peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/include
/arrow
/compute
/kernel.h
// Licensed to the Apache Software Foundation (ASF) under one | |
// or more contributor license agreements. See the NOTICE file | |
// distributed with this work for additional information | |
// regarding copyright ownership. The ASF licenses this file | |
// to you under the Apache License, Version 2.0 (the | |
// "License"); you may not use this file except in compliance | |
// with the License. You may obtain a copy of the License at | |
// | |
// http://www.apache.org/licenses/LICENSE-2.0 | |
// | |
// Unless required by applicable law or agreed to in writing, | |
// software distributed under the License is distributed on an | |
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
// KIND, either express or implied. See the License for the | |
// specific language governing permissions and limitations | |
// under the License. | |
// NOTE: API is EXPERIMENTAL and will change without going through a | |
// deprecation cycle | |
// macOS defines PREALLOCATE as a preprocessor macro in the header sys/vnode.h. | |
// No other BSD seems to do so. The name is used as an identifier in MemAllocation enum. | |
namespace arrow { | |
namespace compute { | |
class FunctionOptions; | |
/// \brief Base class for opaque kernel-specific state. For example, if there | |
/// is some kind of initialization required. | |
struct ARROW_EXPORT KernelState { | |
virtual ~KernelState() = default; | |
}; | |
/// \brief Context/state for the execution of a particular kernel. | |
class ARROW_EXPORT KernelContext { | |
public: | |
// Can pass optional backreference; not used consistently for the | |
// moment but will be made so in the future | |
explicit KernelContext(ExecContext* exec_ctx, const Kernel* kernel = NULLPTR) | |
: exec_ctx_(exec_ctx), kernel_(kernel) {} | |
/// \brief Allocate buffer from the context's memory pool. The contents are | |
/// not initialized. | |
Result<std::shared_ptr<ResizableBuffer>> Allocate(int64_t nbytes); | |
/// \brief Allocate buffer for bitmap from the context's memory pool. Like | |
/// Allocate, the contents of the buffer are not initialized but the last | |
/// byte is preemptively zeroed to help avoid ASAN or valgrind issues. | |
Result<std::shared_ptr<ResizableBuffer>> AllocateBitmap(int64_t num_bits); | |
/// \brief Assign the active KernelState to be utilized for each stage of | |
/// kernel execution. Ownership and memory lifetime of the KernelState must | |
/// be minded separately. | |
void SetState(KernelState* state) { state_ = state; } | |
// Set kernel that is being invoked since some kernel | |
// implementations will examine the kernel state. | |
void SetKernel(const Kernel* kernel) { kernel_ = kernel; } | |
KernelState* state() { return state_; } | |
/// \brief Configuration related to function execution that is to be shared | |
/// across multiple kernels. | |
ExecContext* exec_context() { return exec_ctx_; } | |
/// \brief The memory pool to use for allocations. For now, it uses the | |
/// MemoryPool contained in the ExecContext used to create the KernelContext. | |
MemoryPool* memory_pool() { return exec_ctx_->memory_pool(); } | |
const Kernel* kernel() const { return kernel_; } | |
private: | |
ExecContext* exec_ctx_; | |
KernelState* state_ = NULLPTR; | |
const Kernel* kernel_ = NULLPTR; | |
}; | |
/// \brief An type-checking interface to permit customizable validation rules | |
/// for use with InputType and KernelSignature. This is for scenarios where the | |
/// acceptance is not an exact type instance, such as a TIMESTAMP type for a | |
/// specific TimeUnit, but permitting any time zone. | |
struct ARROW_EXPORT TypeMatcher { | |
virtual ~TypeMatcher() = default; | |
/// \brief Return true if this matcher accepts the data type. | |
virtual bool Matches(const DataType& type) const = 0; | |
/// \brief A human-interpretable string representation of what the type | |
/// matcher checks for, usable when printing KernelSignature or formatting | |
/// error messages. | |
virtual std::string ToString() const = 0; | |
/// \brief Return true if this TypeMatcher contains the same matching rule as | |
/// the other. Currently depends on RTTI. | |
virtual bool Equals(const TypeMatcher& other) const = 0; | |
}; | |
namespace match { | |
/// \brief Match any DataType instance having the same DataType::id. | |
ARROW_EXPORT std::shared_ptr<TypeMatcher> SameTypeId(Type::type type_id); | |
/// \brief Match any TimestampType instance having the same unit, but the time | |
