peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/module_inject
/policy.py
| # Copyright (c) Microsoft Corporation. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # DeepSpeed Team | |
| from abc import ABC, abstractmethod | |
| from deepspeed.utils.types import ActivationFuncType, NormType | |
| import torch | |
| from deepspeed.accelerator import get_accelerator | |
| transformer_param_names = ( | |
| 'attn_qkvw', \ | |
| 'attn_qkvb', \ | |
| 'attn_ow' , \ | |
| 'attn_ob', \ | |
| 'inter_w', \ | |
| 'inter_b', \ | |
| 'output_w', \ | |
| 'output_b', \ | |
| 'attn_nw', \ | |
| 'attn_nb', \ | |
| 'norm_w', \ | |
| 'norm_b') | |
| class DSPolicy(ABC): | |
| _orig_layer_class = None | |
| def __init__(self): | |
| self.cuda_graph_supported = False | |
| def attention(self): | |
| """ | |
| Returns attention qkv and dense parameters | |
| weight: (3*hidden, hidden) and (hidden, hidden) | |
| bias: (3*hidden) and (hidden) | |
| """ | |
| raise NotImplementedError | |
| class TransformerPolicy(DSPolicy): | |
| # a static class variable containing the HuggingFace model configuration. | |
| # see e.g., transformers.models.opt.configuration_opt.OPTConfig | |
| hf_model_config = None | |
| def __init__( | |
| self, | |
| inference=True, | |
| linear_layer=True, | |
| scale_attention=True, | |
| megatron_v2=False, | |
| use_mup=False, | |
| # the type of activation function used in MLP | |
| mlp_act_func_type=ActivationFuncType.GELU, | |
| # applies layer norm before attention if `pre_attn_norm` is set to True | |
| pre_attn_norm=True, | |
| # this flag shows whether or not using prefix in loading the checkpoint | |
| use_load_prefix=False, | |
| # whether or not the qkv is stored in the split-format | |
| split_qkv=True, | |
| # Type of normalization to perform | |
| norm_type=NormType.LayerNorm): | |
| super().__init__() | |
| self.cuda_graph_supported = False | |
| self.inference = inference | |
| self.linear_layer = linear_layer | |
| self.scale_attention = scale_attention | |
| self.is_megatron_v2 = megatron_v2 | |
| self.use_mup = use_mup | |
| self.mlp_act_func_type = mlp_act_func_type | |
| self.pre_attn_norm = pre_attn_norm | |
| self.use_load_prefix = use_load_prefix | |
| self.split_qkv = split_qkv | |
| self.norm_type = norm_type | |
| def attention(self): | |
| """ | |
| Returns attention qkv and dense parameters | |
| weight: (3*hidden, hidden) and (hidden, hidden) | |
| bias: (3*hidden) and (hidden) | |
| """ | |
| raise NotImplementedError | |
| def get_hidden_heads(self): | |
| """ | |
| return hidden_size and number of heads | |
| """ | |
| raise NotImplementedError | |
| def mlp(self): | |
| """ | |
| Returns mlp intermediate and output | |
| weight: (intermediate, hidden) and (hidden, intermediate) | |
| bias: (intermediate) and (hidden) | |
| """ | |
| raise NotImplementedError | |
| def layernorm(self): | |
| """ | |
| Returns LayerNorms used in transformer layer | |
| Post-Attention and pre/post layer norm | |
| gamma and beta with shape: (hidden) | |
| """ | |
| raise NotImplementedError | |
| # TODO (lekurile): This function exists in base container as well, consolidate as some point | |
| def transpose(data): | |
| with torch.no_grad(): | |
| data = data.contiguous() | |
| data1 = data.transpose(-1, -2).reshape(-1) | |
| data.reshape(-1).copy_(data1) | |
| data1 = None | |
| return data.reshape(data.shape[-1], data.shape[-2]) | |
| # TODO (lekurile): This function exists in megatron feature container as well, consolidate as some point | |
| def _transpose(x, heads=1, mp_replace=None): | |
| heads = heads // mp_replace.mp_size # type: ignore | |
| outer_dim = -1 | |
| attention_head_size = x.shape[outer_dim] // heads | |
| new_x_shape = x.size()[:outer_dim] + (heads, attention_head_size) | |
| x_1 = x.view(*new_x_shape) | |
