peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/manifold
/_locally_linear.py
"""Locally Linear Embedding""" | |
# Author: Fabian Pedregosa -- <[email protected]> | |
# Jake Vanderplas -- <[email protected]> | |
# License: BSD 3 clause (C) INRIA 2011 | |
from numbers import Integral, Real | |
import numpy as np | |
from scipy.linalg import eigh, qr, solve, svd | |
from scipy.sparse import csr_matrix, eye | |
from scipy.sparse.linalg import eigsh | |
from ..base import ( | |
BaseEstimator, | |
ClassNamePrefixFeaturesOutMixin, | |
TransformerMixin, | |
_fit_context, | |
_UnstableArchMixin, | |
) | |
from ..neighbors import NearestNeighbors | |
from ..utils import check_array, check_random_state | |
from ..utils._arpack import _init_arpack_v0 | |
from ..utils._param_validation import Interval, StrOptions | |
from ..utils.extmath import stable_cumsum | |
from ..utils.validation import FLOAT_DTYPES, check_is_fitted | |
def barycenter_weights(X, Y, indices, reg=1e-3): | |
"""Compute barycenter weights of X from Y along the first axis | |
We estimate the weights to assign to each point in Y[indices] to recover | |
the point X[i]. The barycenter weights sum to 1. | |
Parameters | |
---------- | |
X : array-like, shape (n_samples, n_dim) | |
Y : array-like, shape (n_samples, n_dim) | |
indices : array-like, shape (n_samples, n_dim) | |
Indices of the points in Y used to compute the barycenter | |
reg : float, default=1e-3 | |
Amount of regularization to add for the problem to be | |
well-posed in the case of n_neighbors > n_dim | |
Returns | |
------- | |
B : array-like, shape (n_samples, n_neighbors) | |
Notes | |
----- | |
See developers note for more information. | |
""" | |
X = check_array(X, dtype=FLOAT_DTYPES) | |
Y = check_array(Y, dtype=FLOAT_DTYPES) | |
indices = check_array(indices, dtype=int) | |
n_samples, n_neighbors = indices.shape | |
assert X.shape[0] == n_samples | |
B = np.empty((n_samples, n_neighbors), dtype=X.dtype) | |
v = np.ones(n_neighbors, dtype=X.dtype) | |
# this might raise a LinalgError if G is singular and has trace | |
# zero | |
for i, ind in enumerate(indices): | |
A = Y[ind] | |
C = A - X[i] # broadcasting | |
G = np.dot(C, C.T) | |
trace = np.trace(G) | |
if trace > 0: | |
R = reg * trace | |
else: | |
R = reg | |
G.flat[:: n_neighbors + 1] += R | |
w = solve(G, v, assume_a="pos") | |
B[i, :] = w / np.sum(w) | |
return B | |
def barycenter_kneighbors_graph(X, n_neighbors, reg=1e-3, n_jobs=None): | |
"""Computes the barycenter weighted graph of k-Neighbors for points in X | |
Parameters | |
---------- | |
X : {array-like, NearestNeighbors} | |
Sample data, shape = (n_samples, n_features), in the form of a | |
numpy array or a NearestNeighbors object. | |
n_neighbors : int | |
Number of neighbors for each sample. | |
reg : float, default=1e-3 | |
Amount of regularization when solving the least-squares | |
problem. Only relevant if mode='barycenter'. If None, use the | |
default. | |
n_jobs : int or None, default=None | |
The number of parallel jobs to run for neighbors search. | |
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
for more details. | |
Returns | |
------- | |
A : sparse matrix in CSR format, shape = [n_samples, n_samples] | |
A[i, j] is assigned the weight of edge that connects i to j. | |
See Also | |
-------- | |
sklearn.neighbors.kneighbors_graph | |
sklearn.neighbors.radius_neighbors_graph | |
""" | |
knn = NearestNeighbors(n_neighbors=n_neighbors + 1, n_jobs=n_jobs).fit(X) | |
X = knn._fit_X | |
n_samples = knn.n_samples_fit_ | |
ind = knn.kneighbors(X, return_distance=False)[:, 1:] | |
data = barycenter_weights(X, X, ind, reg=reg) | |
