peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/linear_model
/_quantile.py
# Authors: David Dale <[email protected]> | |
# Christian Lorentzen <[email protected]> | |
# License: BSD 3 clause | |
import warnings | |
from numbers import Real | |
import numpy as np | |
from scipy import sparse | |
from scipy.optimize import linprog | |
from ..base import BaseEstimator, RegressorMixin, _fit_context | |
from ..exceptions import ConvergenceWarning | |
from ..utils import _safe_indexing | |
from ..utils._param_validation import Interval, StrOptions | |
from ..utils.fixes import parse_version, sp_version | |
from ..utils.validation import _check_sample_weight | |
from ._base import LinearModel | |
class QuantileRegressor(LinearModel, RegressorMixin, BaseEstimator): | |
"""Linear regression model that predicts conditional quantiles. | |
The linear :class:`QuantileRegressor` optimizes the pinball loss for a | |
desired `quantile` and is robust to outliers. | |
This model uses an L1 regularization like | |
:class:`~sklearn.linear_model.Lasso`. | |
Read more in the :ref:`User Guide <quantile_regression>`. | |
.. versionadded:: 1.0 | |
Parameters | |
---------- | |
quantile : float, default=0.5 | |
The quantile that the model tries to predict. It must be strictly | |
between 0 and 1. If 0.5 (default), the model predicts the 50% | |
quantile, i.e. the median. | |
alpha : float, default=1.0 | |
Regularization constant that multiplies the L1 penalty term. | |
fit_intercept : bool, default=True | |
Whether or not to fit the intercept. | |
solver : {'highs-ds', 'highs-ipm', 'highs', 'interior-point', \ | |
'revised simplex'}, default='highs' | |
Method used by :func:`scipy.optimize.linprog` to solve the linear | |
programming formulation. | |
From `scipy>=1.6.0`, it is recommended to use the highs methods because | |
they are the fastest ones. Solvers "highs-ds", "highs-ipm" and "highs" | |
support sparse input data and, in fact, always convert to sparse csc. | |
From `scipy>=1.11.0`, "interior-point" is not available anymore. | |
.. versionchanged:: 1.4 | |
The default of `solver` changed to `"highs"` in version 1.4. | |
solver_options : dict, default=None | |
Additional parameters passed to :func:`scipy.optimize.linprog` as | |
options. If `None` and if `solver='interior-point'`, then | |
`{"lstsq": True}` is passed to :func:`scipy.optimize.linprog` for the | |
sake of stability. | |
Attributes | |
---------- | |
coef_ : array of shape (n_features,) | |
Estimated coefficients for the features. | |
intercept_ : float | |
The intercept of the model, aka bias term. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
n_iter_ : int | |
The actual number of iterations performed by the solver. | |
See Also | |
-------- | |
Lasso : The Lasso is a linear model that estimates sparse coefficients | |
with l1 regularization. | |
HuberRegressor : Linear regression model that is robust to outliers. | |
Examples | |
-------- | |
>>> from sklearn.linear_model import QuantileRegressor | |
>>> import numpy as np | |
>>> n_samples, n_features = 10, 2 | |
>>> rng = np.random.RandomState(0) | |
>>> y = rng.randn(n_samples) | |
>>> X = rng.randn(n_samples, n_features) | |
>>> # the two following lines are optional in practice | |
>>> from sklearn.utils.fixes import sp_version, parse_version | |
>>> solver = "highs" if sp_version >= parse_version("1.6.0") else "interior-point" | |
>>> reg = QuantileRegressor(quantile=0.8, solver=solver).fit(X, y) | |
>>> np.mean(y <= reg.predict(X)) | |
0.8 | |
""" | |
_parameter_constraints: dict = { | |
"quantile": [Interval(Real, 0, 1, closed="neither")], | |
"alpha": [Interval(Real, 0, None, closed="left")], | |
"fit_intercept": ["boolean"], | |
"solver": [ | |
StrOptions( | |
{ | |
"highs-ds", | |
"highs-ipm", | |
"highs", | |
"interior-point", | |
"revised simplex", | |
} | |
), | |
], | |
"solver_options": [dict, None], | |
} | |
def __init__( | |
self, | |
*, | |
quantile=0.5, | |
alpha=1.0, | |
fit_intercept=True, | |
solver="highs", | |
solver_options=None, | |
): | |
self.quantile = quantile | |
self.alpha = alpha | |
self.fit_intercept = fit_intercept | |
self.solver = solver | |
self.solver_options = solver_options | |
def fit(self, X, y, sample_weight=None): | |
"""Fit the model according to the given training data. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Training data. | |
y : array-like of shape (n_samples,) | |
Target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
Returns | |
------- | |
self : object | |
Returns self. | |
""" | |
