peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/launcher
/runner.py
| # Copyright (c) Microsoft Corporation. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # DeepSpeed Team | |
| """ | |
| DeepSpeed runner is the main front-end to launching multi-worker | |
| training jobs with DeepSpeed. By default this uses pdsh to parallel | |
| ssh into multiple worker nodes and launch all the necessary processes | |
| per rank for training. | |
| """ | |
| import os | |
| import re | |
| import sys | |
| import json | |
| import base64 | |
| import argparse | |
| import subprocess | |
| import collections | |
| from copy import deepcopy | |
| import signal | |
| import time | |
| from .multinode_runner import PDSHRunner, OpenMPIRunner, MVAPICHRunner, SlurmRunner, MPICHRunner, IMPIRunner | |
| from .constants import PDSH_LAUNCHER, OPENMPI_LAUNCHER, MVAPICH_LAUNCHER, SLURM_LAUNCHER, MPICH_LAUNCHER, IMPI_LAUNCHER | |
| from ..constants import TORCH_DISTRIBUTED_DEFAULT_PORT | |
| from ..nebula.constants import NEBULA_EXPORT_ENVS | |
| from ..utils import logger | |
| from ..autotuning import Autotuner | |
| from deepspeed.accelerator import get_accelerator | |
| DLTS_HOSTFILE = "/job/hostfile" | |
| EXPORT_ENVS = ['MLFLOW', 'PYTHON', 'MV2', 'UCX'] | |
| EXPORT_ENVS += NEBULA_EXPORT_ENVS | |
| DEEPSPEED_ENVIRONMENT_NAME = os.getenv("DS_ENV_FILE", ".deepspeed_env") | |
| DEEPSPEED_ENVIRONMENT_PATHS = [os.path.expanduser("~"), '.'] | |
| PDSH_MAX_FAN_OUT = 1024 | |
| # On AISC compute, each node sets environment variables independently, want to prevent | |
| # exporting rank-0 env variables in case of heterogeneous compute. | |
| EXCLUDE_ENVS = {'AISC_JOB_NAME': ['NCCL_IB_HCA', 'UCX_NET_DEVICES']} | |
| def parse_args(args=None): | |
| parser = argparse.ArgumentParser(description="DeepSpeed runner to help launch distributed " | |
| "multi-node/multi-gpu training jobs.", | |
| formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
| parser.add_argument("-H", | |
| "--hostfile", | |
| type=str, | |
| default=DLTS_HOSTFILE, | |
| help="Hostfile path (in MPI style) that defines the " | |
| "resource pool available to the job (e.g., " | |
| "worker-0 slots=4)") | |
| parser.add_argument("-i", | |
| "--include", | |
| type=str, | |
| default="", | |
| help='''Specify hardware resources to use during execution. | |
| String format is | |
| NODE_SPEC[@NODE_SPEC ...], | |
| where | |
| NODE_SPEC=NAME[:SLOT[,SLOT ...]]. | |
| If :SLOT is omitted, include all slots on that host. | |
| Example: -i "worker-0@worker-1:0,2" will use all slots | |
| on worker-0 and slots [0, 2] on worker-1. | |
| ''') | |
| parser.add_argument("-e", | |
| "--exclude", | |
| type=str, | |
| default="", | |
| help='''Specify hardware resources to NOT use during execution. | |
| Mutually exclusive with --include. Resource formatting | |
| is the same as --include. | |
| Example: -e "worker-1:0" will use all available | |
| resources except slot 0 on worker-1. | |
| ''') | |
| parser.add_argument("--num_nodes", | |
| type=int, | |
| default=-1, | |
| help="Total number of worker nodes to run on, this will use " | |
| "the top N hosts from the given hostfile.") | |
| parser.add_argument("--min_elastic_nodes", | |
| type=int, | |
| default=-1, | |
| help="Minimum number of nodes to run elastic training on. " | |
| "Default is 1 when elastic training is enabled") | |
| parser.add_argument("--max_elastic_nodes", | |
| type=int, | |
| default=-1, | |
| help="Maximum number of nodes to run elastic training on. " | |
| "Default is num_nodes when elastic training is enabled") | |
| parser.add_argument("--num_gpus", | |
| "--num_accelerators", | |
| type=int, | |
| default=-1, | |
