peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/metrics
/pairwise.py
# Authors: Alexandre Gramfort <[email protected]> | |
# Mathieu Blondel <[email protected]> | |
# Robert Layton <[email protected]> | |
# Andreas Mueller <[email protected]> | |
# Philippe Gervais <[email protected]> | |
# Lars Buitinck | |
# Joel Nothman <[email protected]> | |
# License: BSD 3 clause | |
import itertools | |
import warnings | |
from functools import partial | |
from numbers import Integral, Real | |
import numpy as np | |
from joblib import effective_n_jobs | |
from scipy.sparse import csr_matrix, issparse | |
from scipy.spatial import distance | |
from .. import config_context | |
from ..exceptions import DataConversionWarning | |
from ..preprocessing import normalize | |
from ..utils import ( | |
check_array, | |
gen_batches, | |
gen_even_slices, | |
get_chunk_n_rows, | |
is_scalar_nan, | |
) | |
from ..utils._mask import _get_mask | |
from ..utils._param_validation import ( | |
Hidden, | |
Interval, | |
MissingValues, | |
Options, | |
StrOptions, | |
validate_params, | |
) | |
from ..utils.extmath import row_norms, safe_sparse_dot | |
from ..utils.fixes import parse_version, sp_base_version | |
from ..utils.parallel import Parallel, delayed | |
from ..utils.validation import _num_samples, check_non_negative | |
from ._pairwise_distances_reduction import ArgKmin | |
from ._pairwise_fast import _chi2_kernel_fast, _sparse_manhattan | |
# Utility Functions | |
def _return_float_dtype(X, Y): | |
""" | |
1. If dtype of X and Y is float32, then dtype float32 is returned. | |
2. Else dtype float is returned. | |
""" | |
if not issparse(X) and not isinstance(X, np.ndarray): | |
X = np.asarray(X) | |
if Y is None: | |
Y_dtype = X.dtype | |
elif not issparse(Y) and not isinstance(Y, np.ndarray): | |
Y = np.asarray(Y) | |
Y_dtype = Y.dtype | |
else: | |
Y_dtype = Y.dtype | |
if X.dtype == Y_dtype == np.float32: | |
dtype = np.float32 | |
else: | |
dtype = float | |
return X, Y, dtype | |
def check_pairwise_arrays( | |
X, | |
Y, | |
*, | |
precomputed=False, | |
dtype=None, | |
accept_sparse="csr", | |
force_all_finite=True, | |
copy=False, | |
): | |
"""Set X and Y appropriately and checks inputs. | |
If Y is None, it is set as a pointer to X (i.e. not a copy). | |
If Y is given, this does not happen. | |
All distance metrics should use this function first to assert that the | |
given parameters are correct and safe to use. | |
Specifically, this function first ensures that both X and Y are arrays, | |
then checks that they are at least two dimensional while ensuring that | |
their elements are floats (or dtype if provided). Finally, the function | |
checks that the size of the second dimension of the two arrays is equal, or | |
the equivalent check for a precomputed distance matrix. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_X, n_features) | |
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features) | |
precomputed : bool, default=False | |
True if X is to be treated as precomputed distances to the samples in | |
Y. | |
dtype : str, type, list of type, default=None | |
Data type required for X and Y. If None, the dtype will be an | |
appropriate float type selected by _return_float_dtype. | |
.. versionadded:: 0.18 | |
accept_sparse : str, bool or list/tuple of str, default='csr' | |
String[s] representing allowed sparse matrix formats, such as 'csc', | |
'csr', etc. If the input is sparse but not in the allowed format, | |
it will be converted to the first listed format. True allows the input | |
to be any format. False means that a sparse matrix input will | |
raise an error. | |
force_all_finite : bool or 'allow-nan', default=True | |
Whether to raise an error on np.inf, np.nan, pd.NA in array. The | |
possibilities are: | |
- True: Force all values of array to be finite. | |
- False: accepts np.inf, np.nan, pd.NA in array. | |
- 'allow-nan': accepts only np.nan and pd.NA values in array. Values | |
cannot be infinite. | |
.. versionadded:: 0.22 | |
``force_all_finite`` accepts the string ``'allow-nan'``. | |
.. versionchanged:: 0.23 | |
Accepts `pd.NA` and converts it into `np.nan`. | |
copy : bool, default=False | |
Whether a forced copy will be triggered. If copy=False, a copy might | |
be triggered by a conversion. | |
.. versionadded:: 0.22 | |
Returns | |
------- | |
safe_X : {array-like, sparse matrix} of shape (n_samples_X, n_features) | |
An array equal to X, guaranteed to be a numpy array. | |
safe_Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features) | |
An array equal to Y if Y was not None, guaranteed to be a numpy array. | |
If Y was None, safe_Y will be a pointer to X. | |
""" | |
X, Y, dtype_float = _return_float_dtype(X, Y) | |
estimator = "check_pairwise_arrays" | |
if dtype is None: | |
dtype = dtype_float | |
if Y is X or Y is None: | |
X = Y = check_array( | |
X, | |
accept_sparse=accept_sparse, | |
dtype=dtype, | |
copy=copy, | |
force_all_finite=force_all_finite, | |
estimator=estimator, | |
) | |
else: | |
X = check_array( | |
X, | |
accept_sparse=accept_sparse, | |
dtype=dtype, | |
copy=copy, | |
force_all_finite=force_all_finite, | |
estimator=estimator, | |
) | |
Y = check_array( | |
Y, | |
accept_sparse=accept_sparse, | |
dtype=dtype, | |
copy=copy, | |
force_all_finite=force_all_finite, | |
estimator=estimator, | |
) | |
if precomputed: | |
if X.shape[1] != Y.shape[0]: | |
raise ValueError( | |
"Precomputed metric requires shape " | |
"(n_queries, n_indexed). Got (%d, %d) " | |
"for %d indexed." % (X.shape[0], X.shape[1], Y.shape[0]) | |
) | |
elif X.shape[1] != Y.shape[1]: | |
raise ValueError( | |
"Incompatible dimension for X and Y matrices: " | |
"X.shape[1] == %d while Y.shape[1] == %d" % (X.shape[1], Y.shape[1]) | |
) | |
return X, Y | |
def check_paired_arrays(X, Y): | |
"""Set X and Y appropriately and checks inputs for paired distances. | |
All paired distance metrics should use this function first to assert that | |
the given parameters are correct and safe to use. | |
Specifically, this function first ensures that both X and Y are arrays, | |
then checks that they are at least two dimensional while ensuring that | |
their elements are floats. Finally, the function checks that the size | |
of the dimensions of the two arrays are equal. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_X, n_features) | |
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features) | |
Returns | |
------- | |
safe_X : {array-like, sparse matrix} of shape (n_samples_X, n_features) | |
An array equal to X, guaranteed to be a numpy array. | |
safe_Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features) | |
An array equal to Y if Y was not None, guaranteed to be a numpy array. | |
If Y was None, safe_Y will be a pointer to X. | |
""" | |
X, Y = check_pairwise_arrays(X, Y) | |
if X.shape != Y.shape: | |
raise ValueError( | |
"X and Y should be of same shape. They were respectively %r and %r long." | |
% (X.shape, Y.shape) | |
) | |
return X, Y | |
# Pairwise distances | |
def euclidean_distances( | |
X, Y=None, *, Y_norm_squared=None, squared=False, X_norm_squared=None | |
): | |
""" | |
Compute the distance matrix between each pair from a vector array X and Y. | |
For efficiency reasons, the euclidean distance between a pair of row | |
vector x and y is computed as:: | |
dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y)) | |
This formulation has two advantages over other ways of computing distances. | |
First, it is computationally efficient when dealing with sparse data. | |
Second, if one argument varies but the other remains unchanged, then | |
`dot(x, x)` and/or `dot(y, y)` can be pre-computed. | |
However, this is not the most precise way of doing this computation, | |
because this equation potentially suffers from "catastrophic cancellation". | |
Also, the distance matrix returned by this function may not be exactly | |
symmetric as required by, e.g., ``scipy.spatial.distance`` functions. | |
Read more in the :ref:`User Guide <metrics>`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_X, n_features) | |
An array where each row is a sample and each column is a feature. | |
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), \ | |
default=None | |
An array where each row is a sample and each column is a feature. | |
If `None`, method uses `Y=X`. | |
Y_norm_squared : array-like of shape (n_samples_Y,) or (n_samples_Y, 1) \ | |
or (1, n_samples_Y), default=None | |
Pre-computed dot-products of vectors in Y (e.g., | |
``(Y**2).sum(axis=1)``) | |
May be ignored in some cases, see the note below. | |
squared : bool, default=False | |
Return squared Euclidean distances. | |
X_norm_squared : array-like of shape (n_samples_X,) or (n_samples_X, 1) \ | |
or (1, n_samples_X), default=None | |
Pre-computed dot-products of vectors in X (e.g., | |
``(X**2).sum(axis=1)``) | |
May be ignored in some cases, see the note below. | |
Returns | |
------- | |
distances : ndarray of shape (n_samples_X, n_samples_Y) | |
Returns the distances between the row vectors of `X` | |
and the row vectors of `Y`. | |
See Also | |
-------- | |
paired_distances : Distances between pairs of elements of X and Y. | |
Notes | |
----- | |
To achieve a better accuracy, `X_norm_squared` and `Y_norm_squared` may be | |