indptr = np.arange(0, n_samples * n_neighbors + 1, n_neighbors) | |
return csr_matrix((data.ravel(), ind.ravel(), indptr), shape=(n_samples, n_samples)) | |
def null_space( | |
M, k, k_skip=1, eigen_solver="arpack", tol=1e-6, max_iter=100, random_state=None | |
): | |
""" | |
Find the null space of a matrix M. | |
Parameters | |
---------- | |
M : {array, matrix, sparse matrix, LinearOperator} | |
Input covariance matrix: should be symmetric positive semi-definite | |
k : int | |
Number of eigenvalues/vectors to return | |
k_skip : int, default=1 | |
Number of low eigenvalues to skip. | |
eigen_solver : {'auto', 'arpack', 'dense'}, default='arpack' | |
auto : algorithm will attempt to choose the best method for input data | |
arpack : use arnoldi iteration in shift-invert mode. | |
For this method, M may be a dense matrix, sparse matrix, | |
or general linear operator. | |
Warning: ARPACK can be unstable for some problems. It is | |
best to try several random seeds in order to check results. | |
dense : use standard dense matrix operations for the eigenvalue | |
decomposition. For this method, M must be an array | |
or matrix type. This method should be avoided for | |
large problems. | |
tol : float, default=1e-6 | |
Tolerance for 'arpack' method. | |
Not used if eigen_solver=='dense'. | |
max_iter : int, default=100 | |
Maximum number of iterations for 'arpack' method. | |
Not used if eigen_solver=='dense' | |
random_state : int, RandomState instance, default=None | |
Determines the random number generator when ``solver`` == 'arpack'. | |
Pass an int for reproducible results across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
""" | |
if eigen_solver == "auto": | |
if M.shape[0] > 200 and k + k_skip < 10: | |
eigen_solver = "arpack" | |
else: | |
eigen_solver = "dense" | |
if eigen_solver == "arpack": | |
v0 = _init_arpack_v0(M.shape[0], random_state) | |
try: | |
eigen_values, eigen_vectors = eigsh( | |
M, k + k_skip, sigma=0.0, tol=tol, maxiter=max_iter, v0=v0 | |
) | |
except RuntimeError as e: | |
raise ValueError( | |
"Error in determining null-space with ARPACK. Error message: " | |
"'%s'. Note that eigen_solver='arpack' can fail when the " | |
"weight matrix is singular or otherwise ill-behaved. In that " | |
"case, eigen_solver='dense' is recommended. See online " | |
"documentation for more information." % e | |
) from e | |
return eigen_vectors[:, k_skip:], np.sum(eigen_values[k_skip:]) | |
elif eigen_solver == "dense": | |
if hasattr(M, "toarray"): | |
M = M.toarray() | |
eigen_values, eigen_vectors = eigh( | |
M, subset_by_index=(k_skip, k + k_skip - 1), overwrite_a=True | |
) | |
index = np.argsort(np.abs(eigen_values)) | |
return eigen_vectors[:, index], np.sum(eigen_values) | |
else: | |
raise ValueError("Unrecognized eigen_solver '%s'" % eigen_solver) | |
def locally_linear_embedding( | |
X, | |
*, | |
n_neighbors, | |
n_components, | |
reg=1e-3, | |
eigen_solver="auto", | |
tol=1e-6, | |
max_iter=100, | |
method="standard", | |
hessian_tol=1e-4, | |
modified_tol=1e-12, | |
random_state=None, | |
n_jobs=None, | |
): | |
"""Perform a Locally Linear Embedding analysis on the data. | |
Read more in the :ref:`User Guide <locally_linear_embedding>`. | |
Parameters | |
---------- | |
X : {array-like, NearestNeighbors} | |
Sample data, shape = (n_samples, n_features), in the form of a | |
numpy array or a NearestNeighbors object. | |
n_neighbors : int | |
Number of neighbors to consider for each point. | |
n_components : int | |
Number of coordinates for the manifold. | |
reg : float, default=1e-3 | |
Regularization constant, multiplies the trace of the local covariance | |
matrix of the distances. | |
