applied-ai-018's picture
Add files using upload-large-folder tool
b90def7 verified
raw
history blame
31.4 kB
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// NOTE: API is EXPERIMENTAL and will change without going through a
// deprecation cycle
#pragma once
#include <cstddef>
#include <cstdint>
#include <functional>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "arrow/buffer.h"
#include "arrow/compute/exec.h"
#include "arrow/datum.h"
#include "arrow/memory_pool.h"
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/type.h"
#include "arrow/util/macros.h"
#include "arrow/util/visibility.h"
// macOS defines PREALLOCATE as a preprocessor macro in the header sys/vnode.h.
// No other BSD seems to do so. The name is used as an identifier in MemAllocation enum.
#if defined(__APPLE__) && defined(PREALLOCATE)
#undef PREALLOCATE
#endif
namespace arrow {
namespace compute {
class FunctionOptions;
/// \brief Base class for opaque kernel-specific state. For example, if there
/// is some kind of initialization required.
struct ARROW_EXPORT KernelState {
virtual ~KernelState() = default;
};
/// \brief Context/state for the execution of a particular kernel.
class ARROW_EXPORT KernelContext {
public:
// Can pass optional backreference; not used consistently for the
// moment but will be made so in the future
explicit KernelContext(ExecContext* exec_ctx, const Kernel* kernel = NULLPTR)
: exec_ctx_(exec_ctx), kernel_(kernel) {}
/// \brief Allocate buffer from the context's memory pool. The contents are
/// not initialized.
Result<std::shared_ptr<ResizableBuffer>> Allocate(int64_t nbytes);
/// \brief Allocate buffer for bitmap from the context's memory pool. Like
/// Allocate, the contents of the buffer are not initialized but the last
/// byte is preemptively zeroed to help avoid ASAN or valgrind issues.
Result<std::shared_ptr<ResizableBuffer>> AllocateBitmap(int64_t num_bits);
/// \brief Assign the active KernelState to be utilized for each stage of
/// kernel execution. Ownership and memory lifetime of the KernelState must
/// be minded separately.
void SetState(KernelState* state) { state_ = state; }
// Set kernel that is being invoked since some kernel
// implementations will examine the kernel state.
void SetKernel(const Kernel* kernel) { kernel_ = kernel; }
KernelState* state() { return state_; }
/// \brief Configuration related to function execution that is to be shared
/// across multiple kernels.
ExecContext* exec_context() { return exec_ctx_; }
/// \brief The memory pool to use for allocations. For now, it uses the
/// MemoryPool contained in the ExecContext used to create the KernelContext.
MemoryPool* memory_pool() { return exec_ctx_->memory_pool(); }
const Kernel* kernel() const { return kernel_; }
private:
ExecContext* exec_ctx_;
KernelState* state_ = NULLPTR;
const Kernel* kernel_ = NULLPTR;
};
/// \brief An type-checking interface to permit customizable validation rules
/// for use with InputType and KernelSignature. This is for scenarios where the
/// acceptance is not an exact type instance, such as a TIMESTAMP type for a
/// specific TimeUnit, but permitting any time zone.
struct ARROW_EXPORT TypeMatcher {
virtual ~TypeMatcher() = default;
/// \brief Return true if this matcher accepts the data type.
virtual bool Matches(const DataType& type) const = 0;
/// \brief A human-interpretable string representation of what the type
/// matcher checks for, usable when printing KernelSignature or formatting
/// error messages.
virtual std::string ToString() const = 0;
/// \brief Return true if this TypeMatcher contains the same matching rule as
/// the other. Currently depends on RTTI.
virtual bool Equals(const TypeMatcher& other) const = 0;
};
namespace match {
/// \brief Match any DataType instance having the same DataType::id.
ARROW_EXPORT std::shared_ptr<TypeMatcher> SameTypeId(Type::type type_id);
/// \brief Match any TimestampType instance having the same unit, but the time
/// zones can be different.
