01-04", "2017-01-06", "2017-01-07"]), | |
) | |
result = x.rolling(Timedelta("2d"), min_periods=0).sum() | |
expected = Series(0.0, index=x.index) | |
tm.assert_series_equal(result, expected) | |
def test_multi_index_names(): | |
# GH 16789, 16825 | |
cols = MultiIndex.from_product([["A", "B"], ["C", "D", "E"]], names=["1", "2"]) | |
df = DataFrame(np.ones((10, 6)), columns=cols) | |
result = df.rolling(3).cov() | |
tm.assert_index_equal(result.columns, df.columns) | |
assert result.index.names == [None, "1", "2"] | |
def test_rolling_axis_sum(axis_frame): | |
# see gh-23372. | |
df = DataFrame(np.ones((10, 20))) | |
axis = df._get_axis_number(axis_frame) | |
if axis == 0: | |
msg = "The 'axis' keyword in DataFrame.rolling" | |
expected = DataFrame({i: [np.nan] * 2 + [3.0] * 8 for i in range(20)}) | |
else: | |
# axis == 1 | |
msg = "Support for axis=1 in DataFrame.rolling is deprecated" | |
expected = DataFrame([[np.nan] * 2 + [3.0] * 18] * 10) | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.rolling(3, axis=axis_frame).sum() | |
tm.assert_frame_equal(result, expected) | |
def test_rolling_axis_count(axis_frame): | |
# see gh-26055 | |
df = DataFrame({"x": range(3), "y": range(3)}) | |
axis = df._get_axis_number(axis_frame) | |
if axis in [0, "index"]: | |
msg = "The 'axis' keyword in DataFrame.rolling" | |
expected = DataFrame({"x": [1.0, 2.0, 2.0], "y": [1.0, 2.0, 2.0]}) | |
else: | |
msg = "Support for axis=1 in DataFrame.rolling is deprecated" | |
expected = DataFrame({"x": [1.0, 1.0, 1.0], "y": [2.0, 2.0, 2.0]}) | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.rolling(2, axis=axis_frame, min_periods=0).count() | |
tm.assert_frame_equal(result, expected) | |
def test_readonly_array(): | |
# GH-27766 | |
arr = np.array([1, 3, np.nan, 3, 5]) | |
arr.setflags(write=False) | |
result = Series(arr).rolling(2).mean() | |
expected = Series([np.nan, 2, np.nan, np.nan, 4]) | |
tm.assert_series_equal(result, expected) | |
def test_rolling_datetime(axis_frame, tz_naive_fixture): | |
# GH-28192 | |
tz = tz_naive_fixture | |
df = DataFrame( | |
{i: [1] * 2 for i in date_range("2019-8-01", "2019-08-03", freq="D", tz=tz)} | |
) | |
if axis_frame in [0, "index"]: | |
msg = "The 'axis' keyword in DataFrame.rolling" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.T.rolling("2D", axis=axis_frame).sum().T | |
else: | |
msg = "Support for axis=1 in DataFrame.rolling" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.rolling("2D", axis=axis_frame).sum() | |
expected = DataFrame( | |
{ | |
**{ | |
i: [1.0] * 2 | |
for i in date_range("2019-8-01", periods=1, freq="D", tz=tz) | |
}, | |
**{ | |
i: [2.0] * 2 | |
for i in date_range("2019-8-02", "2019-8-03", freq="D", tz=tz) | |
}, | |
} | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_rolling_window_as_string(center): | |
# see gh-22590 | |
date_today = datetime.now() | |
days = date_range(date_today, date_today + timedelta(365), freq="D") | |
data = np.ones(len(days)) | |
df = DataFrame({"DateCol": days, "metric": data}) | |
df.set_index("DateCol", inplace=True) | |
result = df.rolling(window="21D", min_periods=2, closed="left", center=center)[ | |
"metric" | |
].agg("max") | |
index = days.rename("DateCol") | |
index = index._with_freq(None) | |
expected_data = np.ones(len(days), dtype=np.float64) | |
if not center: | |
expected_data[:2] = np.nan | |
expected = Series(expected_data, index=index, name="metric") | |
tm.assert_series_equal(result, expected) | |
def test_min_periods1(): | |
# GH#6795 | |
df = DataFrame([0, 1, 2, 1, 0], columns=["a"]) | |
result = df["a"].rolling(3, center=True, min_periods=1).max() | |
expected = Series([1.0, 2.0, 2.0, 2.0, 1.0], name="a") | |
tm.assert_series_equal(result, expected) | |