eigen_solver : {'auto', 'arpack', 'dense'}, default='auto' | |
auto : algorithm will attempt to choose the best method for input data | |
arpack : use arnoldi iteration in shift-invert mode. | |
For this method, M may be a dense matrix, sparse matrix, | |
or general linear operator. | |
Warning: ARPACK can be unstable for some problems. It is | |
best to try several random seeds in order to check results. | |
dense : use standard dense matrix operations for the eigenvalue | |
decomposition. For this method, M must be an array | |
or matrix type. This method should be avoided for | |
large problems. | |
tol : float, default=1e-6 | |
Tolerance for 'arpack' method | |
Not used if eigen_solver=='dense'. | |
max_iter : int, default=100 | |
Maximum number of iterations for the arpack solver. | |
method : {'standard', 'hessian', 'modified', 'ltsa'}, default='standard' | |
standard : use the standard locally linear embedding algorithm. | |
see reference [1]_ | |
hessian : use the Hessian eigenmap method. This method requires | |
n_neighbors > n_components * (1 + (n_components + 1) / 2. | |
see reference [2]_ | |
modified : use the modified locally linear embedding algorithm. | |
see reference [3]_ | |
ltsa : use local tangent space alignment algorithm | |
see reference [4]_ | |
hessian_tol : float, default=1e-4 | |
Tolerance for Hessian eigenmapping method. | |
Only used if method == 'hessian'. | |
modified_tol : float, default=1e-12 | |
Tolerance for modified LLE method. | |
Only used if method == 'modified'. | |
random_state : int, RandomState instance, default=None | |
Determines the random number generator when ``solver`` == 'arpack'. | |
Pass an int for reproducible results across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
n_jobs : int or None, default=None | |
The number of parallel jobs to run for neighbors search. | |
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
for more details. | |
Returns | |
------- | |
Y : array-like, shape [n_samples, n_components] | |
Embedding vectors. | |
squared_error : float | |
Reconstruction error for the embedding vectors. Equivalent to | |
``norm(Y - W Y, 'fro')**2``, where W are the reconstruction weights. | |
References | |
---------- | |
.. [1] Roweis, S. & Saul, L. Nonlinear dimensionality reduction | |
by locally linear embedding. Science 290:2323 (2000). | |
.. [2] Donoho, D. & Grimes, C. Hessian eigenmaps: Locally | |
linear embedding techniques for high-dimensional data. | |
Proc Natl Acad Sci U S A. 100:5591 (2003). | |
.. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear | |
Embedding Using Multiple Weights. | |
<https://citeseerx.ist.psu.edu/doc_view/pid/0b060fdbd92cbcc66b383bcaa9ba5e5e624d7ee3>`_ | |
.. [4] Zhang, Z. & Zha, H. Principal manifolds and nonlinear | |
dimensionality reduction via tangent space alignment. | |
Journal of Shanghai Univ. 8:406 (2004) | |
Examples | |
-------- | |
>>> from sklearn.datasets import load_digits | |
>>> from sklearn.manifold import locally_linear_embedding | |
>>> X, _ = load_digits(return_X_y=True) | |
>>> X.shape | |
(1797, 64) | |
>>> embedding, _ = locally_linear_embedding(X[:100],n_neighbors=5, n_components=2) | |
>>> embedding.shape | |
(100, 2) | |
""" | |
if eigen_solver not in ("auto", "arpack", "dense"): | |
raise ValueError("unrecognized eigen_solver '%s'" % eigen_solver) | |
if method not in ("standard", "hessian", "modified", "ltsa"): | |
raise ValueError("unrecognized method '%s'" % method) | |
nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1, n_jobs=n_jobs) | |
nbrs.fit(X) | |
X = nbrs._fit_X | |
N, d_in = X.shape | |
if n_components > d_in: | |
raise ValueError( | |
"output dimension must be less than or equal to input dimension" | |