ARROW_EXPORT std::shared_ptr<TypeMatcher> TimestampTypeUnit(TimeUnit::type unit);
ARROW_EXPORT std::shared_ptr<TypeMatcher> Time32TypeUnit(TimeUnit::type unit);
ARROW_EXPORT std::shared_ptr<TypeMatcher> Time64TypeUnit(TimeUnit::type unit);
ARROW_EXPORT std::shared_ptr<TypeMatcher> DurationTypeUnit(TimeUnit::type unit);
// \brief Match any integer type
ARROW_EXPORT std::shared_ptr<TypeMatcher> Integer();
// Match types using 32-bit varbinary representation
ARROW_EXPORT std::shared_ptr<TypeMatcher> BinaryLike();
// Match types using 64-bit varbinary representation
ARROW_EXPORT std::shared_ptr<TypeMatcher> LargeBinaryLike();
// Match any fixed binary type
ARROW_EXPORT std::shared_ptr<TypeMatcher> FixedSizeBinaryLike();
// \brief Match any primitive type (boolean or any type representable as a C
// Type)
ARROW_EXPORT std::shared_ptr<TypeMatcher> Primitive();
// \brief Match any integer type that can be used as run-end in run-end encoded
// arrays
ARROW_EXPORT std::shared_ptr<TypeMatcher> RunEndInteger();
/// \brief Match run-end encoded types that use any valid run-end type and
/// encode specific value types
///
/// @param[in] value_type_matcher a matcher that is applied to the values field
ARROW_EXPORT std::shared_ptr<TypeMatcher> RunEndEncoded(
std::shared_ptr<TypeMatcher> value_type_matcher);
/// \brief Match run-end encoded types that use any valid run-end type and
/// encode specific value types
///
/// @param[in] value_type_id a type id that the type of the values field should match
ARROW_EXPORT std::shared_ptr<TypeMatcher> RunEndEncoded(Type::type value_type_id);
/// \brief Match run-end encoded types that encode specific run-end and value types
///
/// @param[in] run_end_type_matcher a matcher that is applied to the run_ends field
/// @param[in] value_type_matcher a matcher that is applied to the values field
ARROW_EXPORT std::shared_ptr<TypeMatcher> RunEndEncoded(
std::shared_ptr<TypeMatcher> run_end_type_matcher,
std::shared_ptr<TypeMatcher> value_type_matcher);
} // namespace match
/// \brief An object used for type-checking arguments to be passed to a kernel
/// and stored in a KernelSignature. The type-checking rule can be supplied
/// either with an exact DataType instance or a custom TypeMatcher.
class ARROW_EXPORT InputType {
public:
/// \brief The kind of type-checking rule that the InputType contains.
enum Kind {
/// \brief Accept any value type.
ANY_TYPE,
/// \brief A fixed arrow::DataType and will only exact match having this
/// exact type (e.g. same TimestampType unit, same decimal scale and
/// precision, or same nested child types).
EXACT_TYPE,
/// \brief Uses a TypeMatcher implementation to check the type.
USE_TYPE_MATCHER
};
/// \brief Accept any value type
InputType() : kind_(ANY_TYPE) {}
/// \brief Accept an exact value type.
InputType(std::shared_ptr<DataType> type) // NOLINT implicit construction
: kind_(EXACT_TYPE), type_(std::move(type)) {}
/// \brief Use the passed TypeMatcher to type check.
InputType(std::shared_ptr<TypeMatcher> type_matcher) // NOLINT implicit construction
: kind_(USE_TYPE_MATCHER), type_matcher_(std::move(type_matcher)) {}
/// \brief Match any type with the given Type::type. Uses a TypeMatcher for
/// its implementation.
InputType(Type::type type_id) // NOLINT implicit construction
: InputType(match::SameTypeId(type_id)) {}
InputType(const InputType& other) { CopyInto(other); }
void operator=(const InputType& other) { CopyInto(other); }
InputType(InputType&& other) { MoveInto(std::forward<InputType>(other)); }
void operator=(InputType&& other) { MoveInto(std::forward<InputType>(other)); }
// \brief Match any input (array, scalar of any type)
static InputType Any() { return InputType(); }
/// \brief Return true if this input type matches the same type cases as the
/// other.
bool Equals(const InputType& other) const;
bool operator==(const InputType& other) const { return this->Equals(other); }
bool operator!=(const InputType& other) const { return !(*this == other); }
/// \brief Return hash code.
size_t Hash() const;
/// \brief Render a human-readable string representation.
std::string ToString() const;
/// \brief Return true if the Datum matches this argument kind in
/// type (and only allows scalar or array-like Datums).
bool Matches(const Datum& value) const;
/// \brief Return true if the type matches this InputType
bool Matches(const DataType& type) const;
/// \brief The type matching rule that this InputType uses.