| help="Max number of GPUs to use on each node, will use " | |
| "[0:N) GPU ids on each node.") | |
| parser.add_argument("--master_port", | |
| default=TORCH_DISTRIBUTED_DEFAULT_PORT, | |
| type=int, | |
| help="(optional) Port used by PyTorch distributed for " | |
| "communication during training.") | |
| parser.add_argument("--master_addr", | |
| default="", | |
| type=str, | |
| help="(optional) IP address of node 0, will be " | |
| "inferred via 'hostname -I' if not specified.") | |
| parser.add_argument("--launcher", | |
| default=PDSH_LAUNCHER, | |
| type=str, | |
| help="(optional) choose launcher backend for multi-node " | |
| "training. Options currently include PDSH, OpenMPI, MVAPICH, SLURM, MPICH, IMPI.") | |
| parser.add_argument("--launcher_args", | |
| default="", | |
| type=str, | |
| help="(optional) pass launcher specific arguments as a " | |
| "single quoted argument.") | |
| parser.add_argument("--module", | |
| action="store_true", | |
| help="Change each process to interpret the launch " | |
| "script as a Python module, executing with the same " | |
| "behavior as 'python -m'.") | |
| parser.add_argument("--no_python", | |
| action="store_true", | |
| help="Skip prepending the training script with " | |
| "'python' - just execute it directly.") | |
| parser.add_argument("--no_local_rank", | |
| action="store_true", | |
| help="Do not pass local_rank as an argument when calling " | |
| "the user's training script.") | |
| parser.add_argument("--no_ssh_check", | |
| action="store_true", | |
| help="Do not perform ssh check in multi-node launcher model") | |
| parser.add_argument("--force_multi", | |
| action="store_true", | |
| help="Force multi-node launcher mode, helps in cases where user " | |
| "wants to launch on single remote node.") | |
| parser.add_argument("--save_pid", | |
| action="store_true", | |
| help="Save file containing launcher process id (pid) at /tmp/<main-pid>.ds, " | |
| "where <main-pid> is the pid of the first process that invoked `deepspeed`. " | |
| "Useful when launching deepspeed processes programmatically.") | |
| parser.add_argument("--enable_each_rank_log", | |
| default="None", | |
| type=str, | |
| help="redirect the stdout and stderr from each rank into different log files") | |
| parser.add_argument("--autotuning", | |
| default="", | |
| choices=["tune", "run"], | |
| type=str, | |
| help="Run DeepSpeed autotuner to discover optimal configuration parameters " | |
| "before running job.") | |
| parser.add_argument("--elastic_training", | |
| action="store_true", | |
| help="Enable elastic training support in DeepSpeed.") | |
| parser.add_argument("user_script", type=str, help="User script to launch, followed by any required " | |
| "arguments.") | |
| parser.add_argument('user_args', nargs=argparse.REMAINDER) | |
| parser.add_argument("--bind_cores_to_rank", | |
| action="store_true", | |
| help="Bind each rank to different cores of the host") | |
| parser.add_argument("--bind_core_list", | |
| type=str, | |
| default=None, | |
| help="List of cores to bind to with comma separated list of " | |
| "numbers and range. i.e. 1,3-5,7 => [1,3,4,5,7]. When not " | |
| "specified, all cores on system would be used rank binding") | |
| parser.add_argument("--ssh_port", type=int, default=None, help="SSH port to use for remote connections") | |
| return parser.parse_args(args=args) | |
| def fetch_hostfile(hostfile_path): | |
| if not os.path.isfile(hostfile_path): | |
| logger.warning("Unable to find hostfile, will proceed with training " | |
| "with local resources only.") | |
| return None | |
| # e.g., worker-0 slots=16 | |
| with open(hostfile_path, 'r') as fd: | |
| hostfile_text = fd.readlines() | |
| return _parse_hostfile(hostfile_text) | |
