peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/tests
/test_random.py
import numpy as np | |
import pytest | |
import scipy.sparse as sp | |
from numpy.testing import assert_array_almost_equal | |
from scipy.special import comb | |
from sklearn.utils._random import _our_rand_r_py | |
from sklearn.utils.random import _random_choice_csc, sample_without_replacement | |
############################################################################### | |
# test custom sampling without replacement algorithm | |
############################################################################### | |
def test_invalid_sample_without_replacement_algorithm(): | |
with pytest.raises(ValueError): | |
sample_without_replacement(5, 4, "unknown") | |
def test_sample_without_replacement_algorithms(): | |
methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") | |
for m in methods: | |
def sample_without_replacement_method( | |
n_population, n_samples, random_state=None | |
): | |
return sample_without_replacement( | |
n_population, n_samples, method=m, random_state=random_state | |
) | |
check_edge_case_of_sample_int(sample_without_replacement_method) | |
check_sample_int(sample_without_replacement_method) | |
check_sample_int_distribution(sample_without_replacement_method) | |
def check_edge_case_of_sample_int(sample_without_replacement): | |
# n_population < n_sample | |
with pytest.raises(ValueError): | |
sample_without_replacement(0, 1) | |
with pytest.raises(ValueError): | |
sample_without_replacement(1, 2) | |
# n_population == n_samples | |
assert sample_without_replacement(0, 0).shape == (0,) | |
assert sample_without_replacement(1, 1).shape == (1,) | |
# n_population >= n_samples | |
assert sample_without_replacement(5, 0).shape == (0,) | |
assert sample_without_replacement(5, 1).shape == (1,) | |
# n_population < 0 or n_samples < 0 | |
with pytest.raises(ValueError): | |
sample_without_replacement(-1, 5) | |
with pytest.raises(ValueError): | |
sample_without_replacement(5, -1) | |
def check_sample_int(sample_without_replacement): | |
# This test is heavily inspired from test_random.py of python-core. | |
# | |
# For the entire allowable range of 0 <= k <= N, validate that | |
# the sample is of the correct length and contains only unique items | |
n_population = 100 | |
for n_samples in range(n_population + 1): | |
s = sample_without_replacement(n_population, n_samples) | |
assert len(s) == n_samples | |
unique = np.unique(s) | |
assert np.size(unique) == n_samples | |
assert np.all(unique < n_population) | |
# test edge case n_population == n_samples == 0 | |
assert np.size(sample_without_replacement(0, 0)) == 0 | |
def check_sample_int_distribution(sample_without_replacement): | |
# This test is heavily inspired from test_random.py of python-core. | |
# | |
# For the entire allowable range of 0 <= k <= N, validate that | |
# sample generates all possible permutations | |
n_population = 10 | |
# a large number of trials prevents false negatives without slowing normal | |
# case | |
n_trials = 10000 | |
for n_samples in range(n_population): | |
# Counting the number of combinations is not as good as counting the | |
# the number of permutations. However, it works with sampling algorithm | |
# that does not provide a random permutation of the subset of integer. | |
n_expected = comb(n_population, n_samples, exact=True) | |
output = {} | |
for i in range(n_trials): | |
output[frozenset(sample_without_replacement(n_population, n_samples))] = ( | |
None | |
) | |
if len(output) == n_expected: | |
break | |
else: | |
raise AssertionError( | |
"number of combinations != number of expected (%s != %s)" | |
% (len(output), n_expected) | |
) | |
def test_random_choice_csc(n_samples=10000, random_state=24): | |
# Explicit class probabilities | |
classes = [np.array([0, 1]), np.array([0, 1, 2])] | |
class_probabilities = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] | |
got = _random_choice_csc(n_samples, classes, class_probabilities, random_state) | |
assert sp.issparse(got) | |
for k in range(len(classes)): | |
p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) | |
assert_array_almost_equal(class_probabilities[k], p, decimal=1) | |
# Implicit class probabilities | |
classes = [[0, 1], [1, 2]] # test for array-like support | |
class_probabilities = [np.array([0.5, 0.5]), np.array([0, 1 / 2, 1 / 2])] | |
got = _random_choice_csc( | |
n_samples=n_samples, classes=classes, random_state=random_state | |
) | |
assert sp.issparse(got) | |
for k in range(len(classes)): | |
p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) | |
assert_array_almost_equal(class_probabilities[k], p, decimal=1) | |
# Edge case probabilities 1.0 and 0.0 | |
classes = [np.array([0, 1]), np.array([0, 1, 2])] | |
class_probabilities = [np.array([0.0, 1.0]), np.array([0.0, 1.0, 0.0])] | |
got = _random_choice_csc(n_samples, classes, class_probabilities, random_state) | |
assert sp.issparse(got) | |
for k in range(len(classes)): | |
p = ( | |
np.bincount( | |
got.getcol(k).toarray().ravel(), minlength=len(class_probabilities[k]) | |
) | |
/ n_samples | |
) | |
assert_array_almost_equal(class_probabilities[k], p, decimal=1) | |
# One class target data | |
classes = [[1], [0]] # test for array-like support | |
class_probabilities = [np.array([0.0, 1.0]), np.array([1.0])] | |
got = _random_choice_csc( | |
n_samples=n_samples, classes=classes, random_state=random_state | |
) | |
assert sp.issparse(got) | |
for k in range(len(classes)): | |
p = np.bincount(got.getcol(k).toarray().ravel()) / n_samples | |
assert_array_almost_equal(class_probabilities[k], p, decimal=1) | |
def test_random_choice_csc_errors(): | |
# the length of an array in classes and class_probabilities is mismatched | |
classes = [np.array([0, 1]), np.array([0, 1, 2, 3])] | |
class_probabilities = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] | |
with pytest.raises(ValueError): | |
_random_choice_csc(4, classes, class_probabilities, 1) | |
# the class dtype is not supported | |
classes = [np.array(["a", "1"]), np.array(["z", "1", "2"])] | |
class_probabilities = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] | |
with pytest.raises(ValueError): | |
_random_choice_csc(4, classes, class_probabilities, 1) | |
# the class dtype is not supported | |
classes = [np.array([4.2, 0.1]), np.array([0.1, 0.2, 9.4])] | |
class_probabilities = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] | |
with pytest.raises(ValueError): | |
_random_choice_csc(4, classes, class_probabilities, 1) | |
# Given probabilities don't sum to 1 | |
classes = [np.array([0, 1]), np.array([0, 1, 2])] | |
class_probabilities = [np.array([0.5, 0.6]), np.array([0.6, 0.1, 0.3])] | |
with pytest.raises(ValueError): | |
_random_choice_csc(4, classes, class_probabilities, 1) | |
def test_our_rand_r(): | |
assert 131541053 == _our_rand_r_py(1273642419) | |
assert 270369 == _our_rand_r_py(0) | |