peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/util
/_validators.py
""" | |
Module that contains many useful utilities | |
for validating data or function arguments | |
""" | |
from __future__ import annotations | |
from collections.abc import ( | |
Iterable, | |
Sequence, | |
) | |
from typing import ( | |
TypeVar, | |
overload, | |
) | |
import numpy as np | |
from pandas._libs import lib | |
from pandas.core.dtypes.common import ( | |
is_bool, | |
is_integer, | |
) | |
BoolishT = TypeVar("BoolishT", bool, int) | |
BoolishNoneT = TypeVar("BoolishNoneT", bool, int, None) | |
def _check_arg_length(fname, args, max_fname_arg_count, compat_args) -> None: | |
""" | |
Checks whether 'args' has length of at most 'compat_args'. Raises | |
a TypeError if that is not the case, similar to in Python when a | |
function is called with too many arguments. | |
""" | |
if max_fname_arg_count < 0: | |
raise ValueError("'max_fname_arg_count' must be non-negative") | |
if len(args) > len(compat_args): | |
max_arg_count = len(compat_args) + max_fname_arg_count | |
actual_arg_count = len(args) + max_fname_arg_count | |
argument = "argument" if max_arg_count == 1 else "arguments" | |
raise TypeError( | |
f"{fname}() takes at most {max_arg_count} {argument} " | |
f"({actual_arg_count} given)" | |
) | |
def _check_for_default_values(fname, arg_val_dict, compat_args) -> None: | |
""" | |
Check that the keys in `arg_val_dict` are mapped to their | |
default values as specified in `compat_args`. | |
Note that this function is to be called only when it has been | |
checked that arg_val_dict.keys() is a subset of compat_args | |
""" | |
for key in arg_val_dict: | |
# try checking equality directly with '=' operator, | |
# as comparison may have been overridden for the left | |
# hand object | |
try: | |
v1 = arg_val_dict[key] | |
v2 = compat_args[key] | |
# check for None-ness otherwise we could end up | |
# comparing a numpy array vs None | |
if (v1 is not None and v2 is None) or (v1 is None and v2 is not None): | |
match = False | |
else: | |
match = v1 == v2 | |
if not is_bool(match): | |
raise ValueError("'match' is not a boolean") | |
# could not compare them directly, so try comparison | |
# using the 'is' operator | |
except ValueError: | |
match = arg_val_dict[key] is compat_args[key] | |
if not match: | |
raise ValueError( | |
f"the '{key}' parameter is not supported in " | |
f"the pandas implementation of {fname}()" | |
) | |
def validate_args(fname, args, max_fname_arg_count, compat_args) -> None: | |
""" | |
Checks whether the length of the `*args` argument passed into a function | |
has at most `len(compat_args)` arguments and whether or not all of these | |
elements in `args` are set to their default values. | |
Parameters | |
---------- | |
fname : str | |
The name of the function being passed the `*args` parameter | |
args : tuple | |
The `*args` parameter passed into a function | |
max_fname_arg_count : int | |
The maximum number of arguments that the function `fname` | |
can accept, excluding those in `args`. Used for displaying | |
appropriate error messages. Must be non-negative. | |
compat_args : dict | |
A dictionary of keys and their associated default values. | |
In order to accommodate buggy behaviour in some versions of `numpy`, | |
where a signature displayed keyword arguments but then passed those | |
arguments **positionally** internally when calling downstream | |
implementations, a dict ensures that the original | |
order of the keyword arguments is enforced. | |
Raises | |
------ | |
TypeError | |
If `args` contains more values than there are `compat_args` | |
ValueError | |
If `args` contains values that do not correspond to those | |
of the default values specified in `compat_args` | |
""" | |
_check_arg_length(fname, args, max_fname_arg_count, compat_args) | |
# We do this so that we can provide a more informative | |
# error message about the parameters that we are not | |
# supporting in the pandas implementation of 'fname' | |
kwargs = dict(zip(compat_args, args)) | |
_check_for_default_values(fname, kwargs, compat_args) | |
def _check_for_invalid_keys(fname, kwargs, compat_args) -> None: | |
""" | |
Checks whether 'kwargs' contains any keys that are not | |
in 'compat_args' and raises a TypeError if there is one. | |
""" | |
# set(dict) --> set of the dictionary's keys | |
diff = set(kwargs) - set(compat_args) | |
if diff: | |
bad_arg = next(iter(diff)) | |
raise TypeError(f"{fname}() got an unexpected keyword argument '{bad_arg}'") | |
def validate_kwargs(fname, kwargs, compat_args) -> None: | |