def test_rolling_count_with_min_periods(frame_or_series): | |
# GH 26996 | |
result = frame_or_series(range(5)).rolling(3, min_periods=3).count() | |
expected = frame_or_series([np.nan, np.nan, 3.0, 3.0, 3.0]) | |
tm.assert_equal(result, expected) | |
def test_rolling_count_default_min_periods_with_null_values(frame_or_series): | |
# GH 26996 | |
values = [1, 2, 3, np.nan, 4, 5, 6] | |
expected_counts = [1.0, 2.0, 3.0, 2.0, 2.0, 2.0, 3.0] | |
# GH 31302 | |
result = frame_or_series(values).rolling(3, min_periods=0).count() | |
expected = frame_or_series(expected_counts) | |
tm.assert_equal(result, expected) | |
def test_iter_rolling_dataframe(df, expected, window, min_periods): | |
# GH 11704 | |
expected = [DataFrame(values, index=index) for (values, index) in expected] | |
for expected, actual in zip(expected, df.rolling(window, min_periods=min_periods)): | |
tm.assert_frame_equal(actual, expected) | |
def test_iter_rolling_on_dataframe(expected, window): | |
# GH 11704, 40373 | |
df = DataFrame( | |
{ | |
"A": [1, 2, 3, 4, 5], | |
"B": [4, 5, 6, 7, 8], | |
"C": date_range(start="2016-01-01", periods=5, freq="D"), | |
} | |
) | |
expected = [ | |
DataFrame(values, index=df.loc[index, "C"]) for (values, index) in expected | |
] | |
for expected, actual in zip(expected, df.rolling(window, on="C")): | |
tm.assert_frame_equal(actual, expected) | |
def test_iter_rolling_on_dataframe_unordered(): | |
# GH 43386 | |
df = DataFrame({"a": ["x", "y", "x"], "b": [0, 1, 2]}) | |
results = list(df.groupby("a").rolling(2)) | |
expecteds = [df.iloc[idx, [1]] for idx in [[0], [0, 2], [1]]] | |
for result, expected in zip(results, expecteds): | |
tm.assert_frame_equal(result, expected) | |
def test_iter_rolling_series(ser, expected, window, min_periods): | |
# GH 11704 | |
expected = [Series(values, index=index) for (values, index) in expected] | |
for expected, actual in zip(expected, ser.rolling(window, min_periods=min_periods)): | |
tm.assert_series_equal(actual, expected) | |
def test_iter_rolling_datetime(expected, expected_index, window): | |
# GH 11704 | |
ser = Series(range(5), index=date_range(start="2020-01-01", periods=5, freq="D")) | |
expected = [ | |
Series(values, index=idx) for (values, idx) in zip(expected, expected_index) | |
] | |
for expected, actual in zip(expected, ser.rolling(window)): | |
tm.assert_series_equal(actual, expected) | |
def test_rolling_positional_argument(grouping, _index, raw): | |
# GH 34605 | |
def scaled_sum(*args): | |
if len(args) < 2: | |
raise ValueError("The function needs two arguments") | |
array, scale = args | |
return array.sum() / scale | |
df = DataFrame(data={"X": range(5)}, index=[0, 0, 1, 1, 1]) | |
expected = DataFrame(data={"X": [0.0, 0.5, 1.0, 1.5, 2.0]}, index=_index) | |
# GH 40341 | |
if "by" in grouping: | |
expected = expected.drop(columns="X", errors="ignore") | |
result = df.groupby(**grouping).rolling(1).apply(scaled_sum, raw=raw, args=(2,)) | |
tm.assert_frame_equal(result, expected) | |
def test_rolling_numerical_accuracy_kahan_mean(add, unit): | |
# GH: 36031 implementing kahan summation | |
dti = DatetimeIndex( | |
[ | |
Timestamp("19700101 09:00:00"), | |
Timestamp("19700101 09:00:03"), | |
Timestamp("19700101 09:00:06"), | |
] | |
).as_unit(unit) | |
df = DataFrame( | |
{"A": [3002399751580331.0 + add, -0.0, -0.0]}, | |
index=dti, | |
) | |
result = ( | |
df.resample("1s").ffill().rolling("3s", closed="left", min_periods=3).mean() | |
) | |
dates = date_range("19700101 09:00:00", periods=7, freq="s", unit=unit) | |
expected = DataFrame( | |
{ | |
"A": [ | |
np.nan, | |
np.nan, | |
np.nan, | |
3002399751580330.5, | |
2001599834386887.25, | |
1000799917193443.625, | |
0.0, | |
] | |
}, | |
index=dates, | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_rolling_numerical_accuracy_kahan_sum(): | |
