peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/include
/arrow
/compute
/exec.h
// Licensed to the Apache Software Foundation (ASF) under one | |
// or more contributor license agreements. See the NOTICE file | |
// distributed with this work for additional information | |
// regarding copyright ownership. The ASF licenses this file | |
// to you under the Apache License, Version 2.0 (the | |
// "License"); you may not use this file except in compliance | |
// with the License. You may obtain a copy of the License at | |
// | |
// http://www.apache.org/licenses/LICENSE-2.0 | |
// | |
// Unless required by applicable law or agreed to in writing, | |
// software distributed under the License is distributed on an | |
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
// KIND, either express or implied. See the License for the | |
// specific language governing permissions and limitations | |
// under the License. | |
// NOTE: API is EXPERIMENTAL and will change without going through a | |
// deprecation cycle | |
namespace arrow { | |
namespace compute { | |
// It seems like 64K might be a good default chunksize to use for execution | |
// based on the experience of other query processing systems. The current | |
// default is not to chunk contiguous arrays, though, but this may change in | |
// the future once parallel execution is implemented | |
static constexpr int64_t kDefaultExecChunksize = UINT16_MAX; | |
/// \brief Context for expression-global variables and options used by | |
/// function evaluation | |
class ARROW_EXPORT ExecContext { | |
public: | |
// If no function registry passed, the default is used. | |
explicit ExecContext(MemoryPool* pool = default_memory_pool(), | |
::arrow::internal::Executor* executor = NULLPTR, | |
FunctionRegistry* func_registry = NULLPTR); | |
/// \brief The MemoryPool used for allocations, default is | |
/// default_memory_pool(). | |
MemoryPool* memory_pool() const { return pool_; } | |
const ::arrow::internal::CpuInfo* cpu_info() const; | |
/// \brief An Executor which may be used to parallelize execution. | |
::arrow::internal::Executor* executor() const { return executor_; } | |
/// \brief The FunctionRegistry for looking up functions by name and | |
/// selecting kernels for execution. Defaults to the library-global function | |
/// registry provided by GetFunctionRegistry. | |
FunctionRegistry* func_registry() const { return func_registry_; } | |
// \brief Set maximum length unit of work for kernel execution. Larger | |
// contiguous array inputs will be split into smaller chunks, and, if | |
// possible and enabled, processed in parallel. The default chunksize is | |
// INT64_MAX, so contiguous arrays are not split. | |
void set_exec_chunksize(int64_t chunksize) { exec_chunksize_ = chunksize; } | |
// \brief Maximum length for ExecBatch data chunks processed by | |
// kernels. Contiguous array inputs with longer length will be split into | |
// smaller chunks. | |
int64_t exec_chunksize() const { return exec_chunksize_; } | |
/// \brief Set whether to use multiple threads for function execution. This | |
/// is not yet used. | |
void set_use_threads(bool use_threads = true) { use_threads_ = use_threads; } | |
/// \brief If true, then utilize multiple threads where relevant for function | |
/// execution. This is not yet used. | |
bool use_threads() const { return use_threads_; } | |
// Set the preallocation strategy for kernel execution as it relates to | |
// chunked execution. For chunked execution, whether via ChunkedArray inputs | |
// or splitting larger Array arguments into smaller pieces, contiguous | |
// allocation (if permitted by the kernel) will allocate one large array to | |
// write output into yielding it to the caller at the end. If this option is | |
// set to off, then preallocations will be performed independently for each | |
// chunk of execution | |
// | |
// TODO: At some point we might want the limit the size of contiguous | |
// preallocations. For example, even if the exec_chunksize is 64K or less, we | |
// might limit contiguous allocations to 1M records, say. | |
void set_preallocate_contiguous(bool preallocate) { | |
preallocate_contiguous_ = preallocate; | |
} | |
/// \brief If contiguous preallocations should be used when doing chunked | |
/// execution as specified by exec_chunksize(). See | |
/// set_preallocate_contiguous() for more information. | |
bool preallocate_contiguous() const { return preallocate_contiguous_; } | |
private: | |
MemoryPool* pool_; | |