) | |
if n_neighbors >= N: | |
raise ValueError( | |
"Expected n_neighbors <= n_samples, but n_samples = %d, n_neighbors = %d" | |
% (N, n_neighbors) | |
) | |
if n_neighbors <= 0: | |
raise ValueError("n_neighbors must be positive") | |
M_sparse = eigen_solver != "dense" | |
if method == "standard": | |
W = barycenter_kneighbors_graph( | |
nbrs, n_neighbors=n_neighbors, reg=reg, n_jobs=n_jobs | |
) | |
# we'll compute M = (I-W)'(I-W) | |
# depending on the solver, we'll do this differently | |
if M_sparse: | |
M = eye(*W.shape, format=W.format) - W | |
M = (M.T * M).tocsr() | |
else: | |
M = (W.T * W - W.T - W).toarray() | |
M.flat[:: M.shape[0] + 1] += 1 # W = W - I = W - I | |
elif method == "hessian": | |
dp = n_components * (n_components + 1) // 2 | |
if n_neighbors <= n_components + dp: | |
raise ValueError( | |
"for method='hessian', n_neighbors must be " | |
"greater than " | |
"[n_components * (n_components + 3) / 2]" | |
) | |
neighbors = nbrs.kneighbors( | |
X, n_neighbors=n_neighbors + 1, return_distance=False | |
) | |
neighbors = neighbors[:, 1:] | |
Yi = np.empty((n_neighbors, 1 + n_components + dp), dtype=np.float64) | |
Yi[:, 0] = 1 | |
M = np.zeros((N, N), dtype=np.float64) | |
use_svd = n_neighbors > d_in | |
for i in range(N): | |
Gi = X[neighbors[i]] | |
Gi -= Gi.mean(0) | |
# build Hessian estimator | |
if use_svd: | |
U = svd(Gi, full_matrices=0)[0] | |
else: | |
Ci = np.dot(Gi, Gi.T) | |
U = eigh(Ci)[1][:, ::-1] | |
Yi[:, 1 : 1 + n_components] = U[:, :n_components] | |
j = 1 + n_components | |
for k in range(n_components): | |
Yi[:, j : j + n_components - k] = U[:, k : k + 1] * U[:, k:n_components] | |
j += n_components - k | |
Q, R = qr(Yi) | |
w = Q[:, n_components + 1 :] | |
S = w.sum(0) | |
S[np.where(abs(S) < hessian_tol)] = 1 | |
w /= S | |
nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) | |
M[nbrs_x, nbrs_y] += np.dot(w, w.T) | |
if M_sparse: | |
M = csr_matrix(M) | |
elif method == "modified": | |
if n_neighbors < n_components: | |
raise ValueError("modified LLE requires n_neighbors >= n_components") | |
neighbors = nbrs.kneighbors( | |
X, n_neighbors=n_neighbors + 1, return_distance=False | |
) | |
neighbors = neighbors[:, 1:] | |
# find the eigenvectors and eigenvalues of each local covariance | |
# matrix. We want V[i] to be a [n_neighbors x n_neighbors] matrix, | |
# where the columns are eigenvectors | |
V = np.zeros((N, n_neighbors, n_neighbors)) | |
nev = min(d_in, n_neighbors) | |
evals = np.zeros([N, nev]) | |
# choose the most efficient way to find the eigenvectors | |
use_svd = n_neighbors > d_in | |
if use_svd: | |
for i in range(N): | |
X_nbrs = X[neighbors[i]] - X[i] | |
V[i], evals[i], _ = svd(X_nbrs, full_matrices=True) | |
evals **= 2 | |
else: | |
for i in range(N): | |
X_nbrs = X[neighbors[i]] - X[i] | |
C_nbrs = np.dot(X_nbrs, X_nbrs.T) | |
evi, vi = eigh(C_nbrs) | |
evals[i] = evi[::-1] | |
V[i] = vi[:, ::-1] | |
# find regularized weights: this is like normal LLE. | |
# because we've already computed the SVD of each covariance matrix, | |
# it's faster to use this rather than np.linalg.solve | |
reg = 1e-3 * evals.sum(1) | |
tmp = np.dot(V.transpose(0, 2, 1), np.ones(n_neighbors)) | |
tmp[:, :nev] /= evals + reg[:, None] | |
tmp[:, nev:] /= reg[:, None] | |
w_reg = np.zeros((N, n_neighbors)) | |
for i in range(N): | |
w_reg[i] = np.dot(V[i], tmp[i]) | |
w_reg /= w_reg.sum(1)[:, None] | |
# calculate eta: the median of the ratio of small to large eigenvalues | |
# across the points. This is used to determine s_i, below | |
rho = evals[:, n_components:].sum(1) / evals[:, :n_components].sum(1) | |
eta = np.median(rho) | |