| def _parse_hostfile(hostfile_lines): | |
| # Regex matches one or more non-whitespace characters (\S+) at the start of | |
| # the line, followed by one or more whitespace characters (\s+), followed | |
| # by the string "slots=", followed by one or more digits (\d+). | |
| pattern = r'^(\S+)\s+slots=(\d+)' | |
| resource_pool = collections.OrderedDict() | |
| for line in hostfile_lines: | |
| line = line.strip() | |
| match = re.search(pattern, line) | |
| if line.startswith("#") or line == "": | |
| # hostfile comment or empty line, ignore | |
| continue | |
| elif match: | |
| host = match.group(1) | |
| num_slots = int(match.group(2)) | |
| if host in resource_pool: | |
| logger.error(f"Bad hostfile text: {hostfile_lines}") | |
| raise ValueError(f"Hostfile contains multiple entries for {host}, unable to proceed with launching") | |
| resource_pool[host] = num_slots | |
| else: | |
| logger.error(f"Bad hostfile text: {hostfile_lines}") | |
| raise ValueError(f"Hostfile contains a bad entry: {line}, unable to proceed with launching") | |
| if len(resource_pool) == 0: | |
| logger.error(f"Bad hostfile text: {hostfile_lines}") | |
| raise ValueError("Hostfile is empty or not formatted correctly, unable to proceed with launching.") | |
| return resource_pool | |
| def _stable_remove_duplicates(data): | |
| # Create a new list in the same order as original but with duplicates | |
| # removed, should never be more than ~16 elements so simple is best | |
| new_list = [] | |
| for x in data: | |
| if x not in new_list: | |
| new_list.append(x) | |
| return new_list | |
| def parse_resource_filter(host_info, include_str="", exclude_str=""): | |
| '''Parse an inclusion or exclusion string and filter a hostfile dictionary. | |
| String format is NODE_SPEC[@NODE_SPEC ...], where | |
| NODE_SPEC = NAME[:SLOT[,SLOT ...]]. | |
| If :SLOT is omitted, include/exclude all slots on that host. | |
| Examples: | |
| include_str="worker-0@worker-1:0,2" will use all slots on worker-0 and | |
| slots [0, 2] on worker-1. | |
| exclude_str="worker-1:0" will use all available resources except | |
| slot 0 on worker-1. | |
| ''' | |
| # Constants that define our syntax | |
| NODE_SEP = '@' | |
| SLOT_LIST_START = ':' | |
| SLOT_SEP = ',' | |
| # Ensure include/exclude are mutually exclusive | |
| if (include_str != "") and (exclude_str != ""): | |
| raise ValueError('include_str and exclude_str are mutually exclusive.') | |
| # no-op | |
| if (include_str == "") and (exclude_str == ""): | |
| return host_info | |
| # Either build from scratch or remove items | |
| filtered_hosts = dict() | |
| if include_str: | |
| parse_str = include_str | |
| if exclude_str != "": | |
| filtered_hosts = deepcopy(host_info) | |
| parse_str = exclude_str | |
| # foreach node in the list | |
| for node_config in parse_str.split(NODE_SEP): | |
| # Node can either be alone or node:slot,slot,slot | |
| if SLOT_LIST_START in node_config: | |
| hostname, slots = node_config.split(SLOT_LIST_START) | |
| slots = [int(x) for x in slots.split(SLOT_SEP)] | |
| # sanity checks | |
| if hostname not in host_info: | |
| raise ValueError(f"Hostname '{hostname}' not found in hostfile") | |
| for slot in slots: | |
| if slot not in host_info[hostname]: | |
| raise ValueError(f"No slot '{slot}' specified on host '{hostname}'") | |
| # If include string, build the list from here | |
| if include_str: | |
| filtered_hosts[hostname] = slots | |
| elif exclude_str: | |
| for slot in slots: | |
| logger.info(f'removing {slot} from {hostname}') | |
| filtered_hosts[hostname].remove(slot) | |
| # User just specified the whole node | |
| else: | |
| hostname = node_config | |
| # sanity check hostname | |
| if hostname not in host_info: | |