unused if they are passed as `np.float32`. | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import euclidean_distances | |
>>> X = [[0, 1], [1, 1]] | |
>>> # distance between rows of X | |
>>> euclidean_distances(X, X) | |
array([[0., 1.], | |
[1., 0.]]) | |
>>> # get distance to origin | |
>>> euclidean_distances(X, [[0, 0]]) | |
array([[1. ], | |
[1.41421356]]) | |
""" | |
X, Y = check_pairwise_arrays(X, Y) | |
if X_norm_squared is not None: | |
X_norm_squared = check_array(X_norm_squared, ensure_2d=False) | |
original_shape = X_norm_squared.shape | |
if X_norm_squared.shape == (X.shape[0],): | |
X_norm_squared = X_norm_squared.reshape(-1, 1) | |
if X_norm_squared.shape == (1, X.shape[0]): | |
X_norm_squared = X_norm_squared.T | |
if X_norm_squared.shape != (X.shape[0], 1): | |
raise ValueError( | |
f"Incompatible dimensions for X of shape {X.shape} and " | |
f"X_norm_squared of shape {original_shape}." | |
) | |
if Y_norm_squared is not None: | |
Y_norm_squared = check_array(Y_norm_squared, ensure_2d=False) | |
original_shape = Y_norm_squared.shape | |
if Y_norm_squared.shape == (Y.shape[0],): | |
Y_norm_squared = Y_norm_squared.reshape(1, -1) | |
if Y_norm_squared.shape == (Y.shape[0], 1): | |
Y_norm_squared = Y_norm_squared.T | |
if Y_norm_squared.shape != (1, Y.shape[0]): | |
raise ValueError( | |
f"Incompatible dimensions for Y of shape {Y.shape} and " | |
f"Y_norm_squared of shape {original_shape}." | |
) | |
return _euclidean_distances(X, Y, X_norm_squared, Y_norm_squared, squared) | |
def _euclidean_distances(X, Y, X_norm_squared=None, Y_norm_squared=None, squared=False): | |
"""Computational part of euclidean_distances | |
Assumes inputs are already checked. | |
If norms are passed as float32, they are unused. If arrays are passed as | |
float32, norms needs to be recomputed on upcast chunks. | |
TODO: use a float64 accumulator in row_norms to avoid the latter. | |
""" | |
if X_norm_squared is not None and X_norm_squared.dtype != np.float32: | |
XX = X_norm_squared.reshape(-1, 1) | |
elif X.dtype != np.float32: | |
XX = row_norms(X, squared=True)[:, np.newaxis] | |
else: | |
XX = None | |
if Y is X: | |
YY = None if XX is None else XX.T | |
else: | |
if Y_norm_squared is not None and Y_norm_squared.dtype != np.float32: | |
YY = Y_norm_squared.reshape(1, -1) | |
elif Y.dtype != np.float32: | |
YY = row_norms(Y, squared=True)[np.newaxis, :] | |
else: | |
YY = None | |
if X.dtype == np.float32 or Y.dtype == np.float32: | |
# To minimize precision issues with float32, we compute the distance | |
# matrix on chunks of X and Y upcast to float64 | |
distances = _euclidean_distances_upcast(X, XX, Y, YY) | |
else: | |
# if dtype is already float64, no need to chunk and upcast | |
distances = -2 * safe_sparse_dot(X, Y.T, dense_output=True) | |
distances += XX | |
distances += YY | |
np.maximum(distances, 0, out=distances) | |
# Ensure that distances between vectors and themselves are set to 0.0. | |
# This may not be the case due to floating point rounding errors. | |
if X is Y: | |
np.fill_diagonal(distances, 0) | |
return distances if squared else np.sqrt(distances, out=distances) | |
def nan_euclidean_distances( | |
X, Y=None, *, squared=False, missing_values=np.nan, copy=True | |
): | |
"""Calculate the euclidean distances in the presence of missing values. | |
Compute the euclidean distance between each pair of samples in X and Y, | |
where Y=X is assumed if Y=None. When calculating the distance between a | |
pair of samples, this formulation ignores feature coordinates with a | |
missing value in either sample and scales up the weight of the remaining | |
coordinates: | |
dist(x,y) = sqrt(weight * sq. distance from present coordinates) | |
where, | |
weight = Total # of coordinates / # of present coordinates | |
For example, the distance between ``[3, na, na, 6]`` and ``[1, na, 4, 5]`` | |
is: | |
.. math:: | |
\\sqrt{\\frac{4}{2}((3-1)^2 + (6-5)^2)} | |
If all the coordinates are missing or if there are no common present | |
coordinates then NaN is returned for that pair. | |
Read more in the :ref:`User Guide <metrics>`. | |
.. versionadded:: 0.22 | |
Parameters | |
---------- | |
X : array-like of shape (n_samples_X, n_features) | |
An array where each row is a sample and each column is a feature. | |
Y : array-like of shape (n_samples_Y, n_features), default=None | |
An array where each row is a sample and each column is a feature. | |
If `None`, method uses `Y=X`. | |
squared : bool, default=False | |
Return squared Euclidean distances. | |
missing_values : np.nan, float or int, default=np.nan | |
Representation of missing value. | |
copy : bool, default=True | |
Make and use a deep copy of X and Y (if Y exists). | |
Returns | |
------- | |
distances : ndarray of shape (n_samples_X, n_samples_Y) | |
Returns the distances between the row vectors of `X` | |
and the row vectors of `Y`. | |
See Also | |
-------- | |
paired_distances : Distances between pairs of elements of X and Y. | |
References | |
---------- | |
* John K. Dixon, "Pattern Recognition with Partly Missing Data", | |
IEEE Transactions on Systems, Man, and Cybernetics, Volume: 9, Issue: | |
10, pp. 617 - 621, Oct. 1979. | |
http://ieeexplore.ieee.org/abstract/document/4310090/ | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import nan_euclidean_distances | |
>>> nan = float("NaN") | |
>>> X = [[0, 1], [1, nan]] | |
>>> nan_euclidean_distances(X, X) # distance between rows of X | |
array([[0. , 1.41421356], | |
[1.41421356, 0. ]]) | |
>>> # get distance to origin | |
>>> nan_euclidean_distances(X, [[0, 0]]) | |
array([[1. ], | |
[1.41421356]]) | |
""" | |
force_all_finite = "allow-nan" if is_scalar_nan(missing_values) else True | |
X, Y = check_pairwise_arrays( | |
X, Y, accept_sparse=False, force_all_finite=force_all_finite, copy=copy | |
) | |
# Get missing mask for X | |
missing_X = _get_mask(X, missing_values) | |
# Get missing mask for Y | |
missing_Y = missing_X if Y is X else _get_mask(Y, missing_values) | |
# set missing values to zero | |
X[missing_X] = 0 | |
Y[missing_Y] = 0 | |
distances = euclidean_distances(X, Y, squared=True) | |
# Adjust distances for missing values | |
XX = X * X | |
YY = Y * Y | |
distances -= np.dot(XX, missing_Y.T) | |
distances -= np.dot(missing_X, YY.T) | |
np.clip(distances, 0, None, out=distances) | |
if X is Y: | |
# Ensure that distances between vectors and themselves are set to 0.0. | |
# This may not be the case due to floating point rounding errors. | |
np.fill_diagonal(distances, 0.0) | |
present_X = 1 - missing_X | |
present_Y = present_X if Y is X else ~missing_Y | |
present_count = np.dot(present_X, present_Y.T) | |
distances[present_count == 0] = np.nan | |
# avoid divide by zero | |
np.maximum(1, present_count, out=present_count) | |
distances /= present_count | |
distances *= X.shape[1] | |
if not squared: | |
np.sqrt(distances, out=distances) | |
return distances | |
def _euclidean_distances_upcast(X, XX=None, Y=None, YY=None, batch_size=None): | |
"""Euclidean distances between X and Y. | |
Assumes X and Y have float32 dtype. | |
Assumes XX and YY have float64 dtype or are None. | |
X and Y are upcast to float64 by chunks, which size is chosen to limit | |
memory increase by approximately 10% (at least 10MiB). | |
""" | |
n_samples_X = X.shape[0] | |
n_samples_Y = Y.shape[0] | |
n_features = X.shape[1] | |
distances = np.empty((n_samples_X, n_samples_Y), dtype=np.float32) | |
if batch_size is None: | |
x_density = X.nnz / np.prod(X.shape) if issparse(X) else 1 | |
y_density = Y.nnz / np.prod(Y.shape) if issparse(Y) else 1 | |
# Allow 10% more memory than X, Y and the distance matrix take (at | |
# least 10MiB) | |
maxmem = max( | |
( | |
(x_density * n_samples_X + y_density * n_samples_Y) * n_features | |
+ (x_density * n_samples_X * y_density * n_samples_Y) | |
) | |
/ 10, | |
10 * 2**17, | |
) | |
# The increase amount of memory in 8-byte blocks is: | |
# - x_density * batch_size * n_features (copy of chunk of X) | |
# - y_density * batch_size * n_features (copy of chunk of Y) | |
# - batch_size * batch_size (chunk of distance matrix) | |
# Hence x² + (xd+yd)kx = M, where x=batch_size, k=n_features, M=maxmem | |
# xd=x_density and yd=y_density | |
tmp = (x_density + y_density) * n_features | |
batch_size = (-tmp + np.sqrt(tmp**2 + 4 * maxmem)) / 2 | |
batch_size = max(int(batch_size), 1) | |
x_batches = gen_batches(n_samples_X, batch_size) | |
for i, x_slice in enumerate(x_batches): | |
X_chunk = X[x_slice].astype(np.float64) | |
if XX is None: | |
XX_chunk = row_norms(X_chunk, squared=True)[:, np.newaxis] | |
else: | |
XX_chunk = XX[x_slice] | |
y_batches = gen_batches(n_samples_Y, batch_size) | |
for j, y_slice in enumerate(y_batches): | |
if X is Y and j < i: | |
# when X is Y the distance matrix is symmetric so we only need | |
# to compute half of it. | |
d = distances[y_slice, x_slice].T | |
else: | |
Y_chunk = Y[y_slice].astype(np.float64) | |
if YY is None: | |
YY_chunk = row_norms(Y_chunk, squared=True)[np.newaxis, :] | |
else: | |
YY_chunk = YY[:, y_slice] | |
d = -2 * safe_sparse_dot(X_chunk, Y_chunk.T, dense_output=True) | |
d += XX_chunk | |
d += YY_chunk | |
distances[x_slice, y_slice] = d.astype(np.float32, copy=False) | |