# find s_i, the size of the "almost null space" for each point: | |
# this is the size of the largest set of eigenvalues | |
# such that Sum[v; v in set]/Sum[v; v not in set] < eta | |
s_range = np.zeros(N, dtype=int) | |
evals_cumsum = stable_cumsum(evals, 1) | |
eta_range = evals_cumsum[:, -1:] / evals_cumsum[:, :-1] - 1 | |
for i in range(N): | |
s_range[i] = np.searchsorted(eta_range[i, ::-1], eta) | |
s_range += n_neighbors - nev # number of zero eigenvalues | |
# Now calculate M. | |
# This is the [N x N] matrix whose null space is the desired embedding | |
M = np.zeros((N, N), dtype=np.float64) | |
for i in range(N): | |
s_i = s_range[i] | |
# select bottom s_i eigenvectors and calculate alpha | |
Vi = V[i, :, n_neighbors - s_i :] | |
alpha_i = np.linalg.norm(Vi.sum(0)) / np.sqrt(s_i) | |
# compute Householder matrix which satisfies | |
# Hi*Vi.T*ones(n_neighbors) = alpha_i*ones(s) | |
# using prescription from paper | |
h = np.full(s_i, alpha_i) - np.dot(Vi.T, np.ones(n_neighbors)) | |
norm_h = np.linalg.norm(h) | |
if norm_h < modified_tol: | |
h *= 0 | |
else: | |
h /= norm_h | |
# Householder matrix is | |
# >> Hi = np.identity(s_i) - 2*np.outer(h,h) | |
# Then the weight matrix is | |
# >> Wi = np.dot(Vi,Hi) + (1-alpha_i) * w_reg[i,:,None] | |
# We do this much more efficiently: | |
Wi = Vi - 2 * np.outer(np.dot(Vi, h), h) + (1 - alpha_i) * w_reg[i, :, None] | |
# Update M as follows: | |
# >> W_hat = np.zeros( (N,s_i) ) | |
# >> W_hat[neighbors[i],:] = Wi | |
# >> W_hat[i] -= 1 | |
# >> M += np.dot(W_hat,W_hat.T) | |
# We can do this much more efficiently: | |
nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) | |
M[nbrs_x, nbrs_y] += np.dot(Wi, Wi.T) | |
Wi_sum1 = Wi.sum(1) | |
M[i, neighbors[i]] -= Wi_sum1 | |
M[neighbors[i], i] -= Wi_sum1 | |
M[i, i] += s_i | |
if M_sparse: | |
M = csr_matrix(M) | |
elif method == "ltsa": | |
neighbors = nbrs.kneighbors( | |
X, n_neighbors=n_neighbors + 1, return_distance=False | |
) | |
neighbors = neighbors[:, 1:] | |
M = np.zeros((N, N)) | |
use_svd = n_neighbors > d_in | |
for i in range(N): | |
Xi = X[neighbors[i]] | |
Xi -= Xi.mean(0) | |
# compute n_components largest eigenvalues of Xi * Xi^T | |
if use_svd: | |
v = svd(Xi, full_matrices=True)[0] | |
else: | |
Ci = np.dot(Xi, Xi.T) | |
v = eigh(Ci)[1][:, ::-1] | |
Gi = np.zeros((n_neighbors, n_components + 1)) | |
Gi[:, 1:] = v[:, :n_components] | |
Gi[:, 0] = 1.0 / np.sqrt(n_neighbors) | |
GiGiT = np.dot(Gi, Gi.T) | |
nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) | |
M[nbrs_x, nbrs_y] -= GiGiT | |
M[neighbors[i], neighbors[i]] += 1 | |
return null_space( | |
M, | |
n_components, | |
k_skip=1, | |
eigen_solver=eigen_solver, | |
tol=tol, | |
max_iter=max_iter, | |
random_state=random_state, | |
) | |
class LocallyLinearEmbedding( | |
ClassNamePrefixFeaturesOutMixin, | |
TransformerMixin, | |
_UnstableArchMixin, | |
BaseEstimator, | |
): | |
"""Locally Linear Embedding. | |
Read more in the :ref:`User Guide <locally_linear_embedding>`. | |
Parameters | |
---------- | |
n_neighbors : int, default=5 | |
Number of neighbors to consider for each point. | |
n_components : int, default=2 | |
Number of coordinates for the manifold. | |
reg : float, default=1e-3 | |
Regularization constant, multiplies the trace of the local covariance | |
matrix of the distances. | |
eigen_solver : {'auto', 'arpack', 'dense'}, default='auto' | |
The solver used to compute the eigenvectors. The available options are: | |
- `'auto'` : algorithm will attempt to choose the best method for input | |
data. | |
- `'arpack'` : use arnoldi iteration in shift-invert mode. For this | |
method, M may be a dense matrix, sparse matrix, or general linear | |
operator. | |