| (q, k, v) = torch.split(x_1, (x_1.shape[-1] // 3), dim=-1) | |
| if len(q.shape) > 2: | |
| new_shape = (q.shape[0], ) + (-1, ) | |
| return torch.cat((q.reshape(new_shape), k.reshape(new_shape), v.reshape(new_shape)), | |
| dim=outer_dim).reshape(x.shape) | |
| else: | |
| return torch.cat((q.reshape(-1), k.reshape(-1), v.reshape(-1)), dim=-1).reshape(x.shape) | |
| # This checks if the parameter exits in the checkpoint file and maybe copies it into the corresponding destination tensor. | |
| # Note that not all parameters are saved in one checkpoint, that's why we always need to check if they exist! | |
| def maybe_copy(module, | |
| sd, | |
| weight_quantizer, | |
| mp_replace, | |
| dst_name, | |
| src_name, | |
| qkv=False, | |
| megatron_v2=False, | |
| split_qkv=False, | |
| heads=1): | |
| if src_name in sd: | |
| dst = getattr(module, dst_name) | |
| tmp = sd[src_name] | |
| if len(dst.shape) == 1: | |
| if split_qkv: | |
| dst = mp_replace.strided_copy(dst, tmp, num_splits=3) | |
| else: | |
| dst = mp_replace.copy(dst, tmp) | |
| if qkv and megatron_v2: | |
| dst = torch.nn.parameter.Parameter(_transpose(dst, heads=heads, mp_replace=mp_replace).contiguous()) | |
| else: | |
| if split_qkv: | |
| dst = mp_replace.strided_copy(dst, weight_quantizer.quantize(tmp if weight_quantizer.q_int8 else \ | |
| (transpose(tmp).contiguous())), num_splits=3, int8=weight_quantizer.q_int8) | |
| else: | |
| if qkv and megatron_v2: | |
| tmp = _transpose(transpose(tmp), heads=heads, mp_replace=mp_replace).contiguous() | |
| if weight_quantizer.q_int8: | |
| tmp = transpose(tmp) | |
| dst = mp_replace.copy(dst, weight_quantizer.quantize(tmp if weight_quantizer.q_int8 else \ | |
| transpose(tmp)), int8=weight_quantizer.q_int8) | |
| setattr(module, dst_name, dst) | |
| # Extending the maybe_copy function for when the q, k, and v are in separate parameters! | |
| def maybe_copy_qkv(module, sd, weight_quantizer, mp_replace, dst_name, src_names, split_qkv=False): | |
| if src_names[0] in sd: | |
| q = sd[src_names[0]] | |
| k = sd[src_names[1]] | |
| v = sd[src_names[2]] | |
| qkv_data = torch.cat((q, k, v), dim=0) | |
| dst = getattr(module, dst_name) | |
| if len(dst.shape) == 1: | |
| if split_qkv: | |
| dst = mp_replace.strided_copy(dst, qkv_data.contiguous(), num_splits=3) | |
| else: | |
| dst = mp_replace.copy(dst, qkv_data) | |
| else: | |
| if split_qkv: | |
| dst = mp_replace.strided_copy(dst, weight_quantizer.quantize(qkv_data.to(get_accelerator().device_name()) if weight_quantizer.q_int8 else \ | |
| ((transpose(qkv_data)).contiguous())), num_splits=3, int8=weight_quantizer.q_int8) | |
| else: | |
| dst = mp_replace.copy(dst, weight_quantizer.quantize(qkv_data.to(get_accelerator().device_name()) if weight_quantizer.q_int8 else \ | |
| transpose(qkv_data)), int8=weight_quantizer.q_int8) | |
| setattr(module, dst_name, dst) | |
| # Extending the `maybe_copy` function for when mlp1 is in separate parameters for GeGLU | |
| def maybe_copy_geglu(module, sd, weight_quantizer, mp_replace, dst_name, src_names): | |
| if src_names[0] in sd: | |
| reg_proj = sd[src_names[0]] | |
| gate_proj = sd[src_names[1]] | |
| mlp1_data = torch.cat((reg_proj, gate_proj), dim=0) | |
| dst = getattr(module, dst_name) | |
| dst = mp_replace.strided_copy(dst, weight_quantizer.quantize(mlp1_data.to(get_accelerator().device_name()) if weight_quantizer.q_int8 else \ | |
| transpose(mlp1_data)), num_splits=2, int8=weight_quantizer.q_int8) | |
| setattr(module, dst_name, dst) | |
| def pack_lora_weights(p): | |
| return [ | |
| p.lora_right_weight, \ | |
| p.lora_left_weight, \ | |
| p.lora_scaling | |
| ] | |
| def maybe_get_lora(p): | |
| if hasattr(p, 'lora_right_weight'): | |
| lora_param = pack_lora_weights(p) | |
| else: | |
| lora_param = [] | |
| return lora_param | |