return distances | |
def _argmin_min_reduce(dist, start): | |
# `start` is specified in the signature but not used. This is because the higher | |
# order `pairwise_distances_chunked` function needs reduction functions that are | |
# passed as argument to have a two arguments signature. | |
indices = dist.argmin(axis=1) | |
values = dist[np.arange(dist.shape[0]), indices] | |
return indices, values | |
def _argmin_reduce(dist, start): | |
# `start` is specified in the signature but not used. This is because the higher | |
# order `pairwise_distances_chunked` function needs reduction functions that are | |
# passed as argument to have a two arguments signature. | |
return dist.argmin(axis=1) | |
_VALID_METRICS = [ | |
"euclidean", | |
"l2", | |
"l1", | |
"manhattan", | |
"cityblock", | |
"braycurtis", | |
"canberra", | |
"chebyshev", | |
"correlation", | |
"cosine", | |
"dice", | |
"hamming", | |
"jaccard", | |
"mahalanobis", | |
"matching", | |
"minkowski", | |
"rogerstanimoto", | |
"russellrao", | |
"seuclidean", | |
"sokalmichener", | |
"sokalsneath", | |
"sqeuclidean", | |
"yule", | |
"wminkowski", | |
"nan_euclidean", | |
"haversine", | |
] | |
if sp_base_version < parse_version("1.11"): # pragma: no cover | |
# Deprecated in SciPy 1.9 and removed in SciPy 1.11 | |
_VALID_METRICS += ["kulsinski"] | |
if sp_base_version < parse_version("1.9"): | |
# Deprecated in SciPy 1.0 and removed in SciPy 1.9 | |
_VALID_METRICS += ["matching"] | |
_NAN_METRICS = ["nan_euclidean"] | |
def pairwise_distances_argmin_min( | |
X, Y, *, axis=1, metric="euclidean", metric_kwargs=None | |
): | |
"""Compute minimum distances between one point and a set of points. | |
This function computes for each row in X, the index of the row of Y which | |
is closest (according to the specified distance). The minimal distances are | |
also returned. | |
This is mostly equivalent to calling: | |
(pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis), | |
pairwise_distances(X, Y=Y, metric=metric).min(axis=axis)) | |
but uses much less memory, and is faster for large arrays. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_X, n_features) | |
Array containing points. | |
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features) | |
Array containing points. | |
axis : int, default=1 | |
Axis along which the argmin and distances are to be computed. | |
metric : str or callable, default='euclidean' | |
Metric to use for distance computation. Any metric from scikit-learn | |
or scipy.spatial.distance can be used. | |
If metric is a callable function, it is called on each | |
pair of instances (rows) and the resulting value recorded. The callable | |
should take two arrays as input and return one value indicating the | |
distance between them. This works for Scipy's metrics, but is less | |
efficient than passing the metric name as a string. | |
Distance matrices are not supported. | |
Valid values for metric are: | |
- from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', | |
'manhattan'] | |
- from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', | |
'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', | |
'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao', | |
'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', | |
'yule'] | |
See the documentation for scipy.spatial.distance for details on these | |
metrics. | |
.. note:: | |
`'kulsinski'` is deprecated from SciPy 1.9 and will be removed in SciPy 1.11. | |
.. note:: | |
`'matching'` has been removed in SciPy 1.9 (use `'hamming'` instead). | |
metric_kwargs : dict, default=None | |
Keyword arguments to pass to specified metric function. | |
Returns | |
------- | |
argmin : ndarray | |
Y[argmin[i], :] is the row in Y that is closest to X[i, :]. | |
distances : ndarray | |
The array of minimum distances. `distances[i]` is the distance between | |
the i-th row in X and the argmin[i]-th row in Y. | |
See Also | |
-------- | |
pairwise_distances : Distances between every pair of samples of X and Y. | |
pairwise_distances_argmin : Same as `pairwise_distances_argmin_min` but only | |
returns the argmins. | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import pairwise_distances_argmin_min | |
>>> X = [[0, 0, 0], [1, 1, 1]] | |
>>> Y = [[1, 0, 0], [1, 1, 0]] | |
>>> argmin, distances = pairwise_distances_argmin_min(X, Y) | |
>>> argmin | |
array([0, 1]) | |
>>> distances | |
array([1., 1.]) | |
""" | |
X, Y = check_pairwise_arrays(X, Y) | |
if axis == 0: | |
X, Y = Y, X | |
if metric_kwargs is None: | |
metric_kwargs = {} | |
if ArgKmin.is_usable_for(X, Y, metric): | |
# This is an adaptor for one "sqeuclidean" specification. | |
# For this backend, we can directly use "sqeuclidean". | |
if metric_kwargs.get("squared", False) and metric == "euclidean": | |
metric = "sqeuclidean" | |
metric_kwargs = {} | |
values, indices = ArgKmin.compute( | |
X=X, | |
Y=Y, | |
k=1, | |
metric=metric, | |
metric_kwargs=metric_kwargs, | |
strategy="auto", | |
return_distance=True, | |
) | |
values = values.flatten() | |
indices = indices.flatten() | |
else: | |
# Joblib-based backend, which is used when user-defined callable | |
# are passed for metric. | |
# This won't be used in the future once PairwiseDistancesReductions support: | |
# - DistanceMetrics which work on supposedly binary data | |
# - CSR-dense and dense-CSR case if 'euclidean' in metric. | |
# Turn off check for finiteness because this is costly and because arrays | |
# have already been validated. | |
with config_context(assume_finite=True): | |
indices, values = zip( | |
*pairwise_distances_chunked( | |
X, Y, reduce_func=_argmin_min_reduce, metric=metric, **metric_kwargs | |
) | |
) | |
indices = np.concatenate(indices) | |
values = np.concatenate(values) | |
return indices, values | |
def pairwise_distances_argmin(X, Y, *, axis=1, metric="euclidean", metric_kwargs=None): | |
"""Compute minimum distances between one point and a set of points. | |
This function computes for each row in X, the index of the row of Y which | |
is closest (according to the specified distance). | |
This is mostly equivalent to calling: | |
pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis) | |
but uses much less memory, and is faster for large arrays. | |
This function works with dense 2D arrays only. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_X, n_features) | |
Array containing points. | |
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features) | |
Arrays containing points. | |
axis : int, default=1 | |
Axis along which the argmin and distances are to be computed. | |
metric : str or callable, default="euclidean" | |
Metric to use for distance computation. Any metric from scikit-learn | |
or scipy.spatial.distance can be used. | |
If metric is a callable function, it is called on each | |
pair of instances (rows) and the resulting value recorded. The callable | |
should take two arrays as input and return one value indicating the | |
distance between them. This works for Scipy's metrics, but is less | |
efficient than passing the metric name as a string. | |
Distance matrices are not supported. | |
Valid values for metric are: | |
- from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', | |
'manhattan'] | |
- from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', | |
'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', | |
'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao', | |
'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', | |
'yule'] | |
See the documentation for scipy.spatial.distance for details on these | |
metrics. | |
.. note:: | |
`'kulsinski'` is deprecated from SciPy 1.9 and will be removed in SciPy 1.11. | |
.. note:: | |
`'matching'` has been removed in SciPy 1.9 (use `'hamming'` instead). | |
metric_kwargs : dict, default=None | |
Keyword arguments to pass to specified metric function. | |
Returns | |
------- | |
argmin : numpy.ndarray | |
Y[argmin[i], :] is the row in Y that is closest to X[i, :]. | |
See Also | |
-------- | |
pairwise_distances : Distances between every pair of samples of X and Y. | |
pairwise_distances_argmin_min : Same as `pairwise_distances_argmin` but also | |
returns the distances. | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import pairwise_distances_argmin | |
>>> X = [[0, 0, 0], [1, 1, 1]] | |
>>> Y = [[1, 0, 0], [1, 1, 0]] | |
>>> pairwise_distances_argmin(X, Y) | |
array([0, 1]) | |
""" | |
if metric_kwargs is None: | |
metric_kwargs = {} | |
X, Y = check_pairwise_arrays(X, Y) | |
if axis == 0: | |
X, Y = Y, X | |
if metric_kwargs is None: | |
metric_kwargs = {} | |
if ArgKmin.is_usable_for(X, Y, metric): | |
# This is an adaptor for one "sqeuclidean" specification. | |
# For this backend, we can directly use "sqeuclidean". | |
if metric_kwargs.get("squared", False) and metric == "euclidean": | |
metric = "sqeuclidean" | |
metric_kwargs = {} | |
indices = ArgKmin.compute( | |
X=X, | |
Y=Y, | |
k=1, | |
metric=metric, | |
metric_kwargs=metric_kwargs, | |
strategy="auto", | |
return_distance=False, | |
) | |
indices = indices.flatten() | |
else: | |