# GH: 13254 | |
df = DataFrame([2.186, -1.647, 0.0, 0.0, 0.0, 0.0], columns=["x"]) | |
result = df["x"].rolling(3).sum() | |
expected = Series([np.nan, np.nan, 0.539, -1.647, 0.0, 0.0], name="x") | |
tm.assert_series_equal(result, expected) | |
def test_rolling_numerical_accuracy_jump(): | |
# GH: 32761 | |
index = date_range(start="2020-01-01", end="2020-01-02", freq="60s").append( | |
DatetimeIndex(["2020-01-03"]) | |
) | |
data = np.random.default_rng(2).random(len(index)) | |
df = DataFrame({"data": data}, index=index) | |
result = df.rolling("60s").mean() | |
tm.assert_frame_equal(result, df[["data"]]) | |
def test_rolling_numerical_accuracy_small_values(): | |
# GH: 10319 | |
s = Series( | |
data=[0.00012456, 0.0003, -0.0, -0.0], | |
index=date_range("1999-02-03", "1999-02-06"), | |
) | |
result = s.rolling(1).mean() | |
tm.assert_series_equal(result, s) | |
def test_rolling_numerical_too_large_numbers(): | |
# GH: 11645 | |
dates = date_range("2015-01-01", periods=10, freq="D") | |
ds = Series(data=range(10), index=dates, dtype=np.float64) | |
ds.iloc[2] = -9e33 | |
result = ds.rolling(5).mean() | |
expected = Series( | |
[ | |
np.nan, | |
np.nan, | |
np.nan, | |
np.nan, | |
-1.8e33, | |
-1.8e33, | |
-1.8e33, | |
5.0, | |
6.0, | |
7.0, | |
], | |
index=dates, | |
) | |
tm.assert_series_equal(result, expected) | |
def test_rolling_mixed_dtypes_axis_1(func, value): | |
# GH: 20649 | |
df = DataFrame(1, index=[1, 2], columns=["a", "b", "c"]) | |
df["c"] = 1.0 | |
msg = "Support for axis=1 in DataFrame.rolling is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
roll = df.rolling(window=2, min_periods=1, axis=1) | |
result = getattr(roll, func)() | |
expected = DataFrame( | |
{"a": [1.0, 1.0], "b": [value, value], "c": [value, value]}, | |
index=[1, 2], | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_rolling_axis_one_with_nan(): | |
# GH: 35596 | |
df = DataFrame( | |
[ | |
[0, 1, 2, 4, np.nan, np.nan, np.nan], | |
[0, 1, 2, np.nan, np.nan, np.nan, np.nan], | |
[0, 2, 2, np.nan, 2, np.nan, 1], | |
] | |
) | |
msg = "Support for axis=1 in DataFrame.rolling is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.rolling(window=7, min_periods=1, axis="columns").sum() | |
expected = DataFrame( | |
[ | |
[0.0, 1.0, 3.0, 7.0, 7.0, 7.0, 7.0], | |
[0.0, 1.0, 3.0, 3.0, 3.0, 3.0, 3.0], | |
[0.0, 2.0, 4.0, 4.0, 6.0, 6.0, 7.0], | |
] | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_rolling_axis_1_non_numeric_dtypes(value): | |
# GH: 20649 | |
df = DataFrame({"a": [1, 2]}) | |
df["b"] = value | |
msg = "Support for axis=1 in DataFrame.rolling is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.rolling(window=2, min_periods=1, axis=1).sum() | |
expected = DataFrame({"a": [1.0, 2.0]}) | |
tm.assert_frame_equal(result, expected) | |
def test_rolling_on_df_transposed(): | |
# GH: 32724 | |
df = DataFrame({"A": [1, None], "B": [4, 5], "C": [7, 8]}) | |
expected = DataFrame({"A": [1.0, np.nan], "B": [5.0, 5.0], "C": [11.0, 13.0]}) | |
msg = "Support for axis=1 in DataFrame.rolling is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.rolling(min_periods=1, window=2, axis=1).sum() | |
tm.assert_frame_equal(result, expected) | |
result = df.T.rolling(min_periods=1, window=2).sum().T | |
tm.assert_frame_equal(result, expected) | |
def test_rolling_period_index(index, window, func, values): | |
# GH: 34225 | |
ds = Series([0, 1, 2, 3, 4, 5, 6, 7, 8], index=index) | |
result = getattr(ds.rolling(window, closed="left"), func)() | |
expected = Series(values, index=index) | |
tm.assert_series_equal(result, expected) | |
def test_rolling_sem(frame_or_series): | |
# GH: 26476 | |
obj = frame_or_series([0, 1, 2]) | |
result = obj.rolling(2, min_periods=1).sem() | |