| raise ValueError(f"Hostname '{hostname}' not found in hostfile") | |
| if include_str: | |
| filtered_hosts[hostname] = host_info[hostname] | |
| elif exclude_str: | |
| filtered_hosts[hostname] = [] | |
| # Post-processing to remove duplicates and empty nodes | |
| del_keys = [] | |
| for hostname in filtered_hosts: | |
| # Remove duplicates | |
| filtered_hosts[hostname] = _stable_remove_duplicates(filtered_hosts[hostname]) | |
| # Remove empty hosts | |
| if len(filtered_hosts[hostname]) == 0: | |
| del_keys.append(hostname) | |
| for name in del_keys: | |
| del filtered_hosts[name] | |
| # Lastly, go over filtered_hosts and convert to a OrderedDict() to ensure | |
| # we map ranks to nodes correctly by maintaining host_info ordering. | |
| ordered_hosts = collections.OrderedDict() | |
| for host in host_info: | |
| if host in filtered_hosts: | |
| ordered_hosts[host] = filtered_hosts[host] | |
| return ordered_hosts | |
| def parse_inclusion_exclusion(resource_pool, inclusion, exclusion): | |
| active_resources = collections.OrderedDict() | |
| for hostname, slots in resource_pool.items(): | |
| active_resources[hostname] = list(range(slots)) | |
| return parse_resource_filter(active_resources, include_str=inclusion, exclude_str=exclusion) | |
| def encode_world_info(world_info): | |
| world_info_json = json.dumps(world_info).encode('utf-8') | |
| world_info_base64 = base64.urlsafe_b64encode(world_info_json).decode('utf-8') | |
| return world_info_base64 | |
| def run_autotuning(args, active_resources): | |
| tuner = Autotuner(args, active_resources) | |
| logger.info("[Start] Running autotuning") | |
| tuner.tune() | |
| tuner.print_tuning_results() | |
| logger.info("[End] Running autotuning") | |
| tuner.write_optimal_config() | |
| if args.autotuning == "run": | |
| tuner.run_after_tuning() | |
| def parse_num_nodes(str_num_nodes: str, elastic_training: bool): | |
| node_list = str_num_nodes.split(":") | |
| if len(node_list) == 1: | |
| min_nodes, max_nodes = int(node_list[0]), -1 | |
| elif len(node_list) == 2 and elastic_training: | |
| min_nodes, max_nodes = int(node_list[0]), int(node_list[1]) | |
| elif len(node_list) == 2 and not elastic_training: | |
| raise RuntimeError("MIN:MAX format is only supported in elastic training") | |
| else: | |
| raise RuntimeError("num_nodes {} is not in MIN:MAX format".format(str_num_nodes)) | |
| return min_nodes, max_nodes | |
| def main(args=None): | |
| args = parse_args(args) | |
| if args.elastic_training: | |
| assert args.master_addr != "", "Master Addr is required when elastic training is enabled" | |
| resource_pool = fetch_hostfile(args.hostfile) | |
| # respect CUDA_VISIBLE_DEVICES for a single node and no explicit resource filters | |
| cuda_visible_devices = os.environ.get("CUDA_VISIBLE_DEVICES", "") | |
| if not resource_pool and len(cuda_visible_devices): | |
| detected_str = f"Detected CUDA_VISIBLE_DEVICES={cuda_visible_devices}" | |
| if len(args.include) or len(args.exclude) or args.num_nodes > 1 or args.num_gpus > 0: | |
| print( | |
| f"{detected_str} but ignoring it because one or several of --include/--exclude/--num_gpus/--num_nodes cl args were used. If you want to use CUDA_VISIBLE_DEVICES don't pass any of these arguments to deepspeed." | |
| ) | |
| else: | |
| args.include = f"localhost:{cuda_visible_devices}" | |
| print(f"{detected_str}: setting --include={args.include}") | |
| del os.environ["CUDA_VISIBLE_DEVICES"] | |
| if args.num_nodes >= 0 or args.num_gpus >= 0: | |
| if args.include != "" or args.exclude != "": | |
| raise ValueError("Cannot specify num_nodes/gpus with include/exclude") | |
| multi_node_exec = True | |
| if not resource_pool: | |
| resource_pool = {} | |