# Joblib-based backend, which is used when user-defined callable | |
# are passed for metric. | |
# This won't be used in the future once PairwiseDistancesReductions support: | |
# - DistanceMetrics which work on supposedly binary data | |
# - CSR-dense and dense-CSR case if 'euclidean' in metric. | |
# Turn off check for finiteness because this is costly and because arrays | |
# have already been validated. | |
with config_context(assume_finite=True): | |
indices = np.concatenate( | |
list( | |
# This returns a np.ndarray generator whose arrays we need | |
# to flatten into one. | |
pairwise_distances_chunked( | |
X, Y, reduce_func=_argmin_reduce, metric=metric, **metric_kwargs | |
) | |
) | |
) | |
return indices | |
def haversine_distances(X, Y=None): | |
"""Compute the Haversine distance between samples in X and Y. | |
The Haversine (or great circle) distance is the angular distance between | |
two points on the surface of a sphere. The first coordinate of each point | |
is assumed to be the latitude, the second is the longitude, given | |
in radians. The dimension of the data must be 2. | |
.. math:: | |
D(x, y) = 2\\arcsin[\\sqrt{\\sin^2((x_{lat} - y_{lat}) / 2) | |
+ \\cos(x_{lat})\\cos(y_{lat})\\ | |
sin^2((x_{lon} - y_{lon}) / 2)}] | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_X, 2) | |
A feature array. | |
Y : {array-like, sparse matrix} of shape (n_samples_Y, 2), default=None | |
An optional second feature array. If `None`, uses `Y=X`. | |
Returns | |
------- | |
distances : ndarray of shape (n_samples_X, n_samples_Y) | |
The distance matrix. | |
Notes | |
----- | |
As the Earth is nearly spherical, the haversine formula provides a good | |
approximation of the distance between two points of the Earth surface, with | |
a less than 1% error on average. | |
Examples | |
-------- | |
We want to calculate the distance between the Ezeiza Airport | |
(Buenos Aires, Argentina) and the Charles de Gaulle Airport (Paris, | |
France). | |
>>> from sklearn.metrics.pairwise import haversine_distances | |
>>> from math import radians | |
>>> bsas = [-34.83333, -58.5166646] | |
>>> paris = [49.0083899664, 2.53844117956] | |
>>> bsas_in_radians = [radians(_) for _ in bsas] | |
>>> paris_in_radians = [radians(_) for _ in paris] | |
>>> result = haversine_distances([bsas_in_radians, paris_in_radians]) | |
>>> result * 6371000/1000 # multiply by Earth radius to get kilometers | |
array([[ 0. , 11099.54035582], | |
[11099.54035582, 0. ]]) | |
""" | |
from ..metrics import DistanceMetric | |
return DistanceMetric.get_metric("haversine").pairwise(X, Y) | |
def manhattan_distances(X, Y=None): | |
"""Compute the L1 distances between the vectors in X and Y. | |
Read more in the :ref:`User Guide <metrics>`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_X, n_features) | |
An array where each row is a sample and each column is a feature. | |
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None | |
An array where each row is a sample and each column is a feature. | |
If `None`, method uses `Y=X`. | |
Returns | |
------- | |
distances : ndarray of shape (n_samples_X, n_samples_Y) | |
Pairwise L1 distances. | |
Notes | |
----- | |
When X and/or Y are CSR sparse matrices and they are not already | |
in canonical format, this function modifies them in-place to | |
make them canonical. | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import manhattan_distances | |
>>> manhattan_distances([[3]], [[3]]) | |
array([[0.]]) | |
>>> manhattan_distances([[3]], [[2]]) | |
array([[1.]]) | |
>>> manhattan_distances([[2]], [[3]]) | |
array([[1.]]) | |
>>> manhattan_distances([[1, 2], [3, 4]],\ | |
[[1, 2], [0, 3]]) | |
array([[0., 2.], | |
[4., 4.]]) | |
""" | |
X, Y = check_pairwise_arrays(X, Y) | |
if issparse(X) or issparse(Y): | |
X = csr_matrix(X, copy=False) | |
Y = csr_matrix(Y, copy=False) | |
X.sum_duplicates() # this also sorts indices in-place | |
Y.sum_duplicates() | |
D = np.zeros((X.shape[0], Y.shape[0])) | |
_sparse_manhattan(X.data, X.indices, X.indptr, Y.data, Y.indices, Y.indptr, D) | |
return D | |
return distance.cdist(X, Y, "cityblock") | |
def cosine_distances(X, Y=None): | |
"""Compute cosine distance between samples in X and Y. | |
Cosine distance is defined as 1.0 minus the cosine similarity. | |
Read more in the :ref:`User Guide <metrics>`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_X, n_features) | |
Matrix `X`. | |
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), \ | |
default=None | |
Matrix `Y`. | |
Returns | |
------- | |
distances : ndarray of shape (n_samples_X, n_samples_Y) | |
Returns the cosine distance between samples in X and Y. | |
See Also | |
-------- | |
cosine_similarity : Compute cosine similarity between samples in X and Y. | |
scipy.spatial.distance.cosine : Dense matrices only. | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import cosine_distances | |
>>> X = [[0, 0, 0], [1, 1, 1]] | |
>>> Y = [[1, 0, 0], [1, 1, 0]] | |
>>> cosine_distances(X, Y) | |
array([[1. , 1. ], | |
[0.42..., 0.18...]]) | |
""" | |
# 1.0 - cosine_similarity(X, Y) without copy | |
S = cosine_similarity(X, Y) | |
S *= -1 | |
S += 1 | |
np.clip(S, 0, 2, out=S) | |
if X is Y or Y is None: | |
# Ensure that distances between vectors and themselves are set to 0.0. | |
# This may not be the case due to floating point rounding errors. | |
S[np.diag_indices_from(S)] = 0.0 | |
return S | |
# Paired distances | |
def paired_euclidean_distances(X, Y): | |
"""Compute the paired euclidean distances between X and Y. | |
Read more in the :ref:`User Guide <metrics>`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Input array/matrix X. | |
Y : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Input array/matrix Y. | |
Returns | |
------- | |
distances : ndarray of shape (n_samples,) | |
Output array/matrix containing the calculated paired euclidean | |
distances. | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import paired_euclidean_distances | |
>>> X = [[0, 0, 0], [1, 1, 1]] | |
>>> Y = [[1, 0, 0], [1, 1, 0]] | |
>>> paired_euclidean_distances(X, Y) | |
array([1., 1.]) | |
""" | |
X, Y = check_paired_arrays(X, Y) | |
return row_norms(X - Y) | |
def paired_manhattan_distances(X, Y): | |
"""Compute the paired L1 distances between X and Y. | |
Distances are calculated between (X[0], Y[0]), (X[1], Y[1]), ..., | |
(X[n_samples], Y[n_samples]). | |
Read more in the :ref:`User Guide <metrics>`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
An array-like where each row is a sample and each column is a feature. | |
Y : {array-like, sparse matrix} of shape (n_samples, n_features) | |
An array-like where each row is a sample and each column is a feature. | |
Returns | |
------- | |
distances : ndarray of shape (n_samples,) | |
L1 paired distances between the row vectors of `X` | |
and the row vectors of `Y`. | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import paired_manhattan_distances | |
>>> import numpy as np | |
>>> X = np.array([[1, 1, 0], [0, 1, 0], [0, 0, 1]]) | |
>>> Y = np.array([[0, 1, 0], [0, 0, 1], [0, 0, 0]]) | |
>>> paired_manhattan_distances(X, Y) | |
array([1., 2., 1.]) | |
""" | |
X, Y = check_paired_arrays(X, Y) | |
diff = X - Y | |
if issparse(diff): | |
diff.data = np.abs(diff.data) | |
return np.squeeze(np.array(diff.sum(axis=1))) | |
else: | |
return np.abs(diff).sum(axis=-1) | |
def paired_cosine_distances(X, Y): | |
""" | |
Compute the paired cosine distances between X and Y. | |
Read more in the :ref:`User Guide <metrics>`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
An array where each row is a sample and each column is a feature. | |
Y : {array-like, sparse matrix} of shape (n_samples, n_features) | |
An array where each row is a sample and each column is a feature. | |
Returns | |
------- | |
distances : ndarray of shape (n_samples,) | |
Returns the distances between the row vectors of `X` | |
and the row vectors of `Y`, where `distances[i]` is the | |
distance between `X[i]` and `Y[i]`. | |
Notes | |
----- | |
The cosine distance is equivalent to the half the squared | |
euclidean distance if each sample is normalized to unit norm. | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import paired_cosine_distances | |
>>> X = [[0, 0, 0], [1, 1, 1]] | |
>>> Y = [[1, 0, 0], [1, 1, 0]] | |
>>> paired_cosine_distances(X, Y) | |
array([0.5 , 0.18...]) | |
""" | |
X, Y = check_paired_arrays(X, Y) | |
return 0.5 * row_norms(normalize(X) - normalize(Y), squared=True) | |
PAIRED_DISTANCES = { | |
"cosine": paired_cosine_distances, | |
"euclidean": paired_euclidean_distances, | |
"l2": paired_euclidean_distances, | |
"l1": paired_manhattan_distances, | |
"manhattan": paired_manhattan_distances, | |
"cityblock": paired_manhattan_distances, | |
} | |
def paired_distances(X, Y, *, metric="euclidean", **kwds): | |
""" | |
Compute the paired distances between X and Y. | |
Compute the distances between (X[0], Y[0]), (X[1], Y[1]), etc... | |
Read more in the :ref:`User Guide <metrics>`. | |
Parameters | |
---------- | |
X : ndarray of shape (n_samples, n_features) | |
Array 1 for distance computation. | |
Y : ndarray of shape (n_samples, n_features) | |
Array 2 for distance computation. | |
metric : str or callable, default="euclidean" | |
The metric to use when calculating distance between instances in a | |
feature array. If metric is a string, it must be one of the options | |