""" | |
Checks whether parameters passed to the **kwargs argument in a | |
function `fname` are valid parameters as specified in `*compat_args` | |
and whether or not they are set to their default values. | |
Parameters | |
---------- | |
fname : str | |
The name of the function being passed the `**kwargs` parameter | |
kwargs : dict | |
The `**kwargs` parameter passed into `fname` | |
compat_args: dict | |
A dictionary of keys that `kwargs` is allowed to have and their | |
associated default values | |
Raises | |
------ | |
TypeError if `kwargs` contains keys not in `compat_args` | |
ValueError if `kwargs` contains keys in `compat_args` that do not | |
map to the default values specified in `compat_args` | |
""" | |
kwds = kwargs.copy() | |
_check_for_invalid_keys(fname, kwargs, compat_args) | |
_check_for_default_values(fname, kwds, compat_args) | |
def validate_args_and_kwargs( | |
fname, args, kwargs, max_fname_arg_count, compat_args | |
) -> None: | |
""" | |
Checks whether parameters passed to the *args and **kwargs argument in a | |
function `fname` are valid parameters as specified in `*compat_args` | |
and whether or not they are set to their default values. | |
Parameters | |
---------- | |
fname: str | |
The name of the function being passed the `**kwargs` parameter | |
args: tuple | |
The `*args` parameter passed into a function | |
kwargs: dict | |
The `**kwargs` parameter passed into `fname` | |
max_fname_arg_count: int | |
The minimum number of arguments that the function `fname` | |
requires, excluding those in `args`. Used for displaying | |
appropriate error messages. Must be non-negative. | |
compat_args: dict | |
A dictionary of keys that `kwargs` is allowed to | |
have and their associated default values. | |
Raises | |
------ | |
TypeError if `args` contains more values than there are | |
`compat_args` OR `kwargs` contains keys not in `compat_args` | |
ValueError if `args` contains values not at the default value (`None`) | |
`kwargs` contains keys in `compat_args` that do not map to the default | |
value as specified in `compat_args` | |
See Also | |
-------- | |
validate_args : Purely args validation. | |
validate_kwargs : Purely kwargs validation. | |
""" | |
# Check that the total number of arguments passed in (i.e. | |
# args and kwargs) does not exceed the length of compat_args | |
_check_arg_length( | |
fname, args + tuple(kwargs.values()), max_fname_arg_count, compat_args | |
) | |
# Check there is no overlap with the positional and keyword | |
# arguments, similar to what is done in actual Python functions | |
args_dict = dict(zip(compat_args, args)) | |
for key in args_dict: | |
if key in kwargs: | |
raise TypeError( | |
f"{fname}() got multiple values for keyword argument '{key}'" | |
) | |
kwargs.update(args_dict) | |
validate_kwargs(fname, kwargs, compat_args) | |
def validate_bool_kwarg( | |
value: BoolishNoneT, | |
arg_name: str, | |
none_allowed: bool = True, | |
int_allowed: bool = False, | |
) -> BoolishNoneT: | |
""" | |
Ensure that argument passed in arg_name can be interpreted as boolean. | |
Parameters | |
---------- | |
value : bool | |
Value to be validated. | |
arg_name : str | |
Name of the argument. To be reflected in the error message. | |
none_allowed : bool, default True | |
Whether to consider None to be a valid boolean. | |
int_allowed : bool, default False | |
Whether to consider integer value to be a valid boolean. | |
Returns | |
------- | |
value | |
The same value as input. | |
Raises | |
------ | |
ValueError | |
If the value is not a valid boolean. | |
""" | |
good_value = is_bool(value) | |
if none_allowed: | |
good_value = good_value or (value is None) | |
if int_allowed: | |
good_value = good_value or isinstance(value, int) | |
if not good_value: | |
raise ValueError( | |
f'For argument "{arg_name}" expected type bool, received ' | |
f"type {type(value).__name__}." | |
) | |
return value # pyright: ignore[reportGeneralTypeIssues] | |
def validate_fillna_kwargs(value, method, validate_scalar_dict_value: bool = True): | |
""" | |
Validate the keyword arguments to 'fillna'. | |
This checks that exactly one of 'value' and 'method' is specified. | |
If 'method' is specified, this validates that it's a valid method. | |
Parameters | |
---------- | |
value, method : object | |
The 'value' and 'method' keyword arguments for 'fillna'. | |
validate_scalar_dict_value : bool, default True | |
Whether to validate that 'value' is a scalar or dict. Specifically, | |
validate that it is not a list or tuple. | |
Returns | |
------- | |