| device_count = get_accelerator().device_count() | |
| if device_count == 0: | |
| raise RuntimeError("Unable to proceed, no GPU resources available") | |
| resource_pool['localhost'] = device_count | |
| args.master_addr = "127.0.0.1" | |
| multi_node_exec = False | |
| if not multi_node_exec and args.num_nodes > 1: | |
| raise ValueError("Num nodes is >1 but no extra nodes available via hostfile") | |
| active_resources = parse_inclusion_exclusion(resource_pool, args.include, args.exclude) | |
| env = os.environ.copy() | |
| # validate that passwordless-ssh is workly properly with this hostfile | |
| if multi_node_exec and not args.no_ssh_check: | |
| first_host = list(active_resources.keys())[0] | |
| try: | |
| ssh_check_cmd = "ssh -o PasswordAuthentication=no " | |
| if args.ssh_port is not None: | |
| ssh_check_cmd += f"-p {args.ssh_port} " | |
| ssh_check_cmd += f"{first_host} hostname" | |
| subprocess.check_call(ssh_check_cmd, stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL, shell=True) | |
| except subprocess.CalledProcessError: | |
| raise RuntimeError( | |
| f"Using hostfile at {args.hostfile} but host={first_host} was not reachable via ssh. If you are running with a single node please remove {args.hostfile} or setup passwordless ssh." | |
| ) | |
| if not args.master_addr: | |
| assert multi_node_exec | |
| first_host = list(active_resources.keys())[0] | |
| ssh_check_cmd = "ssh " | |
| if args.ssh_port is not None: | |
| ssh_check_cmd += f" -p {args.ssh_port}" | |
| ssh_check_cmd += f" {first_host} hostname -I" | |
| hostname_cmd = [ssh_check_cmd] | |
| try: | |
| result = subprocess.check_output(hostname_cmd, shell=True) | |
| except subprocess.CalledProcessError as err: | |
| logger.error( | |
| "Unable to detect suitable master address via `hostname -I`, please manually specify one via --master_addr" | |
| ) | |
| raise err | |
| args.master_addr = result.decode('utf-8').split()[0] | |
| if not args.master_addr: | |
| raise RuntimeError( | |
| f"Unable to detect suitable master address via `hostname -I`, please manually specify one via --master_addr" | |
| ) | |
| logger.info(f"Using IP address of {args.master_addr} for node {first_host}") | |
| if args.autotuning != "": | |
| run_autotuning(args, active_resources) | |
| return | |
| if args.num_nodes > 0: | |
| updated_active_resources = collections.OrderedDict() | |
| for count, hostname in enumerate(active_resources.keys()): | |
| if args.num_nodes == count: | |
| break | |
| updated_active_resources[hostname] = active_resources[hostname] | |
| active_resources = updated_active_resources | |
| if args.num_gpus > 0: | |
| updated_active_resources = collections.OrderedDict() | |
| for hostname in active_resources.keys(): | |
| updated_active_resources[hostname] = list(range(args.num_gpus)) | |
| active_resources = updated_active_resources | |
| if args.elastic_training: | |
| assert not args.no_local_rank, "--no_local_rank argument is not supported in Elastic training" | |
| # encode world info as base64 to make it easier to pass via command line | |
| world_info_base64 = encode_world_info(active_resources) | |
| multi_node_exec = args.force_multi or len(active_resources) > 1 | |
| if not multi_node_exec: | |
| deepspeed_launch = [ | |
| sys.executable, "-u", "-m", "deepspeed.launcher.launch", f"--world_info={world_info_base64}", | |
| f"--master_addr={args.master_addr}", f"--master_port={args.master_port}" | |
| ] | |
| if args.no_python: | |
| deepspeed_launch.append("--no_python") | |
| if args.module: | |
| deepspeed_launch.append("--module") | |
| if args.no_local_rank: | |
| deepspeed_launch.append("--no_local_rank") | |
| if args.save_pid: | |
| deepspeed_launch += ["--save_pid", f"{os.getpid()}"] | |