specified in PAIRED_DISTANCES, including "euclidean", | |
"manhattan", or "cosine". | |
Alternatively, if metric is a callable function, it is called on each | |
pair of instances (rows) and the resulting value recorded. The callable | |
should take two arrays from `X` as input and return a value indicating | |
the distance between them. | |
**kwds : dict | |
Unused parameters. | |
Returns | |
------- | |
distances : ndarray of shape (n_samples,) | |
Returns the distances between the row vectors of `X` | |
and the row vectors of `Y`. | |
See Also | |
-------- | |
sklearn.metrics.pairwise_distances : Computes the distance between every pair of | |
samples. | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import paired_distances | |
>>> X = [[0, 1], [1, 1]] | |
>>> Y = [[0, 1], [2, 1]] | |
>>> paired_distances(X, Y) | |
array([0., 1.]) | |
""" | |
if metric in PAIRED_DISTANCES: | |
func = PAIRED_DISTANCES[metric] | |
return func(X, Y) | |
elif callable(metric): | |
# Check the matrix first (it is usually done by the metric) | |
X, Y = check_paired_arrays(X, Y) | |
distances = np.zeros(len(X)) | |
for i in range(len(X)): | |
distances[i] = metric(X[i], Y[i]) | |
return distances | |
# Kernels | |
def linear_kernel(X, Y=None, dense_output=True): | |
""" | |
Compute the linear kernel between X and Y. | |
Read more in the :ref:`User Guide <linear_kernel>`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_X, n_features) | |
A feature array. | |
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None | |
An optional second feature array. If `None`, uses `Y=X`. | |
dense_output : bool, default=True | |
Whether to return dense output even when the input is sparse. If | |
``False``, the output is sparse if both input arrays are sparse. | |
.. versionadded:: 0.20 | |
Returns | |
------- | |
kernel : ndarray of shape (n_samples_X, n_samples_Y) | |
The Gram matrix of the linear kernel, i.e. `X @ Y.T`. | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import linear_kernel | |
>>> X = [[0, 0, 0], [1, 1, 1]] | |
>>> Y = [[1, 0, 0], [1, 1, 0]] | |
>>> linear_kernel(X, Y) | |
array([[0., 0.], | |
[1., 2.]]) | |
""" | |
X, Y = check_pairwise_arrays(X, Y) | |
return safe_sparse_dot(X, Y.T, dense_output=dense_output) | |
def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1): | |
""" | |
Compute the polynomial kernel between X and Y. | |
K(X, Y) = (gamma <X, Y> + coef0) ^ degree | |
Read more in the :ref:`User Guide <polynomial_kernel>`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_X, n_features) | |
A feature array. | |
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None | |
An optional second feature array. If `None`, uses `Y=X`. | |
degree : float, default=3 | |
Kernel degree. | |
gamma : float, default=None | |
Coefficient of the vector inner product. If None, defaults to 1.0 / n_features. | |
coef0 : float, default=1 | |
Constant offset added to scaled inner product. | |
Returns | |
------- | |
kernel : ndarray of shape (n_samples_X, n_samples_Y) | |
The polynomial kernel. | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import polynomial_kernel | |
>>> X = [[0, 0, 0], [1, 1, 1]] | |
>>> Y = [[1, 0, 0], [1, 1, 0]] | |
>>> polynomial_kernel(X, Y, degree=2) | |
array([[1. , 1. ], | |
[1.77..., 2.77...]]) | |
""" | |
X, Y = check_pairwise_arrays(X, Y) | |
if gamma is None: | |
gamma = 1.0 / X.shape[1] | |
K = safe_sparse_dot(X, Y.T, dense_output=True) | |
K *= gamma | |
K += coef0 | |
K **= degree | |
return K | |
def sigmoid_kernel(X, Y=None, gamma=None, coef0=1): | |
"""Compute the sigmoid kernel between X and Y. | |
K(X, Y) = tanh(gamma <X, Y> + coef0) | |
Read more in the :ref:`User Guide <sigmoid_kernel>`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_X, n_features) | |
A feature array. | |
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None | |
An optional second feature array. If `None`, uses `Y=X`. | |
gamma : float, default=None | |
Coefficient of the vector inner product. If None, defaults to 1.0 / n_features. | |
coef0 : float, default=1 | |
Constant offset added to scaled inner product. | |
Returns | |
------- | |
kernel : ndarray of shape (n_samples_X, n_samples_Y) | |
Sigmoid kernel between two arrays. | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import sigmoid_kernel | |
>>> X = [[0, 0, 0], [1, 1, 1]] | |
>>> Y = [[1, 0, 0], [1, 1, 0]] | |
>>> sigmoid_kernel(X, Y) | |
array([[0.76..., 0.76...], | |
[0.87..., 0.93...]]) | |
""" | |
X, Y = check_pairwise_arrays(X, Y) | |
if gamma is None: | |
gamma = 1.0 / X.shape[1] | |
K = safe_sparse_dot(X, Y.T, dense_output=True) | |
K *= gamma | |
K += coef0 | |
np.tanh(K, K) # compute tanh in-place | |
return K | |
def rbf_kernel(X, Y=None, gamma=None): | |
"""Compute the rbf (gaussian) kernel between X and Y. | |
K(x, y) = exp(-gamma ||x-y||^2) | |
for each pair of rows x in X and y in Y. | |
Read more in the :ref:`User Guide <rbf_kernel>`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_X, n_features) | |
A feature array. | |
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None | |
An optional second feature array. If `None`, uses `Y=X`. | |
gamma : float, default=None | |
If None, defaults to 1.0 / n_features. | |
Returns | |
------- | |
kernel : ndarray of shape (n_samples_X, n_samples_Y) | |
The RBF kernel. | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import rbf_kernel | |
>>> X = [[0, 0, 0], [1, 1, 1]] | |
>>> Y = [[1, 0, 0], [1, 1, 0]] | |
>>> rbf_kernel(X, Y) | |
array([[0.71..., 0.51...], | |
[0.51..., 0.71...]]) | |
""" | |
X, Y = check_pairwise_arrays(X, Y) | |
if gamma is None: | |
gamma = 1.0 / X.shape[1] | |
K = euclidean_distances(X, Y, squared=True) | |
K *= -gamma | |
np.exp(K, K) # exponentiate K in-place | |
return K | |
def laplacian_kernel(X, Y=None, gamma=None): | |
"""Compute the laplacian kernel between X and Y. | |
The laplacian kernel is defined as:: | |
K(x, y) = exp(-gamma ||x-y||_1) | |
for each pair of rows x in X and y in Y. | |
Read more in the :ref:`User Guide <laplacian_kernel>`. | |
.. versionadded:: 0.17 | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_X, n_features) | |
A feature array. | |
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None | |
An optional second feature array. If `None`, uses `Y=X`. | |
gamma : float, default=None | |
If None, defaults to 1.0 / n_features. Otherwise it should be strictly positive. | |
Returns | |
------- | |
kernel : ndarray of shape (n_samples_X, n_samples_Y) | |
The kernel matrix. | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import laplacian_kernel | |
>>> X = [[0, 0, 0], [1, 1, 1]] | |
>>> Y = [[1, 0, 0], [1, 1, 0]] | |
>>> laplacian_kernel(X, Y) | |
array([[0.71..., 0.51...], | |
[0.51..., 0.71...]]) | |
""" | |
X, Y = check_pairwise_arrays(X, Y) | |
if gamma is None: | |
gamma = 1.0 / X.shape[1] | |
K = -gamma * manhattan_distances(X, Y) | |
np.exp(K, K) # exponentiate K in-place | |
return K | |
def cosine_similarity(X, Y=None, dense_output=True): | |
"""Compute cosine similarity between samples in X and Y. | |
Cosine similarity, or the cosine kernel, computes similarity as the | |
normalized dot product of X and Y: | |
K(X, Y) = <X, Y> / (||X||*||Y||) | |
On L2-normalized data, this function is equivalent to linear_kernel. | |
Read more in the :ref:`User Guide <cosine_similarity>`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_X, n_features) | |
Input data. | |
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), \ | |
default=None | |
Input data. If ``None``, the output will be the pairwise | |
similarities between all samples in ``X``. | |
dense_output : bool, default=True | |
Whether to return dense output even when the input is sparse. If | |
``False``, the output is sparse if both input arrays are sparse. | |
.. versionadded:: 0.17 | |
parameter ``dense_output`` for dense output. | |
Returns | |
------- | |
similarities : ndarray of shape (n_samples_X, n_samples_Y) | |
Returns the cosine similarity between samples in X and Y. | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import cosine_similarity | |
>>> X = [[0, 0, 0], [1, 1, 1]] | |
>>> Y = [[1, 0, 0], [1, 1, 0]] | |
>>> cosine_similarity(X, Y) | |
array([[0. , 0. ], | |
[0.57..., 0.81...]]) | |
""" | |
# to avoid recursive import | |
X, Y = check_pairwise_arrays(X, Y) | |
X_normalized = normalize(X, copy=True) | |
if X is Y: | |
Y_normalized = X_normalized | |
else: | |
Y_normalized = normalize(Y, copy=True) | |
K = safe_sparse_dot(X_normalized, Y_normalized.T, dense_output=dense_output) | |
return K | |
def additive_chi2_kernel(X, Y=None): | |
"""Compute the additive chi-squared kernel between observations in X and Y. | |
The chi-squared kernel is computed between each pair of rows in X and Y. X | |
and Y have to be non-negative. This kernel is most commonly applied to | |
histograms. | |
The chi-squared kernel is given by:: | |
k(x, y) = -Sum [(x - y)^2 / (x + y)] | |
It can be interpreted as a weighted difference per entry. | |
Read more in the :ref:`User Guide <chi2_kernel>`. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples_X, n_features) | |
A feature array. | |
Y : array-like of shape (n_samples_Y, n_features), default=None | |
An optional second feature array. If `None`, uses `Y=X`. | |
Returns | |
------- | |