Kind kind() const { return kind_; }
/// \brief For InputType::EXACT_TYPE kind, the exact type that this InputType
/// must match. Otherwise this function should not be used and will assert in
/// debug builds.
const std::shared_ptr<DataType>& type() const;
/// \brief For InputType::USE_TYPE_MATCHER, the TypeMatcher to be used for
/// checking the type of a value. Otherwise this function should not be used
/// and will assert in debug builds.
const TypeMatcher& type_matcher() const;
private:
void CopyInto(const InputType& other) {
this->kind_ = other.kind_;
this->type_ = other.type_;
this->type_matcher_ = other.type_matcher_;
}
void MoveInto(InputType&& other) {
this->kind_ = other.kind_;
this->type_ = std::move(other.type_);
this->type_matcher_ = std::move(other.type_matcher_);
}
Kind kind_;
// For EXACT_TYPE Kind
std::shared_ptr<DataType> type_;
// For USE_TYPE_MATCHER Kind
std::shared_ptr<TypeMatcher> type_matcher_;
};
/// \brief Container to capture both exact and input-dependent output types.
class ARROW_EXPORT OutputType {
public:
/// \brief An enum indicating whether the value type is an invariant fixed
/// value or one that's computed by a kernel-defined resolver function.
enum ResolveKind { FIXED, COMPUTED };
/// Type resolution function. Given input types, return output type. This
/// function MAY may use the kernel state to decide the output type based on
/// the FunctionOptions.
///
/// This function SHOULD _not_ be used to check for arity, that is to be
/// performed one or more layers above.
using Resolver =
std::function<Result<TypeHolder>(KernelContext*, const std::vector<TypeHolder>&)>;
/// \brief Output an exact type
OutputType(std::shared_ptr<DataType> type) // NOLINT implicit construction
: kind_(FIXED), type_(std::move(type)) {}
/// \brief Output a computed type depending on actual input types
template <typename Fn>
OutputType(Fn resolver) // NOLINT implicit construction
: kind_(COMPUTED), resolver_(std::move(resolver)) {}
OutputType(const OutputType& other) {
this->kind_ = other.kind_;
this->type_ = other.type_;
this->resolver_ = other.resolver_;
}
OutputType(OutputType&& other) {
this->kind_ = other.kind_;
this->type_ = std::move(other.type_);
this->resolver_ = other.resolver_;
}
OutputType& operator=(const OutputType&) = default;
OutputType& operator=(OutputType&&) = default;
/// \brief Return the type of the expected output value of the kernel given
/// the input argument types. The resolver may make use of state information
/// kept in the KernelContext.
Result<TypeHolder> Resolve(KernelContext* ctx,
const std::vector<TypeHolder>& args) const;
/// \brief The exact output value type for the FIXED kind.
const std::shared_ptr<DataType>& type() const;
/// \brief For use with COMPUTED resolution strategy. It may be more
/// convenient to invoke this with OutputType::Resolve returned from this
/// method.
const Resolver& resolver() const;
/// \brief Render a human-readable string representation.
std::string ToString() const;
/// \brief Return the kind of type resolution of this output type, whether
/// fixed/invariant or computed by a resolver.
ResolveKind kind() const { return kind_; }
private:
ResolveKind kind_;
// For FIXED resolution
std::shared_ptr<DataType> type_;
// For COMPUTED resolution
Resolver resolver_ = NULLPTR;
};
/// \brief Holds the input types and output type of the kernel.