::arrow::internal::Executor* executor_; | |
FunctionRegistry* func_registry_; | |
int64_t exec_chunksize_ = std::numeric_limits<int64_t>::max(); | |
bool preallocate_contiguous_ = true; | |
bool use_threads_ = true; | |
}; | |
// TODO: Consider standardizing on uint16 selection vectors and only use them | |
// when we can ensure that each value is 64K length or smaller | |
/// \brief Container for an array of value selection indices that were | |
/// materialized from a filter. | |
/// | |
/// Columnar query engines (see e.g. [1]) have found that rather than | |
/// materializing filtered data, the filter can instead be converted to an | |
/// array of the "on" indices and then "fusing" these indices in operator | |
/// implementations. This is especially relevant for aggregations but also | |
/// applies to scalar operations. | |
/// | |
/// We are not yet using this so this is mostly a placeholder for now. | |
/// | |
/// [1]: http://cidrdb.org/cidr2005/papers/P19.pdf | |
class ARROW_EXPORT SelectionVector { | |
public: | |
explicit SelectionVector(std::shared_ptr<ArrayData> data); | |
explicit SelectionVector(const Array& arr); | |
/// \brief Create SelectionVector from boolean mask | |
static Result<std::shared_ptr<SelectionVector>> FromMask(const BooleanArray& arr); | |
const int32_t* indices() const { return indices_; } | |
int32_t length() const; | |
private: | |
std::shared_ptr<ArrayData> data_; | |
const int32_t* indices_; | |
}; | |
/// An index to represent that a batch does not belong to an ordered stream | |
constexpr int64_t kUnsequencedIndex = -1; | |
/// \brief A unit of work for kernel execution. It contains a collection of | |
/// Array and Scalar values and an optional SelectionVector indicating that | |
/// there is an unmaterialized filter that either must be materialized, or (if | |
/// the kernel supports it) pushed down into the kernel implementation. | |
/// | |
/// ExecBatch is semantically similar to RecordBatch in that in a SQL context | |
/// it represents a collection of records, but constant "columns" are | |
/// represented by Scalar values rather than having to be converted into arrays | |
/// with repeated values. | |
/// | |
/// TODO: Datum uses arrow/util/variant.h which may be a bit heavier-weight | |
/// than is desirable for this class. Microbenchmarks would help determine for | |
/// sure. See ARROW-8928. | |
/// \addtogroup acero-internals | |
/// @{ | |
struct ARROW_EXPORT ExecBatch { | |
ExecBatch() = default; | |
ExecBatch(std::vector<Datum> values, int64_t length) | |
: values(std::move(values)), length(length) {} | |
explicit ExecBatch(const RecordBatch& batch); | |
/// \brief Infer the ExecBatch length from values. | |
static Result<int64_t> InferLength(const std::vector<Datum>& values); | |
/// Creates an ExecBatch with length-validation. | |
/// | |
/// If any value is given, then all values must have a common length. If the given | |
/// length is negative, then the length of the ExecBatch is set to this common length, | |
/// or to 1 if no values are given. Otherwise, the given length must equal the common | |
/// length, if any value is given. | |
static Result<ExecBatch> Make(std::vector<Datum> values, int64_t length = -1); | |
Result<std::shared_ptr<RecordBatch>> ToRecordBatch( | |
std::shared_ptr<Schema> schema, MemoryPool* pool = default_memory_pool()) const; | |
/// The values representing positional arguments to be passed to a kernel's | |
/// exec function for processing. | |
std::vector<Datum> values; | |
/// A deferred filter represented as an array of indices into the values. | |
/// | |
/// For example, the filter [true, true, false, true] would be represented as | |
/// the selection vector [0, 1, 3]. When the selection vector is set, | |
/// ExecBatch::length is equal to the length of this array. | |
std::shared_ptr<SelectionVector> selection_vector; | |
/// A predicate Expression guaranteed to evaluate to true for all rows in this batch. | |
Expression guarantee = literal(true); | |
/// The semantic length of the ExecBatch. When the values are all scalars, | |
/// the length should be set to 1 for non-aggregate kernels, otherwise the | |
/// length is taken from the array values, except when there is a selection | |
/// vector. When there is a selection vector set, the length of the batch is | |
/// the length of the selection. Aggregate kernels can have an ExecBatch | |
/// formed by projecting just the partition columns from a batch in which | |