kernel : ndarray of shape (n_samples_X, n_samples_Y) | |
The kernel matrix. | |
See Also | |
-------- | |
chi2_kernel : The exponentiated version of the kernel, which is usually | |
preferable. | |
sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation | |
to this kernel. | |
Notes | |
----- | |
As the negative of a distance, this kernel is only conditionally positive | |
definite. | |
References | |
---------- | |
* Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. | |
Local features and kernels for classification of texture and object | |
categories: A comprehensive study | |
International Journal of Computer Vision 2007 | |
https://hal.archives-ouvertes.fr/hal-00171412/document | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import additive_chi2_kernel | |
>>> X = [[0, 0, 0], [1, 1, 1]] | |
>>> Y = [[1, 0, 0], [1, 1, 0]] | |
>>> additive_chi2_kernel(X, Y) | |
array([[-1., -2.], | |
[-2., -1.]]) | |
""" | |
X, Y = check_pairwise_arrays(X, Y, accept_sparse=False) | |
if (X < 0).any(): | |
raise ValueError("X contains negative values.") | |
if Y is not X and (Y < 0).any(): | |
raise ValueError("Y contains negative values.") | |
result = np.zeros((X.shape[0], Y.shape[0]), dtype=X.dtype) | |
_chi2_kernel_fast(X, Y, result) | |
return result | |
def chi2_kernel(X, Y=None, gamma=1.0): | |
"""Compute the exponential chi-squared kernel between X and Y. | |
The chi-squared kernel is computed between each pair of rows in X and Y. X | |
and Y have to be non-negative. This kernel is most commonly applied to | |
histograms. | |
The chi-squared kernel is given by:: | |
k(x, y) = exp(-gamma Sum [(x - y)^2 / (x + y)]) | |
It can be interpreted as a weighted difference per entry. | |
Read more in the :ref:`User Guide <chi2_kernel>`. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples_X, n_features) | |
A feature array. | |
Y : array-like of shape (n_samples_Y, n_features), default=None | |
An optional second feature array. If `None`, uses `Y=X`. | |
gamma : float, default=1 | |
Scaling parameter of the chi2 kernel. | |
Returns | |
------- | |
kernel : ndarray of shape (n_samples_X, n_samples_Y) | |
The kernel matrix. | |
See Also | |
-------- | |
additive_chi2_kernel : The additive version of this kernel. | |
sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation | |
to the additive version of this kernel. | |
References | |
---------- | |
* Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. | |
Local features and kernels for classification of texture and object | |
categories: A comprehensive study | |
International Journal of Computer Vision 2007 | |
https://hal.archives-ouvertes.fr/hal-00171412/document | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import chi2_kernel | |
>>> X = [[0, 0, 0], [1, 1, 1]] | |
>>> Y = [[1, 0, 0], [1, 1, 0]] | |
>>> chi2_kernel(X, Y) | |
array([[0.36..., 0.13...], | |
[0.13..., 0.36...]]) | |
""" | |
K = additive_chi2_kernel(X, Y) | |
K *= gamma | |
return np.exp(K, K) | |
# Helper functions - distance | |
PAIRWISE_DISTANCE_FUNCTIONS = { | |
# If updating this dictionary, update the doc in both distance_metrics() | |
# and also in pairwise_distances()! | |
"cityblock": manhattan_distances, | |
"cosine": cosine_distances, | |
"euclidean": euclidean_distances, | |
"haversine": haversine_distances, | |
"l2": euclidean_distances, | |
"l1": manhattan_distances, | |
"manhattan": manhattan_distances, | |
"precomputed": None, # HACK: precomputed is always allowed, never called | |
"nan_euclidean": nan_euclidean_distances, | |
} | |
def distance_metrics(): | |
"""Valid metrics for pairwise_distances. | |
This function simply returns the valid pairwise distance metrics. | |
It exists to allow for a description of the mapping for | |
each of the valid strings. | |
The valid distance metrics, and the function they map to, are: | |
=============== ======================================== | |
metric Function | |
=============== ======================================== | |
'cityblock' metrics.pairwise.manhattan_distances | |
'cosine' metrics.pairwise.cosine_distances | |
'euclidean' metrics.pairwise.euclidean_distances | |
'haversine' metrics.pairwise.haversine_distances | |
'l1' metrics.pairwise.manhattan_distances | |
'l2' metrics.pairwise.euclidean_distances | |
'manhattan' metrics.pairwise.manhattan_distances | |
'nan_euclidean' metrics.pairwise.nan_euclidean_distances | |
=============== ======================================== | |
Read more in the :ref:`User Guide <metrics>`. | |
Returns | |
------- | |
distance_metrics : dict | |
Returns valid metrics for pairwise_distances. | |
""" | |
return PAIRWISE_DISTANCE_FUNCTIONS | |
def _dist_wrapper(dist_func, dist_matrix, slice_, *args, **kwargs): | |
"""Write in-place to a slice of a distance matrix.""" | |
dist_matrix[:, slice_] = dist_func(*args, **kwargs) | |
def _parallel_pairwise(X, Y, func, n_jobs, **kwds): | |
"""Break the pairwise matrix in n_jobs even slices | |
and compute them in parallel.""" | |
if Y is None: | |
Y = X | |
X, Y, dtype = _return_float_dtype(X, Y) | |
if effective_n_jobs(n_jobs) == 1: | |
return func(X, Y, **kwds) | |
# enforce a threading backend to prevent data communication overhead | |
fd = delayed(_dist_wrapper) | |
ret = np.empty((X.shape[0], Y.shape[0]), dtype=dtype, order="F") | |
Parallel(backend="threading", n_jobs=n_jobs)( | |
fd(func, ret, s, X, Y[s], **kwds) | |
for s in gen_even_slices(_num_samples(Y), effective_n_jobs(n_jobs)) | |
) | |
if (X is Y or Y is None) and func is euclidean_distances: | |
# zeroing diagonal for euclidean norm. | |
# TODO: do it also for other norms. | |
np.fill_diagonal(ret, 0) | |
return ret | |
def _pairwise_callable(X, Y, metric, force_all_finite=True, **kwds): | |
"""Handle the callable case for pairwise_{distances,kernels}.""" | |
X, Y = check_pairwise_arrays(X, Y, force_all_finite=force_all_finite) | |
if X is Y: | |
# Only calculate metric for upper triangle | |
out = np.zeros((X.shape[0], Y.shape[0]), dtype="float") | |
iterator = itertools.combinations(range(X.shape[0]), 2) | |
for i, j in iterator: | |
# scipy has not yet implemented 1D sparse slices; once implemented this can | |
# be removed and `arr[ind]` can be simply used. | |
x = X[[i], :] if issparse(X) else X[i] | |
y = Y[[j], :] if issparse(Y) else Y[j] | |
out[i, j] = metric(x, y, **kwds) | |
# Make symmetric | |
# NB: out += out.T will produce incorrect results | |
out = out + out.T | |
# Calculate diagonal | |
# NB: nonzero diagonals are allowed for both metrics and kernels | |
for i in range(X.shape[0]): | |
# scipy has not yet implemented 1D sparse slices; once implemented this can | |
# be removed and `arr[ind]` can be simply used. | |
x = X[[i], :] if issparse(X) else X[i] | |
out[i, i] = metric(x, x, **kwds) | |
else: | |
# Calculate all cells | |
out = np.empty((X.shape[0], Y.shape[0]), dtype="float") | |
iterator = itertools.product(range(X.shape[0]), range(Y.shape[0])) | |
for i, j in iterator: | |
# scipy has not yet implemented 1D sparse slices; once implemented this can | |
# be removed and `arr[ind]` can be simply used. | |
x = X[[i], :] if issparse(X) else X[i] | |
y = Y[[j], :] if issparse(Y) else Y[j] | |
out[i, j] = metric(x, y, **kwds) | |
return out | |
def _check_chunk_size(reduced, chunk_size): | |
"""Checks chunk is a sequence of expected size or a tuple of same.""" | |
if reduced is None: | |
return | |
is_tuple = isinstance(reduced, tuple) | |
if not is_tuple: | |
reduced = (reduced,) | |
if any(isinstance(r, tuple) or not hasattr(r, "__iter__") for r in reduced): | |
raise TypeError( | |
"reduce_func returned %r. Expected sequence(s) of length %d." | |
% (reduced if is_tuple else reduced[0], chunk_size) | |
) | |
if any(_num_samples(r) != chunk_size for r in reduced): | |
actual_size = tuple(_num_samples(r) for r in reduced) | |
raise ValueError( | |
"reduce_func returned object of length %s. " | |
"Expected same length as input: %d." | |
% (actual_size if is_tuple else actual_size[0], chunk_size) | |
) | |
def _precompute_metric_params(X, Y, metric=None, **kwds): | |
"""Precompute data-derived metric parameters if not provided.""" | |
if metric == "seuclidean" and "V" not in kwds: | |
if X is Y: | |
V = np.var(X, axis=0, ddof=1) | |
else: | |
raise ValueError( | |
"The 'V' parameter is required for the seuclidean metric " | |
"when Y is passed." | |
) | |
return {"V": V} | |
if metric == "mahalanobis" and "VI" not in kwds: | |
if X is Y: | |
VI = np.linalg.inv(np.cov(X.T)).T | |
else: | |
raise ValueError( | |
"The 'VI' parameter is required for the mahalanobis metric " | |
"when Y is passed." | |
) | |
return {"VI": VI} | |
return {} | |
def pairwise_distances_chunked( | |
X, | |
Y=None, | |
*, | |
reduce_func=None, | |
metric="euclidean", | |
n_jobs=None, | |
working_memory=None, | |
**kwds, | |
): | |
"""Generate a distance matrix chunk by chunk with optional reduction. | |
In cases where not all of a pairwise distance matrix needs to be | |
stored at once, this is used to calculate pairwise distances in | |
``working_memory``-sized chunks. If ``reduce_func`` is given, it is | |
run on each chunk and its return values are concatenated into lists, | |
arrays or sparse matrices. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_X, n_samples_X) or \ | |