/// zones can be different. | |
ARROW_EXPORT std::shared_ptr<TypeMatcher> TimestampTypeUnit(TimeUnit::type unit); | |
ARROW_EXPORT std::shared_ptr<TypeMatcher> Time32TypeUnit(TimeUnit::type unit); | |
ARROW_EXPORT std::shared_ptr<TypeMatcher> Time64TypeUnit(TimeUnit::type unit); | |
ARROW_EXPORT std::shared_ptr<TypeMatcher> DurationTypeUnit(TimeUnit::type unit); | |
// \brief Match any integer type | |
ARROW_EXPORT std::shared_ptr<TypeMatcher> Integer(); | |
// Match types using 32-bit varbinary representation | |
ARROW_EXPORT std::shared_ptr<TypeMatcher> BinaryLike(); | |
// Match types using 64-bit varbinary representation | |
ARROW_EXPORT std::shared_ptr<TypeMatcher> LargeBinaryLike(); | |
// Match any fixed binary type | |
ARROW_EXPORT std::shared_ptr<TypeMatcher> FixedSizeBinaryLike(); | |
// \brief Match any primitive type (boolean or any type representable as a C | |
// Type) | |
ARROW_EXPORT std::shared_ptr<TypeMatcher> Primitive(); | |
// \brief Match any integer type that can be used as run-end in run-end encoded | |
// arrays | |
ARROW_EXPORT std::shared_ptr<TypeMatcher> RunEndInteger(); | |
/// \brief Match run-end encoded types that use any valid run-end type and | |
/// encode specific value types | |
/// | |
/// @param[in] value_type_matcher a matcher that is applied to the values field | |
ARROW_EXPORT std::shared_ptr<TypeMatcher> RunEndEncoded( | |
std::shared_ptr<TypeMatcher> value_type_matcher); | |
/// \brief Match run-end encoded types that use any valid run-end type and | |
/// encode specific value types | |
/// | |
/// @param[in] value_type_id a type id that the type of the values field should match | |
ARROW_EXPORT std::shared_ptr<TypeMatcher> RunEndEncoded(Type::type value_type_id); | |
/// \brief Match run-end encoded types that encode specific run-end and value types | |
/// | |
/// @param[in] run_end_type_matcher a matcher that is applied to the run_ends field | |
/// @param[in] value_type_matcher a matcher that is applied to the values field | |
ARROW_EXPORT std::shared_ptr<TypeMatcher> RunEndEncoded( | |
std::shared_ptr<TypeMatcher> run_end_type_matcher, | |
std::shared_ptr<TypeMatcher> value_type_matcher); | |
} // namespace match | |
/// \brief An object used for type-checking arguments to be passed to a kernel | |
/// and stored in a KernelSignature. The type-checking rule can be supplied | |
/// either with an exact DataType instance or a custom TypeMatcher. | |
class ARROW_EXPORT InputType { | |
public: | |
/// \brief The kind of type-checking rule that the InputType contains. | |
enum Kind { | |
/// \brief Accept any value type. | |
ANY_TYPE, | |
/// \brief A fixed arrow::DataType and will only exact match having this | |
/// exact type (e.g. same TimestampType unit, same decimal scale and | |
/// precision, or same nested child types). | |
EXACT_TYPE, | |
/// \brief Uses a TypeMatcher implementation to check the type. | |
USE_TYPE_MATCHER | |
}; | |
/// \brief Accept any value type | |
InputType() : kind_(ANY_TYPE) {} | |
/// \brief Accept an exact value type. | |
InputType(std::shared_ptr<DataType> type) // NOLINT implicit construction | |
: kind_(EXACT_TYPE), type_(std::move(type)) {} | |
/// \brief Use the passed TypeMatcher to type check. | |
InputType(std::shared_ptr<TypeMatcher> type_matcher) // NOLINT implicit construction | |
: kind_(USE_TYPE_MATCHER), type_matcher_(std::move(type_matcher)) {} | |
/// \brief Match any type with the given Type::type. Uses a TypeMatcher for | |
/// its implementation. | |
InputType(Type::type type_id) // NOLINT implicit construction | |
: InputType(match::SameTypeId(type_id)) {} | |
InputType(const InputType& other) { CopyInto(other); } | |
void operator=(const InputType& other) { CopyInto(other); } | |
InputType(InputType&& other) { MoveInto(std::forward<InputType>(other)); } | |
void operator=(InputType&& other) { MoveInto(std::forward<InputType>(other)); } | |
// \brief Match any input (array, scalar of any type) | |
static InputType Any() { return InputType(); } | |
/// \brief Return true if this input type matches the same type cases as the | |
/// other. | |
bool Equals(const InputType& other) const; | |
bool operator==(const InputType& other) const { return this->Equals(other); } | |
bool operator!=(const InputType& other) const { return !(*this == other); } | |
/// \brief Return hash code. | |
size_t Hash() const; | |
/// \brief Render a human-readable string representation. | |
std::string ToString() const; | |
/// \brief Return true if the Datum matches this argument kind in | |