if isinstance(result, DataFrame): | |
result = Series(result[0].values) | |
expected = Series([np.nan] + [0.7071067811865476] * 2) | |
tm.assert_series_equal(result, expected) | |
def test_rolling_var_numerical_issues(func, third_value, values): | |
# GH: 37051 | |
ds = Series([99999999999999999, 1, third_value, 2, 3, 1, 1]) | |
result = getattr(ds.rolling(2), func)() | |
expected = Series([np.nan] + values) | |
tm.assert_series_equal(result, expected) | |
# GH 42064 | |
# new `roll_var` will output 0.0 correctly | |
tm.assert_series_equal(result == 0, expected == 0) | |
def test_timeoffset_as_window_parameter_for_corr(unit): | |
# GH: 28266 | |
dti = DatetimeIndex( | |
[ | |
Timestamp("20130101 09:00:00"), | |
Timestamp("20130102 09:00:02"), | |
Timestamp("20130103 09:00:03"), | |
Timestamp("20130105 09:00:05"), | |
Timestamp("20130106 09:00:06"), | |
] | |
).as_unit(unit) | |
mi = MultiIndex.from_product([dti, ["B", "A"]]) | |
exp = DataFrame( | |
{ | |
"B": [ | |
np.nan, | |
np.nan, | |
0.9999999999999998, | |
-1.0, | |
1.0, | |
-0.3273268353539892, | |
0.9999999999999998, | |
1.0, | |
0.9999999999999998, | |
1.0, | |
], | |
"A": [ | |
np.nan, | |
np.nan, | |
-1.0, | |
1.0000000000000002, | |
-0.3273268353539892, | |
0.9999999999999966, | |
1.0, | |
1.0000000000000002, | |
1.0, | |
1.0000000000000002, | |
], | |
}, | |
index=mi, | |
) | |
df = DataFrame( | |
{"B": [0, 1, 2, 4, 3], "A": [7, 4, 6, 9, 3]}, | |
index=dti, | |
) | |
res = df.rolling(window="3d").corr() | |
tm.assert_frame_equal(exp, res) | |
def test_rolling_decreasing_indices(method): | |
""" | |
Make sure that decreasing indices give the same results as increasing indices. | |
GH 36933 | |
""" | |
df = DataFrame({"values": np.arange(-15, 10) ** 2}) | |
df_reverse = DataFrame({"values": df["values"][::-1]}, index=df.index[::-1]) | |
increasing = getattr(df.rolling(window=5), method)() | |
decreasing = getattr(df_reverse.rolling(window=5), method)() | |
assert np.abs(decreasing.values[::-1][:-4] - increasing.values[4:]).max() < 1e-12 | |
def test_rolling_decreasing_indices_centered(window, closed, expected, frame_or_series): | |
""" | |
Ensure that a symmetrical inverted index return same result as non-inverted. | |
""" | |
# GH 43927 | |
index = date_range("2020", periods=4, freq="1s") | |
df_inc = frame_or_series(range(4), index=index) | |
df_dec = frame_or_series(range(4), index=index[::-1]) | |
expected_inc = frame_or_series(expected, index=index) | |
expected_dec = frame_or_series(expected, index=index[::-1]) | |
result_inc = df_inc.rolling(window, closed=closed, center=True).sum() | |
result_dec = df_dec.rolling(window, closed=closed, center=True).sum() | |
tm.assert_equal(result_inc, expected_inc) | |
tm.assert_equal(result_dec, expected_dec) | |
def test_rolling_center_nanosecond_resolution( | |
window, closed, expected, frame_or_series | |
): | |
index = date_range("2020", periods=4, freq="1ns") | |
df = frame_or_series([1, 1, 1, 1], index=index, dtype=float) | |
expected = frame_or_series(expected, index=index, dtype=float) | |
result = df.rolling(window, closed=closed, center=True).sum() | |
tm.assert_equal(result, expected) | |
def test_rolling_non_monotonic(method, expected): | |
""" | |
Make sure the (rare) branch of non-monotonic indices is covered by a test. | |
output from 1.1.3 is assumed to be the expected output. Output of sum/mean has | |
manually been verified. | |
GH 36933. | |
""" | |
# Based on an example found in computation.rst | |
use_expanding = [True, False, True, False, True, True, True, True] | |
df = DataFrame({"values": np.arange(len(use_expanding)) ** 2}) | |
class CustomIndexer(BaseIndexer): | |
def get_window_bounds(self, num_values, min_periods, center, closed, step): | |