///
/// VarArgs functions with minimum N arguments should pass up to N input types to be
/// used to validate the input types of a function invocation. The first N-1 types
/// will be matched against the first N-1 arguments, and the last type will be
/// matched against the remaining arguments.
class ARROW_EXPORT KernelSignature {
public:
KernelSignature(std::vector<InputType> in_types, OutputType out_type,
bool is_varargs = false);
/// \brief Convenience ctor since make_shared can be awkward
static std::shared_ptr<KernelSignature> Make(std::vector<InputType> in_types,
OutputType out_type,
bool is_varargs = false);
/// \brief Return true if the signature if compatible with the list of input
/// value descriptors.
bool MatchesInputs(const std::vector<TypeHolder>& types) const;
/// \brief Returns true if the input types of each signature are
/// equal. Well-formed functions should have a deterministic output type
/// given input types, but currently it is the responsibility of the
/// developer to ensure this.
bool Equals(const KernelSignature& other) const;
bool operator==(const KernelSignature& other) const { return this->Equals(other); }
bool operator!=(const KernelSignature& other) const { return !(*this == other); }
/// \brief Compute a hash code for the signature
size_t Hash() const;
/// \brief The input types for the kernel. For VarArgs functions, this should
/// generally contain a single validator to use for validating all of the
/// function arguments.
const std::vector<InputType>& in_types() const { return in_types_; }
/// \brief The output type for the kernel. Use Resolve to return the
/// exact output given input argument types, since many kernels'
/// output types depend on their input types (or their type
/// metadata).
const OutputType& out_type() const { return out_type_; }
/// \brief Render a human-readable string representation
std::string ToString() const;
bool is_varargs() const { return is_varargs_; }
private:
std::vector<InputType> in_types_;
OutputType out_type_;
bool is_varargs_;
// For caching the hash code after it's computed the first time
mutable uint64_t hash_code_;
};
/// \brief A function may contain multiple variants of a kernel for a given
/// type combination for different SIMD levels. Based on the active system's
/// CPU info or the user's preferences, we can elect to use one over the other.
struct SimdLevel {
enum type { NONE = 0, SSE4_2, AVX, AVX2, AVX512, NEON, MAX };
};
/// \brief The strategy to use for propagating or otherwise populating the
/// validity bitmap of a kernel output.
struct NullHandling {
enum type {
/// Compute the output validity bitmap by intersecting the validity bitmaps
/// of the arguments using bitwise-and operations. This means that values
/// in the output are valid/non-null only if the corresponding values in
/// all input arguments were valid/non-null. Kernel generally need not
/// touch the bitmap thereafter, but a kernel's exec function is permitted
/// to alter the bitmap after the null intersection is computed if it needs
/// to.
INTERSECTION,
/// Kernel expects a pre-allocated buffer to write the result bitmap
/// into. The preallocated memory is not zeroed (except for the last byte),
/// so the kernel should ensure to completely populate the bitmap.
COMPUTED_PREALLOCATE,
/// Kernel allocates and sets the validity bitmap of the output.
COMPUTED_NO_PREALLOCATE,
/// Kernel output is never null and a validity bitmap does not need to be
/// allocated.
OUTPUT_NOT_NULL
};
};
/// \brief The preference for memory preallocation of fixed-width type outputs
/// in kernel execution.
struct MemAllocation {
enum type {
// For data types that support pre-allocation (i.e. fixed-width), the
// kernel expects to be provided a pre-allocated data buffer to write
// into. Non-fixed-width types must always allocate their own data
// buffers. The allocation made for the same length as the execution batch,
// so vector kernels yielding differently sized output should not use this.
//
// It is valid for the data to not be preallocated but the validity bitmap
// is (or is computed using the intersection/bitwise-and method).
//
// For variable-size output types like BinaryType or StringType, or for
// nested types, this option has no effect.
PREALLOCATE,
// The kernel is responsible for allocating its own data buffer for
// fixed-width type outputs.