/// type (and only allows scalar or array-like Datums). | |
bool Matches(const Datum& value) const; | |
/// \brief Return true if the type matches this InputType | |
bool Matches(const DataType& type) const; | |
/// \brief The type matching rule that this InputType uses. | |
Kind kind() const { return kind_; } | |
/// \brief For InputType::EXACT_TYPE kind, the exact type that this InputType | |
/// must match. Otherwise this function should not be used and will assert in | |
/// debug builds. | |
const std::shared_ptr<DataType>& type() const; | |
/// \brief For InputType::USE_TYPE_MATCHER, the TypeMatcher to be used for | |
/// checking the type of a value. Otherwise this function should not be used | |
/// and will assert in debug builds. | |
const TypeMatcher& type_matcher() const; | |
private: | |
void CopyInto(const InputType& other) { | |
this->kind_ = other.kind_; | |
this->type_ = other.type_; | |
this->type_matcher_ = other.type_matcher_; | |
} | |
void MoveInto(InputType&& other) { | |
this->kind_ = other.kind_; | |
this->type_ = std::move(other.type_); | |
this->type_matcher_ = std::move(other.type_matcher_); | |
} | |
Kind kind_; | |
// For EXACT_TYPE Kind | |
std::shared_ptr<DataType> type_; | |
// For USE_TYPE_MATCHER Kind | |
std::shared_ptr<TypeMatcher> type_matcher_; | |
}; | |
/// \brief Container to capture both exact and input-dependent output types. | |
class ARROW_EXPORT OutputType { | |
public: | |
/// \brief An enum indicating whether the value type is an invariant fixed | |
/// value or one that's computed by a kernel-defined resolver function. | |
enum ResolveKind { FIXED, COMPUTED }; | |
/// Type resolution function. Given input types, return output type. This | |
/// function MAY may use the kernel state to decide the output type based on | |
/// the FunctionOptions. | |
/// | |
/// This function SHOULD _not_ be used to check for arity, that is to be | |
/// performed one or more layers above. | |
using Resolver = | |
std::function<Result<TypeHolder>(KernelContext*, const std::vector<TypeHolder>&)>; | |
/// \brief Output an exact type | |
OutputType(std::shared_ptr<DataType> type) // NOLINT implicit construction | |
: kind_(FIXED), type_(std::move(type)) {} | |
/// \brief Output a computed type depending on actual input types | |
template <typename Fn> | |
OutputType(Fn resolver) // NOLINT implicit construction | |
: kind_(COMPUTED), resolver_(std::move(resolver)) {} | |
OutputType(const OutputType& other) { | |
this->kind_ = other.kind_; | |
this->type_ = other.type_; | |
this->resolver_ = other.resolver_; | |
} | |
OutputType(OutputType&& other) { | |
this->kind_ = other.kind_; | |
this->type_ = std::move(other.type_); | |
this->resolver_ = other.resolver_; | |
} | |
OutputType& operator=(const OutputType&) = default; | |
OutputType& operator=(OutputType&&) = default; | |
/// \brief Return the type of the expected output value of the kernel given | |
/// the input argument types. The resolver may make use of state information | |
/// kept in the KernelContext. | |
Result<TypeHolder> Resolve(KernelContext* ctx, | |
const std::vector<TypeHolder>& args) const; | |
/// \brief The exact output value type for the FIXED kind. | |
const std::shared_ptr<DataType>& type() const; | |
/// \brief For use with COMPUTED resolution strategy. It may be more | |
/// convenient to invoke this with OutputType::Resolve returned from this | |
/// method. | |
const Resolver& resolver() const; | |
/// \brief Render a human-readable string representation. | |
std::string ToString() const; | |
/// \brief Return the kind of type resolution of this output type, whether | |
/// fixed/invariant or computed by a resolver. | |
ResolveKind kind() const { return kind_; } | |
private: | |
ResolveKind kind_; | |
// For FIXED resolution | |
std::shared_ptr<DataType> type_; | |
// For COMPUTED resolution | |
Resolver resolver_ = NULLPTR; | |
}; | |
/// \brief Holds the input types and output type of the kernel. | |
/// | |
/// VarArgs functions with minimum N arguments should pass up to N input types to be | |
/// used to validate the input types of a function invocation. The first N-1 types | |
/// will be matched against the first N-1 arguments, and the last type will be | |
/// matched against the remaining arguments. | |
class ARROW_EXPORT KernelSignature { | |
public: | |
KernelSignature(std::vector<InputType> in_types, OutputType out_type, | |
bool is_varargs = false); | |
/// \brief Convenience ctor since make_shared can be awkward | |
static std::shared_ptr<KernelSignature> Make(std::vector<InputType> in_types, | |