start = np.empty(num_values, dtype=np.int64) | |
end = np.empty(num_values, dtype=np.int64) | |
for i in range(num_values): | |
if self.use_expanding[i]: | |
start[i] = 0 | |
end[i] = i + 1 | |
else: | |
start[i] = i | |
end[i] = i + self.window_size | |
return start, end | |
indexer = CustomIndexer(window_size=4, use_expanding=use_expanding) | |
result = getattr(df.rolling(indexer), method)() | |
expected = DataFrame({"values": expected}) | |
tm.assert_frame_equal(result, expected) | |
def test_rolling_corr_timedelta_index(index, window): | |
# GH: 31286 | |
x = Series([1, 2, 3, 4, 5], index=index) | |
y = x.copy() | |
x.iloc[0:2] = 0.0 | |
result = x.rolling(window).corr(y) | |
expected = Series([np.nan, np.nan, 1, 1, 1], index=index) | |
tm.assert_almost_equal(result, expected) | |
def test_groupby_rolling_nan_included(): | |
# GH 35542 | |
data = {"group": ["g1", np.nan, "g1", "g2", np.nan], "B": [0, 1, 2, 3, 4]} | |
df = DataFrame(data) | |
result = df.groupby("group", dropna=False).rolling(1, min_periods=1).mean() | |
expected = DataFrame( | |
{"B": [0.0, 2.0, 3.0, 1.0, 4.0]}, | |
# GH-38057 from_tuples puts the NaNs in the codes, result expects them | |
# to be in the levels, at the moment | |
# index=MultiIndex.from_tuples( | |
# [("g1", 0), ("g1", 2), ("g2", 3), (np.nan, 1), (np.nan, 4)], | |
# names=["group", None], | |
# ), | |
index=MultiIndex( | |
[["g1", "g2", np.nan], [0, 1, 2, 3, 4]], | |
[[0, 0, 1, 2, 2], [0, 2, 3, 1, 4]], | |
names=["group", None], | |
), | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_rolling_skew_kurt_numerical_stability(method): | |
# GH#6929 | |
ser = Series(np.random.default_rng(2).random(10)) | |
ser_copy = ser.copy() | |
expected = getattr(ser.rolling(3), method)() | |
tm.assert_series_equal(ser, ser_copy) | |
ser = ser + 50000 | |
result = getattr(ser.rolling(3), method)() | |
tm.assert_series_equal(result, expected) | |
def test_rolling_skew_kurt_large_value_range(method, values): | |
# GH: 37557 | |
s = Series([3000000, 1, 1, 2, 3, 4, 999]) | |
result = getattr(s.rolling(4), method)() | |
expected = Series([np.nan] * 3 + values) | |
tm.assert_series_equal(result, expected) | |
def test_invalid_method(): | |
with pytest.raises(ValueError, match="method must be 'table' or 'single"): | |
Series(range(1)).rolling(1, method="foo") | |
def test_rolling_descending_date_order_with_offset(window, frame_or_series): | |
# GH#40002 | |
idx = date_range(start="2020-01-01", end="2020-01-03", freq="1d") | |
obj = frame_or_series(range(1, 4), index=idx) | |
result = obj.rolling("1d", closed="left").sum() | |
expected = frame_or_series([np.nan, 1, 2], index=idx) | |
tm.assert_equal(result, expected) | |
result = obj.iloc[::-1].rolling("1d", closed="left").sum() | |
idx = date_range(start="2020-01-03", end="2020-01-01", freq="-1d") | |
expected = frame_or_series([np.nan, 3, 2], index=idx) | |
tm.assert_equal(result, expected) | |
def test_rolling_var_floating_artifact_precision(): | |
# GH 37051 | |
s = Series([7, 5, 5, 5]) | |
result = s.rolling(3).var() | |
expected = Series([np.nan, np.nan, 4 / 3, 0]) | |
tm.assert_series_equal(result, expected, atol=1.0e-15, rtol=1.0e-15) | |
# GH 42064 | |
# new `roll_var` will output 0.0 correctly | |
tm.assert_series_equal(result == 0, expected == 0) | |
def test_rolling_std_small_values(): | |
# GH 37051 | |
s = Series( | |
[ | |
0.00000054, | |
0.00000053, | |
0.00000054, | |
] | |
) | |
result = s.rolling(2).std() | |
expected = Series([np.nan, 7.071068e-9, 7.071068e-9]) | |
tm.assert_series_equal(result, expected, atol=1.0e-15, rtol=1.0e-15) | |
def test_rolling_mean_all_nan_window_floating_artifacts(start, exp_values): | |
# GH#41053 | |
df = DataFrame( | |
[ | |
0.03, | |
0.03, | |
0.001, | |
np.nan, | |
0.002, | |