value, method : object | |
""" | |
from pandas.core.missing import clean_fill_method | |
if value is None and method is None: | |
raise ValueError("Must specify a fill 'value' or 'method'.") | |
if value is None and method is not None: | |
method = clean_fill_method(method) | |
elif value is not None and method is None: | |
if validate_scalar_dict_value and isinstance(value, (list, tuple)): | |
raise TypeError( | |
'"value" parameter must be a scalar or dict, but ' | |
f'you passed a "{type(value).__name__}"' | |
) | |
elif value is not None and method is not None: | |
raise ValueError("Cannot specify both 'value' and 'method'.") | |
return value, method | |
def validate_percentile(q: float | Iterable[float]) -> np.ndarray: | |
""" | |
Validate percentiles (used by describe and quantile). | |
This function checks if the given float or iterable of floats is a valid percentile | |
otherwise raises a ValueError. | |
Parameters | |
---------- | |
q: float or iterable of floats | |
A single percentile or an iterable of percentiles. | |
Returns | |
------- | |
ndarray | |
An ndarray of the percentiles if valid. | |
Raises | |
------ | |
ValueError if percentiles are not in given interval([0, 1]). | |
""" | |
q_arr = np.asarray(q) | |
# Don't change this to an f-string. The string formatting | |
# is too expensive for cases where we don't need it. | |
msg = "percentiles should all be in the interval [0, 1]" | |
if q_arr.ndim == 0: | |
if not 0 <= q_arr <= 1: | |
raise ValueError(msg) | |
else: | |
if not all(0 <= qs <= 1 for qs in q_arr): | |
raise ValueError(msg) | |
return q_arr | |
def validate_ascending(ascending: BoolishT) -> BoolishT: | |
... | |
def validate_ascending(ascending: Sequence[BoolishT]) -> list[BoolishT]: | |
... | |
def validate_ascending( | |
ascending: bool | int | Sequence[BoolishT], | |
) -> bool | int | list[BoolishT]: | |
"""Validate ``ascending`` kwargs for ``sort_index`` method.""" | |
kwargs = {"none_allowed": False, "int_allowed": True} | |
if not isinstance(ascending, Sequence): | |
return validate_bool_kwarg(ascending, "ascending", **kwargs) | |
return [validate_bool_kwarg(item, "ascending", **kwargs) for item in ascending] | |
def validate_endpoints(closed: str | None) -> tuple[bool, bool]: | |
""" | |
Check that the `closed` argument is among [None, "left", "right"] | |
Parameters | |
---------- | |
closed : {None, "left", "right"} | |
Returns | |
------- | |
left_closed : bool | |
right_closed : bool | |
Raises | |
------ | |
ValueError : if argument is not among valid values | |
""" | |
left_closed = False | |
right_closed = False | |
if closed is None: | |
left_closed = True | |
right_closed = True | |
elif closed == "left": | |
left_closed = True | |
elif closed == "right": | |
right_closed = True | |
else: | |
raise ValueError("Closed has to be either 'left', 'right' or None") | |
return left_closed, right_closed | |
def validate_inclusive(inclusive: str | None) -> tuple[bool, bool]: | |
""" | |
Check that the `inclusive` argument is among {"both", "neither", "left", "right"}. | |
Parameters | |
---------- | |
inclusive : {"both", "neither", "left", "right"} | |
Returns | |
------- | |
left_right_inclusive : tuple[bool, bool] | |
Raises | |
------ | |
ValueError : if argument is not among valid values | |
""" | |
left_right_inclusive: tuple[bool, bool] | None = None | |
if isinstance(inclusive, str): | |
left_right_inclusive = { | |
"both": (True, True), | |
"left": (True, False), | |
"right": (False, True), | |
"neither": (False, False), | |
}.get(inclusive) | |
if left_right_inclusive is None: | |
raise ValueError( | |
"Inclusive has to be either 'both', 'neither', 'left' or 'right'" | |
) | |
return left_right_inclusive | |
def validate_insert_loc(loc: int, length: int) -> int: | |
""" | |
Check that we have an integer between -length and length, inclusive. | |
Standardize negative loc to within [0, length]. | |
The exceptions we raise on failure match np.insert. | |
""" | |
if not is_integer(loc): | |
raise TypeError(f"loc must be an integer between -{length} and {length}") | |
if loc < 0: | |
loc += length | |
if not 0 <= loc <= length: | |
raise IndexError(f"loc must be an integer between -{length} and {length}") | |
return loc # pyright: ignore[reportGeneralTypeIssues] | |
def check_dtype_backend(dtype_backend) -> None: | |
if dtype_backend is not lib.no_default: | |
if dtype_backend not in ["numpy_nullable", "pyarrow"]: | |
raise ValueError( | |
f"dtype_backend {dtype_backend} is invalid, only 'numpy_nullable' and " | |
f"'pyarrow' are allowed.", | |
) | |