NO_PREALLOCATE
};
};
struct Kernel;
/// \brief Arguments to pass to an KernelInit function. A struct is used to help
/// avoid API breakage should the arguments passed need to be expanded.
struct KernelInitArgs {
/// \brief A pointer to the kernel being initialized. The init function may
/// depend on the kernel's KernelSignature or other data contained there.
const Kernel* kernel;
/// \brief The types of the input arguments that the kernel is
/// about to be executed against.
const std::vector<TypeHolder>& inputs;
/// \brief Opaque options specific to this kernel. May be nullptr for functions
/// that do not require options.
const FunctionOptions* options;
};
/// \brief Common initializer function for all kernel types.
using KernelInit = std::function<Result<std::unique_ptr<KernelState>>(
KernelContext*, const KernelInitArgs&)>;
/// \brief Base type for kernels. Contains the function signature and
/// optionally the state initialization function, along with some common
/// attributes
struct ARROW_EXPORT Kernel {
Kernel() = default;
Kernel(std::shared_ptr<KernelSignature> sig, KernelInit init)
: signature(std::move(sig)), init(std::move(init)) {}
Kernel(std::vector<InputType> in_types, OutputType out_type, KernelInit init)
: Kernel(KernelSignature::Make(std::move(in_types), std::move(out_type)),
std::move(init)) {}
/// \brief The "signature" of the kernel containing the InputType input
/// argument validators and OutputType output type resolver.
std::shared_ptr<KernelSignature> signature;
/// \brief Create a new KernelState for invocations of this kernel, e.g. to
/// set up any options or state relevant for execution.
KernelInit init;
/// \brief Create a vector of new KernelState for invocations of this kernel.
static Status InitAll(KernelContext*, const KernelInitArgs&,
std::vector<std::unique_ptr<KernelState>>*);
/// \brief Indicates whether execution can benefit from parallelization
/// (splitting large chunks into smaller chunks and using multiple
/// threads). Some kernels may not support parallel execution at
/// all. Synchronization and concurrency-related issues are currently the
/// responsibility of the Kernel's implementation.
bool parallelizable = true;
/// \brief Indicates the level of SIMD instruction support in the host CPU is
/// required to use the function. The intention is for functions to be able to
/// contain multiple kernels with the same signature but different levels of SIMD,
/// so that the most optimized kernel supported on a host's processor can be chosen.
SimdLevel::type simd_level = SimdLevel::NONE;
// Additional kernel-specific data
std::shared_ptr<KernelState> data;
};
/// \brief The scalar kernel execution API that must be implemented for SCALAR
/// kernel types. This includes both stateless and stateful kernels. Kernels
/// depending on some execution state access that state via subclasses of
/// KernelState set on the KernelContext object. Implementations should
/// endeavor to write into pre-allocated memory if they are able, though for
/// some kernels (e.g. in cases when a builder like StringBuilder) must be
/// employed this may not be possible.
using ArrayKernelExec = Status (*)(KernelContext*, const ExecSpan&, ExecResult*);
/// \brief Kernel data structure for implementations of ScalarFunction. In
/// addition to the members found in Kernel, contains the null handling
/// and memory pre-allocation preferences.
struct ARROW_EXPORT ScalarKernel : public Kernel {
ScalarKernel() = default;
ScalarKernel(std::shared_ptr<KernelSignature> sig, ArrayKernelExec exec,
KernelInit init = NULLPTR)
: Kernel(std::move(sig), init), exec(exec) {}
ScalarKernel(std::vector<InputType> in_types, OutputType out_type, ArrayKernelExec exec,
KernelInit init = NULLPTR)
: Kernel(std::move(in_types), std::move(out_type), std::move(init)), exec(exec) {}
/// \brief Perform a single invocation of this kernel. Depending on the
/// implementation, it may only write into preallocated memory, while in some
/// cases it will allocate its own memory. Any required state is managed
/// through the KernelContext.