0.008, | |
np.nan, | |
np.nan, | |
np.nan, | |
np.nan, | |
np.nan, | |
np.nan, | |
0.005, | |
0.2, | |
] | |
) | |
values = exp_values + [ | |
0.00366666, | |
0.005, | |
0.005, | |
0.008, | |
np.nan, | |
np.nan, | |
0.005, | |
0.102500, | |
] | |
expected = DataFrame( | |
values, | |
index=list(range(start, len(values) + start)), | |
) | |
result = df.iloc[start:].rolling(5, min_periods=0).mean() | |
tm.assert_frame_equal(result, expected) | |
def test_rolling_sum_all_nan_window_floating_artifacts(): | |
# GH#41053 | |
df = DataFrame([0.002, 0.008, 0.005, np.nan, np.nan, np.nan]) | |
result = df.rolling(3, min_periods=0).sum() | |
expected = DataFrame([0.002, 0.010, 0.015, 0.013, 0.005, 0.0]) | |
tm.assert_frame_equal(result, expected) | |
def test_rolling_zero_window(): | |
# GH 22719 | |
s = Series(range(1)) | |
result = s.rolling(0).min() | |
expected = Series([np.nan]) | |
tm.assert_series_equal(result, expected) | |
def test_rolling_float_dtype(float_numpy_dtype): | |
# GH#42452 | |
df = DataFrame({"A": range(5), "B": range(10, 15)}, dtype=float_numpy_dtype) | |
expected = DataFrame( | |
{"A": [np.nan] * 5, "B": range(10, 20, 2)}, | |
dtype=float_numpy_dtype, | |
) | |
msg = "Support for axis=1 in DataFrame.rolling is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.rolling(2, axis=1).sum() | |
tm.assert_frame_equal(result, expected, check_dtype=False) | |
def test_rolling_numeric_dtypes(): | |
# GH#41779 | |
df = DataFrame(np.arange(40).reshape(4, 10), columns=list("abcdefghij")).astype( | |
{ | |
"a": "float16", | |
"b": "float32", | |
"c": "float64", | |
"d": "int8", | |
"e": "int16", | |
"f": "int32", | |
"g": "uint8", | |
"h": "uint16", | |
"i": "uint32", | |
"j": "uint64", | |
} | |
) | |
msg = "Support for axis=1 in DataFrame.rolling is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = df.rolling(window=2, min_periods=1, axis=1).min() | |
expected = DataFrame( | |
{ | |
"a": range(0, 40, 10), | |
"b": range(0, 40, 10), | |
"c": range(1, 40, 10), | |
"d": range(2, 40, 10), | |
"e": range(3, 40, 10), | |
"f": range(4, 40, 10), | |
"g": range(5, 40, 10), | |
"h": range(6, 40, 10), | |
"i": range(7, 40, 10), | |
"j": range(8, 40, 10), | |
}, | |
dtype="float64", | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_rank(window, method, pct, ascending, test_data): | |
length = 20 | |
if test_data == "default": | |
ser = Series(data=np.random.default_rng(2).random(length)) | |
elif test_data == "duplicates": | |
ser = Series(data=np.random.default_rng(2).choice(3, length)) | |
elif test_data == "nans": | |
ser = Series( | |
data=np.random.default_rng(2).choice( | |
[1.0, 0.25, 0.75, np.nan, np.inf, -np.inf], length | |
) | |
) | |
expected = ser.rolling(window).apply( | |
lambda x: x.rank(method=method, pct=pct, ascending=ascending).iloc[-1] | |
) | |
result = ser.rolling(window).rank(method=method, pct=pct, ascending=ascending) | |
tm.assert_series_equal(result, expected) | |
def test_rolling_quantile_np_percentile(): | |
# #9413: Tests that rolling window's quantile default behavior | |
# is analogous to Numpy's percentile | |
row = 10 | |
col = 5 | |
idx = date_range("20100101", periods=row, freq="B") | |
df = DataFrame( | |
np.random.default_rng(2).random(row * col).reshape((row, -1)), index=idx | |
) | |
df_quantile = df.quantile([0.25, 0.5, 0.75], axis=0) | |
np_percentile = np.percentile(df, [25, 50, 75], axis=0) | |
tm.assert_almost_equal(df_quantile.values, np.array(np_percentile)) | |
def test_rolling_quantile_interpolation_options(quantile, interpolation, data): | |
# Tests that rolling window's quantile behavior is analogous to | |
# Series' quantile for each interpolation option | |
s = Series(data) | |
q1 = s.quantile(quantile, interpolation) | |