/// case, it would have scalar rows with length greater than 1. | |
/// | |
/// If the array values are of length 0 then the length is 0 regardless of | |
/// whether any values are Scalar. | |
int64_t length = 0; | |
/// \brief index of this batch in a sorted stream of batches | |
/// | |
/// This index must be strictly monotonic starting at 0 without gaps or | |
/// it can be set to kUnsequencedIndex if there is no meaningful order | |
int64_t index = kUnsequencedIndex; | |
/// \brief The sum of bytes in each buffer referenced by the batch | |
/// | |
/// Note: Scalars are not counted | |
/// Note: Some values may referenced only part of a buffer, for | |
/// example, an array with an offset. The actual data | |
/// visible to this batch will be smaller than the total | |
/// buffer size in this case. | |
int64_t TotalBufferSize() const; | |
/// \brief Return the value at the i-th index | |
template <typename index_type> | |
inline const Datum& operator[](index_type i) const { | |
return values[i]; | |
} | |
bool Equals(const ExecBatch& other) const; | |
/// \brief A convenience for the number of values / arguments. | |
int num_values() const { return static_cast<int>(values.size()); } | |
ExecBatch Slice(int64_t offset, int64_t length) const; | |
Result<ExecBatch> SelectValues(const std::vector<int>& ids) const; | |
/// \brief A convenience for returning the types from the batch. | |
std::vector<TypeHolder> GetTypes() const { | |
std::vector<TypeHolder> result; | |
for (const auto& value : this->values) { | |
result.emplace_back(value.type()); | |
} | |
return result; | |
} | |
std::string ToString() const; | |
}; | |
inline bool operator==(const ExecBatch& l, const ExecBatch& r) { return l.Equals(r); } | |
inline bool operator!=(const ExecBatch& l, const ExecBatch& r) { return !l.Equals(r); } | |
ARROW_EXPORT void PrintTo(const ExecBatch&, std::ostream*); | |
/// @} | |
/// \defgroup compute-internals Utilities for calling functions, useful for those | |
/// extending the function registry | |
/// | |
/// @{ | |
struct ExecValue { | |
ArraySpan array = {}; | |
const Scalar* scalar = NULLPTR; | |
ExecValue(Scalar* scalar) // NOLINT implicit conversion | |
: scalar(scalar) {} | |
ExecValue(ArraySpan array) // NOLINT implicit conversion | |
: array(std::move(array)) {} | |
ExecValue(const ArrayData& array) { // NOLINT implicit conversion | |
this->array.SetMembers(array); | |
} | |
ExecValue() = default; | |
ExecValue(const ExecValue& other) = default; | |
ExecValue& operator=(const ExecValue& other) = default; | |
ExecValue(ExecValue&& other) = default; | |
ExecValue& operator=(ExecValue&& other) = default; | |
int64_t length() const { return this->is_array() ? this->array.length : 1; } | |
bool is_array() const { return this->scalar == NULLPTR; } | |
bool is_scalar() const { return !this->is_array(); } | |
void SetArray(const ArrayData& array) { | |
this->array.SetMembers(array); | |
this->scalar = NULLPTR; | |
} | |
void SetScalar(const Scalar* scalar) { this->scalar = scalar; } | |
template <typename ExactType> | |
const ExactType& scalar_as() const { | |
return ::arrow::internal::checked_cast<const ExactType&>(*this->scalar); | |
} | |
/// XXX: here temporarily for compatibility with datum, see | |
/// e.g. MakeStructExec in scalar_nested.cc | |
int64_t null_count() const { | |
if (this->is_array()) { | |
return this->array.GetNullCount(); | |
} else { | |
return this->scalar->is_valid ? 0 : 1; | |
} | |
} | |
const DataType* type() const { | |
if (this->is_array()) { | |
return array.type; | |
} else { | |
return scalar->type.get(); | |
} | |
} | |
}; | |
struct ARROW_EXPORT ExecResult { | |
// The default value of the variant is ArraySpan | |
std::variant<ArraySpan, std::shared_ptr<ArrayData>> value; | |
int64_t length() const { | |
if (this->is_array_span()) { | |
return this->array_span()->length; | |
} else { | |
return this->array_data()->length; | |
} | |
} | |
const DataType* type() const { | |
if (this->is_array_span()) { | |
return this->array_span()->type; | |
} else { | |
return this->array_data()->type.get(); | |
} | |
} | |
const ArraySpan* array_span() const { return &std::get<ArraySpan>(this->value); } | |
ArraySpan* array_span_mutable() { return &std::get<ArraySpan>(this->value); } | |
bool is_array_span() const { return this->value.index() == 0; } | |
const std::shared_ptr<ArrayData>& array_data() const { | |
return std::get<std::shared_ptr<ArrayData>>(this->value); | |
} | |
ArrayData* array_data_mutable() { | |