ArrayKernelExec exec;
/// \brief Writing execution results into larger contiguous allocations
/// requires that the kernel be able to write into sliced output ArrayData*,
/// including sliced output validity bitmaps. Some kernel implementations may
/// not be able to do this, so setting this to false disables this
/// functionality.
bool can_write_into_slices = true;
// For scalar functions preallocated data and intersecting arg validity
// bitmaps is a reasonable default
NullHandling::type null_handling = NullHandling::INTERSECTION;
MemAllocation::type mem_allocation = MemAllocation::PREALLOCATE;
};
// ----------------------------------------------------------------------
// VectorKernel (for VectorFunction)
/// \brief Kernel data structure for implementations of VectorFunction. In
/// contains an optional finalizer function, the null handling and memory
/// pre-allocation preferences (which have different defaults from
/// ScalarKernel), and some other execution-related options.
struct ARROW_EXPORT VectorKernel : public Kernel {
/// \brief See VectorKernel::finalize member for usage
using FinalizeFunc = std::function<Status(KernelContext*, std::vector<Datum>*)>;
/// \brief Function for executing a stateful VectorKernel against a
/// ChunkedArray input. Does not need to be defined for all VectorKernels
using ChunkedExec = Status (*)(KernelContext*, const ExecBatch&, Datum* out);
VectorKernel() = default;
VectorKernel(std::vector<InputType> in_types, OutputType out_type, ArrayKernelExec exec,
KernelInit init = NULLPTR, FinalizeFunc finalize = NULLPTR)
: Kernel(std::move(in_types), std::move(out_type), std::move(init)),
exec(exec),
finalize(std::move(finalize)) {}
VectorKernel(std::shared_ptr<KernelSignature> sig, ArrayKernelExec exec,
KernelInit init = NULLPTR, FinalizeFunc finalize = NULLPTR)
: Kernel(std::move(sig), std::move(init)),
exec(exec),
finalize(std::move(finalize)) {}
/// \brief Perform a single invocation of this kernel. Any required state is
/// managed through the KernelContext.
ArrayKernelExec exec;
/// \brief Execute the kernel on a ChunkedArray. Does not need to be defined
ChunkedExec exec_chunked = NULLPTR;
/// \brief For VectorKernel, convert intermediate results into finalized
/// results. Mutates input argument. Some kernels may accumulate state
/// (example: hashing-related functions) through processing chunked inputs, and
/// then need to attach some accumulated state to each of the outputs of
/// processing each chunk of data.
FinalizeFunc finalize;
/// Since vector kernels generally are implemented rather differently from
/// scalar/elementwise kernels (and they may not even yield arrays of the same
/// size), so we make the developer opt-in to any memory preallocation rather
/// than having to turn it off.
NullHandling::type null_handling = NullHandling::COMPUTED_NO_PREALLOCATE;
MemAllocation::type mem_allocation = MemAllocation::NO_PREALLOCATE;
/// \brief Writing execution results into larger contiguous allocations
/// requires that the kernel be able to write into sliced output ArrayData*,
/// including sliced output validity bitmaps. Some kernel implementations may
/// not be able to do this, so setting this to false disables this
/// functionality.
bool can_write_into_slices = true;
/// Some vector kernels can do chunkwise execution using ExecSpanIterator,
/// in some cases accumulating some state. Other kernels (like Take) need to
/// be passed whole arrays and don't work on ChunkedArray inputs
bool can_execute_chunkwise = true;
/// Some kernels (like unique and value_counts) yield non-chunked output from
/// chunked-array inputs. This option controls how the results are boxed when
/// returned from ExecVectorFunction
///
/// true -> ChunkedArray
/// false -> Array
bool output_chunked = true;
};
// ----------------------------------------------------------------------
// ScalarAggregateKernel (for ScalarAggregateFunction)
using ScalarAggregateConsume = Status (*)(KernelContext*, const ExecSpan&);
using ScalarAggregateMerge = Status (*)(KernelContext*, KernelState&&, KernelState*);
// Finalize returns Datum to permit multiple return values
using ScalarAggregateFinalize = Status (*)(KernelContext*, Datum*);
/// \brief Kernel data structure for implementations of
/// ScalarAggregateFunction. The four necessary components of an aggregation
/// kernel are the init, consume, merge, and finalize functions.
///
/// * init: creates a new KernelState for a kernel.
/// * consume: processes an ExecSpan and updates the KernelState found in the
/// KernelContext.
/// * merge: combines one KernelState with another.