q2 = s.expanding(min_periods=1).quantile(quantile, interpolation).iloc[-1] | |
if np.isnan(q1): | |
assert np.isnan(q2) | |
else: | |
if not IS64: | |
# Less precision on 32-bit | |
assert np.allclose([q1], [q2], rtol=1e-07, atol=0) | |
else: | |
assert q1 == q2 | |
def test_invalid_quantile_value(): | |
data = np.arange(5) | |
s = Series(data) | |
msg = "Interpolation 'invalid' is not supported" | |
with pytest.raises(ValueError, match=msg): | |
s.rolling(len(data), min_periods=1).quantile(0.5, interpolation="invalid") | |
def test_rolling_quantile_param(): | |
ser = Series([0.0, 0.1, 0.5, 0.9, 1.0]) | |
msg = "quantile value -0.1 not in \\[0, 1\\]" | |
with pytest.raises(ValueError, match=msg): | |
ser.rolling(3).quantile(-0.1) | |
msg = "quantile value 10.0 not in \\[0, 1\\]" | |
with pytest.raises(ValueError, match=msg): | |
ser.rolling(3).quantile(10.0) | |
msg = "must be real number, not str" | |
with pytest.raises(TypeError, match=msg): | |
ser.rolling(3).quantile("foo") | |
def test_rolling_std_1obs(): | |
vals = Series([1.0, 2.0, 3.0, 4.0, 5.0]) | |
result = vals.rolling(1, min_periods=1).std() | |
expected = Series([np.nan] * 5) | |
tm.assert_series_equal(result, expected) | |
result = vals.rolling(1, min_periods=1).std(ddof=0) | |
expected = Series([0.0] * 5) | |
tm.assert_series_equal(result, expected) | |
result = Series([np.nan, np.nan, 3, 4, 5]).rolling(3, min_periods=2).std() | |
assert np.isnan(result[2]) | |
def test_rolling_std_neg_sqrt(): | |
# unit test from Bottleneck | |
# Test move_nanstd for neg sqrt. | |
a = Series( | |
[ | |
0.0011448196318903589, | |
0.00028718669878572767, | |
0.00028718669878572767, | |
0.00028718669878572767, | |
0.00028718669878572767, | |
] | |
) | |
b = a.rolling(window=3).std() | |
assert np.isfinite(b[2:]).all() | |
b = a.ewm(span=3).std() | |
assert np.isfinite(b[2:]).all() | |
def test_step_not_integer_raises(): | |
with pytest.raises(ValueError, match="step must be an integer"): | |
DataFrame(range(2)).rolling(1, step="foo") | |
def test_step_not_positive_raises(): | |
with pytest.raises(ValueError, match="step must be >= 0"): | |
DataFrame(range(2)).rolling(1, step=-1) | |
def test_rolling_var_same_value_count_logic(values, window, min_periods, expected): | |
# GH 42064. | |
expected = Series(expected) | |
sr = Series(values) | |
# With new algo implemented, result will be set to .0 in rolling var | |
# if sufficient amount of consecutively same values are found. | |
result_var = sr.rolling(window, min_periods=min_periods).var() | |
# use `assert_series_equal` twice to check for equality, | |
# because `check_exact=True` will fail in 32-bit tests due to | |
# precision loss. | |
# 1. result should be close to correct value | |
# non-zero values can still differ slightly from "truth" | |
# as the result of online algorithm | |
tm.assert_series_equal(result_var, expected) | |
# 2. zeros should be exactly the same since the new algo takes effect here | |
tm.assert_series_equal(expected == 0, result_var == 0) | |
# std should also pass as it's just a sqrt of var | |
result_std = sr.rolling(window, min_periods=min_periods).std() | |
tm.assert_series_equal(result_std, np.sqrt(expected)) | |
tm.assert_series_equal(expected == 0, result_std == 0) | |
def test_rolling_mean_sum_floating_artifacts(): | |
# GH 42064. | |
sr = Series([1 / 3, 4, 0, 0, 0, 0, 0]) | |
r = sr.rolling(3) | |
result = r.mean() | |
assert (result[-3:] == 0).all() | |
result = r.sum() | |
assert (result[-3:] == 0).all() | |
def test_rolling_skew_kurt_floating_artifacts(): | |
# GH 42064 46431 | |
sr = Series([1 / 3, 4, 0, 0, 0, 0, 0]) | |
r = sr.rolling(4) | |
result = r.skew() | |
assert (result[-2:] == 0).all() | |
result = r.kurt() | |
assert (result[-2:] == -3).all() | |