OutputType out_type, | |
bool is_varargs = false); | |
/// \brief Return true if the signature if compatible with the list of input | |
/// value descriptors. | |
bool MatchesInputs(const std::vector<TypeHolder>& types) const; | |
/// \brief Returns true if the input types of each signature are | |
/// equal. Well-formed functions should have a deterministic output type | |
/// given input types, but currently it is the responsibility of the | |
/// developer to ensure this. | |
bool Equals(const KernelSignature& other) const; | |
bool operator==(const KernelSignature& other) const { return this->Equals(other); } | |
bool operator!=(const KernelSignature& other) const { return !(*this == other); } | |
/// \brief Compute a hash code for the signature | |
size_t Hash() const; | |
/// \brief The input types for the kernel. For VarArgs functions, this should | |
/// generally contain a single validator to use for validating all of the | |
/// function arguments. | |
const std::vector<InputType>& in_types() const { return in_types_; } | |
/// \brief The output type for the kernel. Use Resolve to return the | |
/// exact output given input argument types, since many kernels' | |
/// output types depend on their input types (or their type | |
/// metadata). | |
const OutputType& out_type() const { return out_type_; } | |
/// \brief Render a human-readable string representation | |
std::string ToString() const; | |
bool is_varargs() const { return is_varargs_; } | |
private: | |
std::vector<InputType> in_types_; | |
OutputType out_type_; | |
bool is_varargs_; | |
// For caching the hash code after it's computed the first time | |
mutable uint64_t hash_code_; | |
}; | |
/// \brief A function may contain multiple variants of a kernel for a given | |
/// type combination for different SIMD levels. Based on the active system's | |
/// CPU info or the user's preferences, we can elect to use one over the other. | |
struct SimdLevel { | |
enum type { NONE = 0, SSE4_2, AVX, AVX2, AVX512, NEON, MAX }; | |
}; | |
/// \brief The strategy to use for propagating or otherwise populating the | |
/// validity bitmap of a kernel output. | |
struct NullHandling { | |
enum type { | |
/// Compute the output validity bitmap by intersecting the validity bitmaps | |
/// of the arguments using bitwise-and operations. This means that values | |
/// in the output are valid/non-null only if the corresponding values in | |
/// all input arguments were valid/non-null. Kernel generally need not | |
/// touch the bitmap thereafter, but a kernel's exec function is permitted | |
/// to alter the bitmap after the null intersection is computed if it needs | |
/// to. | |
INTERSECTION, | |
/// Kernel expects a pre-allocated buffer to write the result bitmap | |
/// into. The preallocated memory is not zeroed (except for the last byte), | |
/// so the kernel should ensure to completely populate the bitmap. | |
COMPUTED_PREALLOCATE, | |
/// Kernel allocates and sets the validity bitmap of the output. | |
COMPUTED_NO_PREALLOCATE, | |
/// Kernel output is never null and a validity bitmap does not need to be | |
/// allocated. | |
OUTPUT_NOT_NULL | |
}; | |
}; | |
/// \brief The preference for memory preallocation of fixed-width type outputs | |
/// in kernel execution. | |
struct MemAllocation { | |
enum type { | |
// For data types that support pre-allocation (i.e. fixed-width), the | |
// kernel expects to be provided a pre-allocated data buffer to write | |
// into. Non-fixed-width types must always allocate their own data | |
// buffers. The allocation made for the same length as the execution batch, | |
// so vector kernels yielding differently sized output should not use this. | |
// | |
// It is valid for the data to not be preallocated but the validity bitmap | |
// is (or is computed using the intersection/bitwise-and method). | |
// | |
// For variable-size output types like BinaryType or StringType, or for | |
// nested types, this option has no effect. | |
PREALLOCATE, | |
// The kernel is responsible for allocating its own data buffer for | |
// fixed-width type outputs. | |
NO_PREALLOCATE | |
}; | |
}; | |
struct Kernel; | |
/// \brief Arguments to pass to an KernelInit function. A struct is used to help | |
/// avoid API breakage should the arguments passed need to be expanded. | |
struct KernelInitArgs { | |
/// \brief A pointer to the kernel being initialized. The init function may | |
/// depend on the kernel's KernelSignature or other data contained there. | |
const Kernel* kernel; | |
/// \brief The types of the input arguments that the kernel is | |