/// * finalize: produces the end result of the aggregation using the
/// KernelState in the KernelContext.
struct ARROW_EXPORT ScalarAggregateKernel : public Kernel {
ScalarAggregateKernel(std::shared_ptr<KernelSignature> sig, KernelInit init,
ScalarAggregateConsume consume, ScalarAggregateMerge merge,
ScalarAggregateFinalize finalize, const bool ordered)
: Kernel(std::move(sig), std::move(init)),
consume(consume),
merge(merge),
finalize(finalize),
ordered(ordered) {}
ScalarAggregateKernel(std::vector<InputType> in_types, OutputType out_type,
KernelInit init, ScalarAggregateConsume consume,
ScalarAggregateMerge merge, ScalarAggregateFinalize finalize,
const bool ordered)
: ScalarAggregateKernel(
KernelSignature::Make(std::move(in_types), std::move(out_type)),
std::move(init), consume, merge, finalize, ordered) {}
/// \brief Merge a vector of KernelStates into a single KernelState.
/// The merged state will be returned and will be set on the KernelContext.
static Result<std::unique_ptr<KernelState>> MergeAll(
const ScalarAggregateKernel* kernel, KernelContext* ctx,
std::vector<std::unique_ptr<KernelState>> states);
ScalarAggregateConsume consume;
ScalarAggregateMerge merge;
ScalarAggregateFinalize finalize;
/// \brief Whether this kernel requires ordering
/// Some aggregations, such as, "first", requires some kind of input order. The
/// order can be implicit, e.g., the order of the input data, or explicit, e.g.
/// the ordering specified with a window aggregation.
/// The caller of the aggregate kernel is responsible for passing data in some
/// defined order to the kernel. The flag here is a way for the kernel to tell
/// the caller that data passed to the kernel must be defined in some order.
bool ordered = false;
};
// ----------------------------------------------------------------------
// HashAggregateKernel (for HashAggregateFunction)
using HashAggregateResize = Status (*)(KernelContext*, int64_t);
using HashAggregateConsume = Status (*)(KernelContext*, const ExecSpan&);
using HashAggregateMerge = Status (*)(KernelContext*, KernelState&&, const ArrayData&);
// Finalize returns Datum to permit multiple return values
using HashAggregateFinalize = Status (*)(KernelContext*, Datum*);
/// \brief Kernel data structure for implementations of
/// HashAggregateFunction. The four necessary components of an aggregation
/// kernel are the init, consume, merge, and finalize functions.
///
/// * init: creates a new KernelState for a kernel.
/// * resize: ensure that the KernelState can accommodate the specified number of groups.
/// * consume: processes an ExecSpan (which includes the argument as well
/// as an array of group identifiers) and updates the KernelState found in the
/// KernelContext.
/// * merge: combines one KernelState with another.
/// * finalize: produces the end result of the aggregation using the
/// KernelState in the KernelContext.
struct ARROW_EXPORT HashAggregateKernel : public Kernel {
HashAggregateKernel() = default;
HashAggregateKernel(std::shared_ptr<KernelSignature> sig, KernelInit init,
HashAggregateResize resize, HashAggregateConsume consume,
HashAggregateMerge merge, HashAggregateFinalize finalize,
const bool ordered)
: Kernel(std::move(sig), std::move(init)),
resize(resize),
consume(consume),
merge(merge),
finalize(finalize),
ordered(ordered) {}
HashAggregateKernel(std::vector<InputType> in_types, OutputType out_type,
KernelInit init, HashAggregateConsume consume,
HashAggregateResize resize, HashAggregateMerge merge,
HashAggregateFinalize finalize, const bool ordered)
: HashAggregateKernel(
KernelSignature::Make(std::move(in_types), std::move(out_type)),
std::move(init), resize, consume, merge, finalize, ordered) {}
HashAggregateResize resize;
HashAggregateConsume consume;
HashAggregateMerge merge;
HashAggregateFinalize finalize;
/// @brief whether the summarizer requires ordering
/// This is similar to ScalarAggregateKernel. See ScalarAggregateKernel
/// for detailed doc of this variable.
bool ordered = false;
};
} // namespace compute
} // namespace arrow