| if args.enable_each_rank_log: | |
| deepspeed_launch.append(f"--enable_each_rank_log={args.enable_each_rank_log}") | |
| if args.elastic_training: | |
| deepspeed_launch.append("--enable_elastic_training") | |
| deepspeed_launch.append(f"--max_elastic_nodes={args.max_elastic_nodes}") | |
| deepspeed_launch.append(f"--min_elastic_nodes={args.min_elastic_nodes}") | |
| if args.bind_cores_to_rank: | |
| deepspeed_launch.append("--bind_cores_to_rank") | |
| if args.bind_core_list is not None: | |
| deepspeed_launch.append(f"--bind_core_list={args.bind_core_list}") | |
| cmd = deepspeed_launch + [args.user_script] + args.user_args | |
| else: | |
| args.launcher = args.launcher.lower() | |
| if args.launcher == PDSH_LAUNCHER: | |
| runner = PDSHRunner(args, world_info_base64) | |
| elif args.launcher == OPENMPI_LAUNCHER: | |
| runner = OpenMPIRunner(args, world_info_base64, resource_pool) | |
| elif args.launcher == MPICH_LAUNCHER: | |
| runner = MPICHRunner(args, world_info_base64, resource_pool) | |
| elif args.launcher == IMPI_LAUNCHER: | |
| runner = IMPIRunner(args, world_info_base64, resource_pool) | |
| elif args.launcher == MVAPICH_LAUNCHER: | |
| runner = MVAPICHRunner(args, world_info_base64, resource_pool) | |
| elif args.launcher == SLURM_LAUNCHER: | |
| runner = SlurmRunner(args, world_info_base64, resource_pool) | |
| else: | |
| raise NotImplementedError(f"Unknown launcher {args.launcher}") | |
| if not runner.backend_exists(): | |
| raise RuntimeError(f"launcher '{args.launcher}' not installed.") | |
| curr_path = os.path.abspath('.') | |
| if 'PYTHONPATH' in env: | |
| env['PYTHONPATH'] = curr_path + ":" + env['PYTHONPATH'] | |
| else: | |
| env['PYTHONPATH'] = curr_path | |
| excluded_vars = [] | |
| for exclude_key, var_list in EXCLUDE_ENVS.items(): | |
| if exclude_key in env.keys(): | |
| # key exists in launcher env -> var list should be used | |
| excluded_vars += var_list | |
| # load envs from accelerator | |
| exports = EXPORT_ENVS + get_accelerator().export_envs() | |
| for var in env.keys(): | |
| if any([var.startswith(name) for name in exports]): | |
| if not any([var == name for name in excluded_vars]): | |
| runner.add_export(var, env[var]) | |
| for environ_path in DEEPSPEED_ENVIRONMENT_PATHS: | |
| environ_file = os.path.join(environ_path, DEEPSPEED_ENVIRONMENT_NAME) | |
| if os.path.isfile(environ_file): | |
| logger.info(f"deepspeed_env file = {environ_file}") | |
| with open(environ_file, 'r') as fd: | |
| for var in fd.readlines(): | |
| key, val = var.split('=', maxsplit=1) | |
| runner.add_export(key, val) | |
| if args.launcher == PDSH_LAUNCHER: | |
| cmd, kill_cmd, env = runner.get_cmd(env, active_resources) | |
| else: | |
| cmd = runner.get_cmd(env, active_resources) | |
| logger.info(f"cmd = {' '.join(cmd)}") | |
| result = subprocess.Popen(cmd, env=env) | |
| def sigkill_handler(signum, frame): | |
| result.send_signal(signal.SIGINT) | |
| time.sleep(0.1) | |
| result.send_signal(signal.SIGTERM) | |
| result_kill = subprocess.Popen(kill_cmd, env=env) | |
| result_kill.wait() | |
| time.sleep(1) | |
| sys.exit(1) | |
| if args.launcher == PDSH_LAUNCHER and multi_node_exec: | |
| signal.signal(signal.SIGINT, sigkill_handler) | |
| signal.signal(signal.SIGTERM, sigkill_handler) | |
| result.wait() | |
| # In case of failure must propagate the error-condition back to the caller (usually shell). The | |
| # actual error and traceback should have been printed in the subprocess, so in order to avoid | |
| # unnecessary noise we just quietly exit here with the same code as the subprocess | |
| if result.returncode > 0: | |
| sys.exit(result.returncode) | |
| if __name__ == "__main__": | |
| main() | |