- `'dense'` : use standard dense matrix operations for the eigenvalue | |
decomposition. For this method, M must be an array or matrix type. | |
This method should be avoided for large problems. | |
.. warning:: | |
ARPACK can be unstable for some problems. It is best to try several | |
random seeds in order to check results. | |
tol : float, default=1e-6 | |
Tolerance for 'arpack' method | |
Not used if eigen_solver=='dense'. | |
max_iter : int, default=100 | |
Maximum number of iterations for the arpack solver. | |
Not used if eigen_solver=='dense'. | |
method : {'standard', 'hessian', 'modified', 'ltsa'}, default='standard' | |
- `standard`: use the standard locally linear embedding algorithm. see | |
reference [1]_ | |
- `hessian`: use the Hessian eigenmap method. This method requires | |
``n_neighbors > n_components * (1 + (n_components + 1) / 2``. see | |
reference [2]_ | |
- `modified`: use the modified locally linear embedding algorithm. | |
see reference [3]_ | |
- `ltsa`: use local tangent space alignment algorithm. see | |
reference [4]_ | |
hessian_tol : float, default=1e-4 | |
Tolerance for Hessian eigenmapping method. | |
Only used if ``method == 'hessian'``. | |
modified_tol : float, default=1e-12 | |
Tolerance for modified LLE method. | |
Only used if ``method == 'modified'``. | |
neighbors_algorithm : {'auto', 'brute', 'kd_tree', 'ball_tree'}, \ | |
default='auto' | |
Algorithm to use for nearest neighbors search, passed to | |
:class:`~sklearn.neighbors.NearestNeighbors` instance. | |
random_state : int, RandomState instance, default=None | |
Determines the random number generator when | |
``eigen_solver`` == 'arpack'. Pass an int for reproducible results | |
across multiple function calls. See :term:`Glossary <random_state>`. | |
n_jobs : int or None, default=None | |
The number of parallel jobs to run. | |
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
for more details. | |
Attributes | |
---------- | |
embedding_ : array-like, shape [n_samples, n_components] | |
Stores the embedding vectors | |
reconstruction_error_ : float | |
Reconstruction error associated with `embedding_` | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
nbrs_ : NearestNeighbors object | |
Stores nearest neighbors instance, including BallTree or KDtree | |
if applicable. | |
See Also | |
-------- | |
SpectralEmbedding : Spectral embedding for non-linear dimensionality | |
reduction. | |
TSNE : Distributed Stochastic Neighbor Embedding. | |
References | |
---------- | |
.. [1] Roweis, S. & Saul, L. Nonlinear dimensionality reduction | |
by locally linear embedding. Science 290:2323 (2000). | |
.. [2] Donoho, D. & Grimes, C. Hessian eigenmaps: Locally | |
linear embedding techniques for high-dimensional data. | |
Proc Natl Acad Sci U S A. 100:5591 (2003). | |
.. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear | |
Embedding Using Multiple Weights. | |
<https://citeseerx.ist.psu.edu/doc_view/pid/0b060fdbd92cbcc66b383bcaa9ba5e5e624d7ee3>`_ | |
.. [4] Zhang, Z. & Zha, H. Principal manifolds and nonlinear | |
dimensionality reduction via tangent space alignment. | |
Journal of Shanghai Univ. 8:406 (2004) | |
Examples | |
-------- | |
>>> from sklearn.datasets import load_digits | |
>>> from sklearn.manifold import LocallyLinearEmbedding | |
>>> X, _ = load_digits(return_X_y=True) | |
>>> X.shape | |
(1797, 64) | |
>>> embedding = LocallyLinearEmbedding(n_components=2) | |
>>> X_transformed = embedding.fit_transform(X[:100]) | |
>>> X_transformed.shape | |
(100, 2) | |
""" | |
_parameter_constraints: dict = { | |
"n_neighbors": [Interval(Integral, 1, None, closed="left")], | |
"n_components": [Interval(Integral, 1, None, closed="left")], | |