(n_samples_X, n_features) | |
Array of pairwise distances between samples, or a feature array. | |
The shape the array should be (n_samples_X, n_samples_X) if | |
metric='precomputed' and (n_samples_X, n_features) otherwise. | |
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None | |
An optional second feature array. Only allowed if | |
metric != "precomputed". | |
reduce_func : callable, default=None | |
The function which is applied on each chunk of the distance matrix, | |
reducing it to needed values. ``reduce_func(D_chunk, start)`` | |
is called repeatedly, where ``D_chunk`` is a contiguous vertical | |
slice of the pairwise distance matrix, starting at row ``start``. | |
It should return one of: None; an array, a list, or a sparse matrix | |
of length ``D_chunk.shape[0]``; or a tuple of such objects. | |
Returning None is useful for in-place operations, rather than | |
reductions. | |
If None, pairwise_distances_chunked returns a generator of vertical | |
chunks of the distance matrix. | |
metric : str or callable, default='euclidean' | |
The metric to use when calculating distance between instances in a | |
feature array. If metric is a string, it must be one of the options | |
allowed by scipy.spatial.distance.pdist for its metric parameter, | |
or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. | |
If metric is "precomputed", X is assumed to be a distance matrix. | |
Alternatively, if metric is a callable function, it is called on | |
each pair of instances (rows) and the resulting value recorded. | |
The callable should take two arrays from X as input and return a | |
value indicating the distance between them. | |
n_jobs : int, default=None | |
The number of jobs to use for the computation. This works by | |
breaking down the pairwise matrix into n_jobs even slices and | |
computing them in parallel. | |
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
for more details. | |
working_memory : float, default=None | |
The sought maximum memory for temporary distance matrix chunks. | |
When None (default), the value of | |
``sklearn.get_config()['working_memory']`` is used. | |
**kwds : optional keyword parameters | |
Any further parameters are passed directly to the distance function. | |
If using a scipy.spatial.distance metric, the parameters are still | |
metric dependent. See the scipy docs for usage examples. | |
Yields | |
------ | |
D_chunk : {ndarray, sparse matrix} | |
A contiguous slice of distance matrix, optionally processed by | |
``reduce_func``. | |
Examples | |
-------- | |
Without reduce_func: | |
>>> import numpy as np | |
>>> from sklearn.metrics import pairwise_distances_chunked | |
>>> X = np.random.RandomState(0).rand(5, 3) | |
>>> D_chunk = next(pairwise_distances_chunked(X)) | |
>>> D_chunk | |
array([[0. ..., 0.29..., 0.41..., 0.19..., 0.57...], | |
[0.29..., 0. ..., 0.57..., 0.41..., 0.76...], | |
[0.41..., 0.57..., 0. ..., 0.44..., 0.90...], | |
[0.19..., 0.41..., 0.44..., 0. ..., 0.51...], | |
[0.57..., 0.76..., 0.90..., 0.51..., 0. ...]]) | |
Retrieve all neighbors and average distance within radius r: | |
>>> r = .2 | |
>>> def reduce_func(D_chunk, start): | |
... neigh = [np.flatnonzero(d < r) for d in D_chunk] | |
... avg_dist = (D_chunk * (D_chunk < r)).mean(axis=1) | |
... return neigh, avg_dist | |
>>> gen = pairwise_distances_chunked(X, reduce_func=reduce_func) | |
>>> neigh, avg_dist = next(gen) | |
>>> neigh | |
[array([0, 3]), array([1]), array([2]), array([0, 3]), array([4])] | |
>>> avg_dist | |
array([0.039..., 0. , 0. , 0.039..., 0. ]) | |
Where r is defined per sample, we need to make use of ``start``: | |
>>> r = [.2, .4, .4, .3, .1] | |
>>> def reduce_func(D_chunk, start): | |
... neigh = [np.flatnonzero(d < r[i]) | |
... for i, d in enumerate(D_chunk, start)] | |
... return neigh | |
>>> neigh = next(pairwise_distances_chunked(X, reduce_func=reduce_func)) | |
>>> neigh | |
[array([0, 3]), array([0, 1]), array([2]), array([0, 3]), array([4])] | |
Force row-by-row generation by reducing ``working_memory``: | |
>>> gen = pairwise_distances_chunked(X, reduce_func=reduce_func, | |
... working_memory=0) | |
>>> next(gen) | |
[array([0, 3])] | |
>>> next(gen) | |
[array([0, 1])] | |
""" | |
n_samples_X = _num_samples(X) | |
if metric == "precomputed": | |
slices = (slice(0, n_samples_X),) | |
else: | |
if Y is None: | |
Y = X | |
# We get as many rows as possible within our working_memory budget to | |
# store len(Y) distances in each row of output. | |
# | |
# Note: | |
# - this will get at least 1 row, even if 1 row of distances will | |
# exceed working_memory. | |
# - this does not account for any temporary memory usage while | |
# calculating distances (e.g. difference of vectors in manhattan | |
# distance. | |
chunk_n_rows = get_chunk_n_rows( | |
row_bytes=8 * _num_samples(Y), | |
max_n_rows=n_samples_X, | |
working_memory=working_memory, | |
) | |
slices = gen_batches(n_samples_X, chunk_n_rows) | |
# precompute data-derived metric params | |
params = _precompute_metric_params(X, Y, metric=metric, **kwds) | |
kwds.update(**params) | |
for sl in slices: | |
if sl.start == 0 and sl.stop == n_samples_X: | |
X_chunk = X # enable optimised paths for X is Y | |
else: | |
X_chunk = X[sl] | |
D_chunk = pairwise_distances(X_chunk, Y, metric=metric, n_jobs=n_jobs, **kwds) | |
if (X is Y or Y is None) and PAIRWISE_DISTANCE_FUNCTIONS.get( | |
metric, None | |
) is euclidean_distances: | |
# zeroing diagonal, taking care of aliases of "euclidean", | |
# i.e. "l2" | |
D_chunk.flat[sl.start :: _num_samples(X) + 1] = 0 | |
if reduce_func is not None: | |
chunk_size = D_chunk.shape[0] | |
D_chunk = reduce_func(D_chunk, sl.start) | |
_check_chunk_size(D_chunk, chunk_size) | |
yield D_chunk | |
def pairwise_distances( | |
X, Y=None, metric="euclidean", *, n_jobs=None, force_all_finite=True, **kwds | |
): | |
"""Compute the distance matrix from a vector array X and optional Y. | |
This method takes either a vector array or a distance matrix, and returns | |
a distance matrix. If the input is a vector array, the distances are | |
computed. If the input is a distances matrix, it is returned instead. | |
This method provides a safe way to take a distance matrix as input, while | |
preserving compatibility with many other algorithms that take a vector | |
array. | |
If Y is given (default is None), then the returned matrix is the pairwise | |
distance between the arrays from both X and Y. | |
Valid values for metric are: | |
- From scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', | |
'manhattan']. These metrics support sparse matrix | |
inputs. | |
['nan_euclidean'] but it does not yet support sparse matrices. | |
- From scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', | |
'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', | |
'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', | |
'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] | |
See the documentation for scipy.spatial.distance for details on these | |
metrics. These metrics do not support sparse matrix inputs. | |
.. note:: | |
`'kulsinski'` is deprecated from SciPy 1.9 and will be removed in SciPy 1.11. | |
.. note:: | |
`'matching'` has been removed in SciPy 1.9 (use `'hamming'` instead). | |
Note that in the case of 'cityblock', 'cosine' and 'euclidean' (which are | |
valid scipy.spatial.distance metrics), the scikit-learn implementation | |
will be used, which is faster and has support for sparse matrices (except | |
for 'cityblock'). For a verbose description of the metrics from | |
scikit-learn, see :func:`sklearn.metrics.pairwise.distance_metrics` | |
function. | |
Read more in the :ref:`User Guide <metrics>`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_X, n_samples_X) or \ | |
(n_samples_X, n_features) | |
Array of pairwise distances between samples, or a feature array. | |
The shape of the array should be (n_samples_X, n_samples_X) if | |
metric == "precomputed" and (n_samples_X, n_features) otherwise. | |
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None | |
An optional second feature array. Only allowed if | |
metric != "precomputed". | |
metric : str or callable, default='euclidean' | |
The metric to use when calculating distance between instances in a | |
feature array. If metric is a string, it must be one of the options | |
allowed by scipy.spatial.distance.pdist for its metric parameter, or | |
a metric listed in ``pairwise.PAIRWISE_DISTANCE_FUNCTIONS``. | |
If metric is "precomputed", X is assumed to be a distance matrix. | |
Alternatively, if metric is a callable function, it is called on each | |
pair of instances (rows) and the resulting value recorded. The callable | |
should take two arrays from X as input and return a value indicating | |
the distance between them. | |
n_jobs : int, default=None | |
The number of jobs to use for the computation. This works by breaking | |
down the pairwise matrix into n_jobs even slices and computing them in | |
parallel. | |
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
for more details. | |
force_all_finite : bool or 'allow-nan', default=True | |
Whether to raise an error on np.inf, np.nan, pd.NA in array. Ignored | |
for a metric listed in ``pairwise.PAIRWISE_DISTANCE_FUNCTIONS``. The | |