X, y = self._validate_data( | |
X, | |
y, | |
accept_sparse=["csc", "csr", "coo"], | |
y_numeric=True, | |
multi_output=False, | |
) | |
sample_weight = _check_sample_weight(sample_weight, X) | |
n_features = X.shape[1] | |
n_params = n_features | |
if self.fit_intercept: | |
n_params += 1 | |
# Note that centering y and X with _preprocess_data does not work | |
# for quantile regression. | |
# The objective is defined as 1/n * sum(pinball loss) + alpha * L1. | |
# So we rescale the penalty term, which is equivalent. | |
alpha = np.sum(sample_weight) * self.alpha | |
if self.solver in ( | |
"highs-ds", | |
"highs-ipm", | |
"highs", | |
) and sp_version < parse_version("1.6.0"): | |
raise ValueError( | |
f"Solver {self.solver} is only available " | |
f"with scipy>=1.6.0, got {sp_version}" | |
) | |
else: | |
solver = self.solver | |
if solver == "interior-point" and sp_version >= parse_version("1.11.0"): | |
raise ValueError( | |
f"Solver {solver} is not anymore available in SciPy >= 1.11.0." | |
) | |
if sparse.issparse(X) and solver not in ["highs", "highs-ds", "highs-ipm"]: | |
raise ValueError( | |
f"Solver {self.solver} does not support sparse X. " | |
"Use solver 'highs' for example." | |
) | |
# make default solver more stable | |
if self.solver_options is None and solver == "interior-point": | |
solver_options = {"lstsq": True} | |
else: | |
solver_options = self.solver_options | |
# After rescaling alpha, the minimization problem is | |
# min sum(pinball loss) + alpha * L1 | |
# Use linear programming formulation of quantile regression | |
# min_x c x | |
# A_eq x = b_eq | |
# 0 <= x | |
# x = (s0, s, t0, t, u, v) = slack variables >= 0 | |
# intercept = s0 - t0 | |
# coef = s - t | |
# c = (0, alpha * 1_p, 0, alpha * 1_p, quantile * 1_n, (1-quantile) * 1_n) | |
# residual = y - X@coef - intercept = u - v | |
# A_eq = (1_n, X, -1_n, -X, diag(1_n), -diag(1_n)) | |
# b_eq = y | |
# p = n_features | |
# n = n_samples | |
# 1_n = vector of length n with entries equal one | |
# see https://stats.stackexchange.com/questions/384909/ | |
# | |
# Filtering out zero sample weights from the beginning makes life | |
# easier for the linprog solver. | |
indices = np.nonzero(sample_weight)[0] | |
n_indices = len(indices) # use n_mask instead of n_samples | |
if n_indices < len(sample_weight): | |
sample_weight = sample_weight[indices] | |
X = _safe_indexing(X, indices) | |
y = _safe_indexing(y, indices) | |
c = np.concatenate( | |
[ | |
np.full(2 * n_params, fill_value=alpha), | |
sample_weight * self.quantile, | |
sample_weight * (1 - self.quantile), | |
] | |
) | |
if self.fit_intercept: | |
# do not penalize the intercept | |
c[0] = 0 | |
c[n_params] = 0 | |
if solver in ["highs", "highs-ds", "highs-ipm"]: | |
# Note that highs methods always use a sparse CSC memory layout internally, | |
# even for optimization problems parametrized using dense numpy arrays. | |
# Therefore, we work with CSC matrices as early as possible to limit | |
# unnecessary repeated memory copies. | |
eye = sparse.eye(n_indices, dtype=X.dtype, format="csc") | |
if self.fit_intercept: | |
ones = sparse.csc_matrix(np.ones(shape=(n_indices, 1), dtype=X.dtype)) | |
A_eq = sparse.hstack([ones, X, -ones, -X, eye, -eye], format="csc") | |
else: | |
A_eq = sparse.hstack([X, -X, eye, -eye], format="csc") | |
else: | |
eye = np.eye(n_indices) | |
if self.fit_intercept: | |
ones = np.ones((n_indices, 1)) | |
A_eq = np.concatenate([ones, X, -ones, -X, eye, -eye], axis=1) | |
else: | |
A_eq = np.concatenate([X, -X, eye, -eye], axis=1) | |
b_eq = y | |
result = linprog( | |
c=c, | |
A_eq=A_eq, | |
b_eq=b_eq, | |
method=solver, | |
options=solver_options, | |
) | |
solution = result.x | |
if not result.success: | |
failure = { | |
1: "Iteration limit reached.", | |
2: "Problem appears to be infeasible.", | |
3: "Problem appears to be unbounded.", | |
4: "Numerical difficulties encountered.", | |
} | |
warnings.warn( | |
"Linear programming for QuantileRegressor did not succeed.\n" | |
f"Status is {result.status}: " | |
+ failure.setdefault(result.status, "unknown reason") | |
+ "\n" | |
+ "Result message of linprog:\n" | |
+ result.message, | |
ConvergenceWarning, | |
) | |
# positive slack - negative slack | |
# solution is an array with (params_pos, params_neg, u, v) | |
params = solution[:n_params] - solution[n_params : 2 * n_params] | |
self.n_iter_ = result.nit | |
if self.fit_intercept: | |
self.coef_ = params[1:] | |
self.intercept_ = params[0] | |
else: | |
self.coef_ = params | |
self.intercept_ = 0.0 | |
return self | |