"reg": [Interval(Real, 0, None, closed="left")], | |
"eigen_solver": [StrOptions({"auto", "arpack", "dense"})], | |
"tol": [Interval(Real, 0, None, closed="left")], | |
"max_iter": [Interval(Integral, 1, None, closed="left")], | |
"method": [StrOptions({"standard", "hessian", "modified", "ltsa"})], | |
"hessian_tol": [Interval(Real, 0, None, closed="left")], | |
"modified_tol": [Interval(Real, 0, None, closed="left")], | |
"neighbors_algorithm": [StrOptions({"auto", "brute", "kd_tree", "ball_tree"})], | |
"random_state": ["random_state"], | |
"n_jobs": [None, Integral], | |
} | |
def __init__( | |
self, | |
*, | |
n_neighbors=5, | |
n_components=2, | |
reg=1e-3, | |
eigen_solver="auto", | |
tol=1e-6, | |
max_iter=100, | |
method="standard", | |
hessian_tol=1e-4, | |
modified_tol=1e-12, | |
neighbors_algorithm="auto", | |
random_state=None, | |
n_jobs=None, | |
): | |
self.n_neighbors = n_neighbors | |
self.n_components = n_components | |
self.reg = reg | |
self.eigen_solver = eigen_solver | |
self.tol = tol | |
self.max_iter = max_iter | |
self.method = method | |
self.hessian_tol = hessian_tol | |
self.modified_tol = modified_tol | |
self.random_state = random_state | |
self.neighbors_algorithm = neighbors_algorithm | |
self.n_jobs = n_jobs | |
def _fit_transform(self, X): | |
self.nbrs_ = NearestNeighbors( | |
n_neighbors=self.n_neighbors, | |
algorithm=self.neighbors_algorithm, | |
n_jobs=self.n_jobs, | |
) | |
random_state = check_random_state(self.random_state) | |
X = self._validate_data(X, dtype=float) | |
self.nbrs_.fit(X) | |
self.embedding_, self.reconstruction_error_ = locally_linear_embedding( | |
X=self.nbrs_, | |
n_neighbors=self.n_neighbors, | |
n_components=self.n_components, | |
eigen_solver=self.eigen_solver, | |
tol=self.tol, | |
max_iter=self.max_iter, | |
method=self.method, | |
hessian_tol=self.hessian_tol, | |
modified_tol=self.modified_tol, | |
random_state=random_state, | |
reg=self.reg, | |
n_jobs=self.n_jobs, | |
) | |
self._n_features_out = self.embedding_.shape[1] | |
def fit(self, X, y=None): | |
"""Compute the embedding vectors for data X. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Training set. | |
y : Ignored | |
Not used, present here for API consistency by convention. | |
Returns | |
------- | |
self : object | |
Fitted `LocallyLinearEmbedding` class instance. | |
""" | |
self._fit_transform(X) | |
return self | |
def fit_transform(self, X, y=None): | |
"""Compute the embedding vectors for data X and transform X. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Training set. | |
y : Ignored | |
Not used, present here for API consistency by convention. | |
Returns | |
------- | |
X_new : array-like, shape (n_samples, n_components) | |
Returns the instance itself. | |
""" | |
self._fit_transform(X) | |
return self.embedding_ | |
def transform(self, X): | |
""" | |
Transform new points into embedding space. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Training set. | |
Returns | |
------- | |
X_new : ndarray of shape (n_samples, n_components) | |
Returns the instance itself. | |
Notes | |
----- | |
Because of scaling performed by this method, it is discouraged to use | |
it together with methods that are not scale-invariant (like SVMs). | |
""" | |
check_is_fitted(self) | |
X = self._validate_data(X, reset=False) | |
ind = self.nbrs_.kneighbors( | |
X, n_neighbors=self.n_neighbors, return_distance=False | |
) | |
weights = barycenter_weights(X, self.nbrs_._fit_X, ind, reg=self.reg) | |
X_new = np.empty((X.shape[0], self.n_components)) | |
for i in range(X.shape[0]): | |
X_new[i] = np.dot(self.embedding_[ind[i]].T, weights[i]) | |
return X_new | |