possibilities are: | |
- True: Force all values of array to be finite. | |
- False: accepts np.inf, np.nan, pd.NA in array. | |
- 'allow-nan': accepts only np.nan and pd.NA values in array. Values | |
cannot be infinite. | |
.. versionadded:: 0.22 | |
``force_all_finite`` accepts the string ``'allow-nan'``. | |
.. versionchanged:: 0.23 | |
Accepts `pd.NA` and converts it into `np.nan`. | |
**kwds : optional keyword parameters | |
Any further parameters are passed directly to the distance function. | |
If using a scipy.spatial.distance metric, the parameters are still | |
metric dependent. See the scipy docs for usage examples. | |
Returns | |
------- | |
D : ndarray of shape (n_samples_X, n_samples_X) or \ | |
(n_samples_X, n_samples_Y) | |
A distance matrix D such that D_{i, j} is the distance between the | |
ith and jth vectors of the given matrix X, if Y is None. | |
If Y is not None, then D_{i, j} is the distance between the ith array | |
from X and the jth array from Y. | |
See Also | |
-------- | |
pairwise_distances_chunked : Performs the same calculation as this | |
function, but returns a generator of chunks of the distance matrix, in | |
order to limit memory usage. | |
sklearn.metrics.pairwise.paired_distances : Computes the distances between | |
corresponding elements of two arrays. | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import pairwise_distances | |
>>> X = [[0, 0, 0], [1, 1, 1]] | |
>>> Y = [[1, 0, 0], [1, 1, 0]] | |
>>> pairwise_distances(X, Y, metric='sqeuclidean') | |
array([[1., 2.], | |
[2., 1.]]) | |
""" | |
if metric == "precomputed": | |
X, _ = check_pairwise_arrays( | |
X, Y, precomputed=True, force_all_finite=force_all_finite | |
) | |
whom = ( | |
"`pairwise_distances`. Precomputed distance " | |
" need to have non-negative values." | |
) | |
check_non_negative(X, whom=whom) | |
return X | |
elif metric in PAIRWISE_DISTANCE_FUNCTIONS: | |
func = PAIRWISE_DISTANCE_FUNCTIONS[metric] | |
elif callable(metric): | |
func = partial( | |
_pairwise_callable, metric=metric, force_all_finite=force_all_finite, **kwds | |
) | |
else: | |
if issparse(X) or issparse(Y): | |
raise TypeError("scipy distance metrics do not support sparse matrices.") | |
dtype = bool if metric in PAIRWISE_BOOLEAN_FUNCTIONS else None | |
if dtype == bool and (X.dtype != bool or (Y is not None and Y.dtype != bool)): | |
msg = "Data was converted to boolean for metric %s" % metric | |
warnings.warn(msg, DataConversionWarning) | |
X, Y = check_pairwise_arrays( | |
X, Y, dtype=dtype, force_all_finite=force_all_finite | |
) | |
# precompute data-derived metric params | |
params = _precompute_metric_params(X, Y, metric=metric, **kwds) | |
kwds.update(**params) | |
if effective_n_jobs(n_jobs) == 1 and X is Y: | |
return distance.squareform(distance.pdist(X, metric=metric, **kwds)) | |
func = partial(distance.cdist, metric=metric, **kwds) | |
return _parallel_pairwise(X, Y, func, n_jobs, **kwds) | |
# These distances require boolean arrays, when using scipy.spatial.distance | |
PAIRWISE_BOOLEAN_FUNCTIONS = [ | |
"dice", | |
"jaccard", | |
"rogerstanimoto", | |
"russellrao", | |
"sokalmichener", | |
"sokalsneath", | |
"yule", | |
] | |
if sp_base_version < parse_version("1.11"): | |
# Deprecated in SciPy 1.9 and removed in SciPy 1.11 | |
PAIRWISE_BOOLEAN_FUNCTIONS += ["kulsinski"] | |
if sp_base_version < parse_version("1.9"): | |
# Deprecated in SciPy 1.0 and removed in SciPy 1.9 | |
PAIRWISE_BOOLEAN_FUNCTIONS += ["matching"] | |
# Helper functions - distance | |
PAIRWISE_KERNEL_FUNCTIONS = { | |
# If updating this dictionary, update the doc in both distance_metrics() | |
# and also in pairwise_distances()! | |
"additive_chi2": additive_chi2_kernel, | |
"chi2": chi2_kernel, | |
"linear": linear_kernel, | |
"polynomial": polynomial_kernel, | |
"poly": polynomial_kernel, | |
"rbf": rbf_kernel, | |
"laplacian": laplacian_kernel, | |
"sigmoid": sigmoid_kernel, | |
"cosine": cosine_similarity, | |
} | |
def kernel_metrics(): | |
"""Valid metrics for pairwise_kernels. | |
This function simply returns the valid pairwise distance metrics. | |
It exists, however, to allow for a verbose description of the mapping for | |
each of the valid strings. | |
The valid distance metrics, and the function they map to, are: | |
=============== ======================================== | |
metric Function | |
=============== ======================================== | |
'additive_chi2' sklearn.pairwise.additive_chi2_kernel | |
'chi2' sklearn.pairwise.chi2_kernel | |
'linear' sklearn.pairwise.linear_kernel | |
'poly' sklearn.pairwise.polynomial_kernel | |
'polynomial' sklearn.pairwise.polynomial_kernel | |
'rbf' sklearn.pairwise.rbf_kernel | |
'laplacian' sklearn.pairwise.laplacian_kernel | |
'sigmoid' sklearn.pairwise.sigmoid_kernel | |
'cosine' sklearn.pairwise.cosine_similarity | |
=============== ======================================== | |
Read more in the :ref:`User Guide <metrics>`. | |
Returns | |
------- | |
kernel_metrics : dict | |
Returns valid metrics for pairwise_kernels. | |
""" | |
return PAIRWISE_KERNEL_FUNCTIONS | |
KERNEL_PARAMS = { | |
"additive_chi2": (), | |
"chi2": frozenset(["gamma"]), | |
"cosine": (), | |
"linear": (), | |
"poly": frozenset(["gamma", "degree", "coef0"]), | |
"polynomial": frozenset(["gamma", "degree", "coef0"]), | |
"rbf": frozenset(["gamma"]), | |
"laplacian": frozenset(["gamma"]), | |
"sigmoid": frozenset(["gamma", "coef0"]), | |
} | |
def pairwise_kernels( | |
X, Y=None, metric="linear", *, filter_params=False, n_jobs=None, **kwds | |
): | |
"""Compute the kernel between arrays X and optional array Y. | |
This method takes either a vector array or a kernel matrix, and returns | |
a kernel matrix. If the input is a vector array, the kernels are | |
computed. If the input is a kernel matrix, it is returned instead. | |
This method provides a safe way to take a kernel matrix as input, while | |
preserving compatibility with many other algorithms that take a vector | |
array. | |
If Y is given (default is None), then the returned matrix is the pairwise | |
kernel between the arrays from both X and Y. | |
Valid values for metric are: | |
['additive_chi2', 'chi2', 'linear', 'poly', 'polynomial', 'rbf', | |
'laplacian', 'sigmoid', 'cosine'] | |
Read more in the :ref:`User Guide <metrics>`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples_X, n_samples_X) or \ | |
(n_samples_X, n_features) | |
Array of pairwise kernels between samples, or a feature array. | |
The shape of the array should be (n_samples_X, n_samples_X) if | |
metric == "precomputed" and (n_samples_X, n_features) otherwise. | |
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None | |
A second feature array only if X has shape (n_samples_X, n_features). | |
metric : str or callable, default="linear" | |
The metric to use when calculating kernel between instances in a | |
feature array. If metric is a string, it must be one of the metrics | |
in ``pairwise.PAIRWISE_KERNEL_FUNCTIONS``. | |
If metric is "precomputed", X is assumed to be a kernel matrix. | |
Alternatively, if metric is a callable function, it is called on each | |
pair of instances (rows) and the resulting value recorded. The callable | |
should take two rows from X as input and return the corresponding | |
kernel value as a single number. This means that callables from | |
:mod:`sklearn.metrics.pairwise` are not allowed, as they operate on | |
matrices, not single samples. Use the string identifying the kernel | |
instead. | |
filter_params : bool, default=False | |
Whether to filter invalid parameters or not. | |
n_jobs : int, default=None | |
The number of jobs to use for the computation. This works by breaking | |
down the pairwise matrix into n_jobs even slices and computing them in | |
parallel. | |
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
for more details. | |
**kwds : optional keyword parameters | |
Any further parameters are passed directly to the kernel function. | |
Returns | |
------- | |
K : ndarray of shape (n_samples_X, n_samples_X) or (n_samples_X, n_samples_Y) | |
A kernel matrix K such that K_{i, j} is the kernel between the | |
ith and jth vectors of the given matrix X, if Y is None. | |
If Y is not None, then K_{i, j} is the kernel between the ith array | |
from X and the jth array from Y. | |
Notes | |
----- | |
If metric is 'precomputed', Y is ignored and X is returned. | |
Examples | |
-------- | |
>>> from sklearn.metrics.pairwise import pairwise_kernels | |
>>> X = [[0, 0, 0], [1, 1, 1]] | |
>>> Y = [[1, 0, 0], [1, 1, 0]] | |
>>> pairwise_kernels(X, Y, metric='linear') | |
array([[0., 0.], | |
[1., 2.]]) | |
""" | |
# import GPKernel locally to prevent circular imports | |
from ..gaussian_process.kernels import Kernel as GPKernel | |
if metric == "precomputed": | |
X, _ = check_pairwise_arrays(X, Y, precomputed=True) | |
return X | |
elif isinstance(metric, GPKernel): | |
func = metric.__call__ | |
elif metric in PAIRWISE_KERNEL_FUNCTIONS: | |
if filter_params: | |
kwds = {k: kwds[k] for k in kwds if k in KERNEL_PARAMS[metric]} | |
func = PAIRWISE_KERNEL_FUNCTIONS[metric] | |
elif callable(metric): | |
func = partial(_pairwise_callable, metric=metric, **kwds) | |
return _parallel_pairwise(X, Y, func, n_jobs, **kwds) | |