return std::get<std::shared_ptr<ArrayData>>(this->value).get(); | |
} | |
bool is_array_data() const { return this->value.index() == 1; } | |
}; | |
/// \brief A "lightweight" column batch object which contains no | |
/// std::shared_ptr objects and does not have any memory ownership | |
/// semantics. Can represent a view onto an "owning" ExecBatch. | |
struct ARROW_EXPORT ExecSpan { | |
ExecSpan() = default; | |
ExecSpan(const ExecSpan& other) = default; | |
ExecSpan& operator=(const ExecSpan& other) = default; | |
ExecSpan(ExecSpan&& other) = default; | |
ExecSpan& operator=(ExecSpan&& other) = default; | |
explicit ExecSpan(std::vector<ExecValue> values, int64_t length) | |
: length(length), values(std::move(values)) {} | |
explicit ExecSpan(const ExecBatch& batch) { | |
this->length = batch.length; | |
this->values.resize(batch.values.size()); | |
for (size_t i = 0; i < batch.values.size(); ++i) { | |
const Datum& in_value = batch[i]; | |
ExecValue* out_value = &this->values[i]; | |
if (in_value.is_array()) { | |
out_value->SetArray(*in_value.array()); | |
} else { | |
out_value->SetScalar(in_value.scalar().get()); | |
} | |
} | |
} | |
/// \brief Return the value at the i-th index | |
template <typename index_type> | |
inline const ExecValue& operator[](index_type i) const { | |
return values[i]; | |
} | |
/// \brief A convenience for the number of values / arguments. | |
int num_values() const { return static_cast<int>(values.size()); } | |
std::vector<TypeHolder> GetTypes() const { | |
std::vector<TypeHolder> result; | |
for (const auto& value : this->values) { | |
result.emplace_back(value.type()); | |
} | |
return result; | |
} | |
ExecBatch ToExecBatch() const { | |
ExecBatch result; | |
result.length = this->length; | |
for (const ExecValue& value : this->values) { | |
if (value.is_array()) { | |
result.values.push_back(value.array.ToArrayData()); | |
} else { | |
result.values.push_back(value.scalar->GetSharedPtr()); | |
} | |
} | |
return result; | |
} | |
int64_t length = 0; | |
std::vector<ExecValue> values; | |
}; | |
/// \defgroup compute-call-function One-shot calls to compute functions | |
/// | |
/// @{ | |
/// \brief One-shot invoker for all types of functions. | |
/// | |
/// Does kernel dispatch, argument checking, iteration of ChunkedArray inputs, | |
/// and wrapping of outputs. | |
ARROW_EXPORT | |
Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args, | |
const FunctionOptions* options, ExecContext* ctx = NULLPTR); | |
/// \brief Variant of CallFunction which uses a function's default options. | |
/// | |
/// NB: Some functions require FunctionOptions be provided. | |
ARROW_EXPORT | |
Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args, | |
ExecContext* ctx = NULLPTR); | |
/// \brief One-shot invoker for all types of functions. | |
/// | |
/// Does kernel dispatch, argument checking, iteration of ChunkedArray inputs, | |
/// and wrapping of outputs. | |
ARROW_EXPORT | |
Result<Datum> CallFunction(const std::string& func_name, const ExecBatch& batch, | |
const FunctionOptions* options, ExecContext* ctx = NULLPTR); | |
/// \brief Variant of CallFunction which uses a function's default options. | |
/// | |
/// NB: Some functions require FunctionOptions be provided. | |
ARROW_EXPORT | |
Result<Datum> CallFunction(const std::string& func_name, const ExecBatch& batch, | |
ExecContext* ctx = NULLPTR); | |
/// @} | |
/// \defgroup compute-function-executor One-shot calls to obtain function executors | |
/// | |
/// @{ | |
/// \brief One-shot executor provider for all types of functions. | |
/// | |
/// This function creates and initializes a `FunctionExecutor` appropriate | |
/// for the given function name, input types and function options. | |
ARROW_EXPORT | |
Result<std::shared_ptr<FunctionExecutor>> GetFunctionExecutor( | |
const std::string& func_name, std::vector<TypeHolder> in_types, | |
const FunctionOptions* options = NULLPTR, FunctionRegistry* func_registry = NULLPTR); | |
/// \brief One-shot executor provider for all types of functions. | |
/// | |
/// This function creates and initializes a `FunctionExecutor` appropriate | |
/// for the given function name, input types (taken from the Datum arguments) | |
/// and function options. | |
ARROW_EXPORT | |
Result<std::shared_ptr<FunctionExecutor>> GetFunctionExecutor( | |
const std::string& func_name, const std::vector<Datum>& args, | |
const FunctionOptions* options = NULLPTR, FunctionRegistry* func_registry = NULLPTR); | |
/// @} | |
} // namespace compute | |
} // namespace arrow | |