def test_numeric_only_frame(arithmetic_win_operators, numeric_only): | |
# GH#46560 | |
kernel = arithmetic_win_operators | |
df = DataFrame({"a": [1], "b": 2, "c": 3}) | |
df["c"] = df["c"].astype(object) | |
rolling = df.rolling(2, min_periods=1) | |
op = getattr(rolling, kernel) | |
result = op(numeric_only=numeric_only) | |
columns = ["a", "b"] if numeric_only else ["a", "b", "c"] | |
expected = df[columns].agg([kernel]).reset_index(drop=True).astype(float) | |
assert list(expected.columns) == columns | |
tm.assert_frame_equal(result, expected) | |
def test_numeric_only_corr_cov_frame(kernel, numeric_only, use_arg): | |
# GH#46560 | |
df = DataFrame({"a": [1, 2, 3], "b": 2, "c": 3}) | |
df["c"] = df["c"].astype(object) | |
arg = (df,) if use_arg else () | |
rolling = df.rolling(2, min_periods=1) | |
op = getattr(rolling, kernel) | |
result = op(*arg, numeric_only=numeric_only) | |
# Compare result to op using float dtypes, dropping c when numeric_only is True | |
columns = ["a", "b"] if numeric_only else ["a", "b", "c"] | |
df2 = df[columns].astype(float) | |
arg2 = (df2,) if use_arg else () | |
rolling2 = df2.rolling(2, min_periods=1) | |
op2 = getattr(rolling2, kernel) | |
expected = op2(*arg2, numeric_only=numeric_only) | |
tm.assert_frame_equal(result, expected) | |
def test_numeric_only_series(arithmetic_win_operators, numeric_only, dtype): | |
# GH#46560 | |
kernel = arithmetic_win_operators | |
ser = Series([1], dtype=dtype) | |
rolling = ser.rolling(2, min_periods=1) | |
op = getattr(rolling, kernel) | |
if numeric_only and dtype is object: | |
msg = f"Rolling.{kernel} does not implement numeric_only" | |
with pytest.raises(NotImplementedError, match=msg): | |
op(numeric_only=numeric_only) | |
else: | |
result = op(numeric_only=numeric_only) | |
expected = ser.agg([kernel]).reset_index(drop=True).astype(float) | |
tm.assert_series_equal(result, expected) | |
def test_numeric_only_corr_cov_series(kernel, use_arg, numeric_only, dtype): | |
# GH#46560 | |
ser = Series([1, 2, 3], dtype=dtype) | |
arg = (ser,) if use_arg else () | |
rolling = ser.rolling(2, min_periods=1) | |
op = getattr(rolling, kernel) | |
if numeric_only and dtype is object: | |
msg = f"Rolling.{kernel} does not implement numeric_only" | |
with pytest.raises(NotImplementedError, match=msg): | |
op(*arg, numeric_only=numeric_only) | |
else: | |
result = op(*arg, numeric_only=numeric_only) | |
ser2 = ser.astype(float) | |
arg2 = (ser2,) if use_arg else () | |
rolling2 = ser2.rolling(2, min_periods=1) | |
op2 = getattr(rolling2, kernel) | |
expected = op2(*arg2, numeric_only=numeric_only) | |
tm.assert_series_equal(result, expected) | |
def test_rolling_timedelta_window_non_nanoseconds(unit, tz): | |
# Test Sum, GH#55106 | |
df_time = DataFrame( | |
{"A": range(5)}, index=date_range("2013-01-01", freq="1s", periods=5, tz=tz) | |
) | |
sum_in_nanosecs = df_time.rolling("1s").sum() | |
# microseconds / milliseconds should not break the correct rolling | |
df_time.index = df_time.index.as_unit(unit) | |
sum_in_microsecs = df_time.rolling("1s").sum() | |
sum_in_microsecs.index = sum_in_microsecs.index.as_unit("ns") | |
tm.assert_frame_equal(sum_in_nanosecs, sum_in_microsecs) | |
# Test max, GH#55026 | |
ref_dates = date_range("2023-01-01", "2023-01-10", unit="ns", tz=tz) | |
ref_series = Series(0, index=ref_dates) | |
ref_series.iloc[0] = 1 | |
ref_max_series = ref_series.rolling(Timedelta(days=4)).max() | |
dates = date_range("2023-01-01", "2023-01-10", unit=unit, tz=tz) | |
series = Series(0, index=dates) | |
series.iloc[0] = 1 | |
max_series = series.rolling(Timedelta(days=4)).max() | |
ref_df = DataFrame(ref_max_series) | |
df = DataFrame(max_series) | |
df.index = df.index.as_unit("ns") | |
tm.assert_frame_equal(ref_df, df) | |