/// about to be executed against. | |
const std::vector<TypeHolder>& inputs; | |
/// \brief Opaque options specific to this kernel. May be nullptr for functions | |
/// that do not require options. | |
const FunctionOptions* options; | |
}; | |
/// \brief Common initializer function for all kernel types. | |
using KernelInit = std::function<Result<std::unique_ptr<KernelState>>( | |
KernelContext*, const KernelInitArgs&)>; | |
/// \brief Base type for kernels. Contains the function signature and | |
/// optionally the state initialization function, along with some common | |
/// attributes | |
struct ARROW_EXPORT Kernel { | |
Kernel() = default; | |
Kernel(std::shared_ptr<KernelSignature> sig, KernelInit init) | |
: signature(std::move(sig)), init(std::move(init)) {} | |
Kernel(std::vector<InputType> in_types, OutputType out_type, KernelInit init) | |
: Kernel(KernelSignature::Make(std::move(in_types), std::move(out_type)), | |
std::move(init)) {} | |
/// \brief The "signature" of the kernel containing the InputType input | |
/// argument validators and OutputType output type resolver. | |
std::shared_ptr<KernelSignature> signature; | |
/// \brief Create a new KernelState for invocations of this kernel, e.g. to | |
/// set up any options or state relevant for execution. | |
KernelInit init; | |
/// \brief Create a vector of new KernelState for invocations of this kernel. | |
static Status InitAll(KernelContext*, const KernelInitArgs&, | |
std::vector<std::unique_ptr<KernelState>>*); | |
/// \brief Indicates whether execution can benefit from parallelization | |
/// (splitting large chunks into smaller chunks and using multiple | |
/// threads). Some kernels may not support parallel execution at | |
/// all. Synchronization and concurrency-related issues are currently the | |
/// responsibility of the Kernel's implementation. | |
bool parallelizable = true; | |
/// \brief Indicates the level of SIMD instruction support in the host CPU is | |
/// required to use the function. The intention is for functions to be able to | |
/// contain multiple kernels with the same signature but different levels of SIMD, | |
/// so that the most optimized kernel supported on a host's processor can be chosen. | |
SimdLevel::type simd_level = SimdLevel::NONE; | |
// Additional kernel-specific data | |
std::shared_ptr<KernelState> data; | |
}; | |
/// \brief The scalar kernel execution API that must be implemented for SCALAR | |
/// kernel types. This includes both stateless and stateful kernels. Kernels | |
/// depending on some execution state access that state via subclasses of | |
/// KernelState set on the KernelContext object. Implementations should | |
/// endeavor to write into pre-allocated memory if they are able, though for | |
/// some kernels (e.g. in cases when a builder like StringBuilder) must be | |
/// employed this may not be possible. | |
using ArrayKernelExec = Status (*)(KernelContext*, const ExecSpan&, ExecResult*); | |
/// \brief Kernel data structure for implementations of ScalarFunction. In | |
/// addition to the members found in Kernel, contains the null handling | |
/// and memory pre-allocation preferences. | |
struct ARROW_EXPORT ScalarKernel : public Kernel { | |
ScalarKernel() = default; | |
ScalarKernel(std::shared_ptr<KernelSignature> sig, ArrayKernelExec exec, | |
KernelInit init = NULLPTR) | |
: Kernel(std::move(sig), init), exec(exec) {} | |
ScalarKernel(std::vector<InputType> in_types, OutputType out_type, ArrayKernelExec exec, | |
KernelInit init = NULLPTR) | |
: Kernel(std::move(in_types), std::move(out_type), std::move(init)), exec(exec) {} | |
/// \brief Perform a single invocation of this kernel. Depending on the | |
/// implementation, it may only write into preallocated memory, while in some | |
/// cases it will allocate its own memory. Any required state is managed | |
/// through the KernelContext. | |
ArrayKernelExec exec; | |
/// \brief Writing execution results into larger contiguous allocations | |
/// requires that the kernel be able to write into sliced output ArrayData*, | |
/// including sliced output validity bitmaps. Some kernel implementations may | |
/// not be able to do this, so setting this to false disables this | |
/// functionality. | |
bool can_write_into_slices = true; | |
// For scalar functions preallocated data and intersecting arg validity | |
// bitmaps is a reasonable default | |
NullHandling::type null_handling = NullHandling::INTERSECTION; | |
MemAllocation::type mem_allocation = MemAllocation::PREALLOCATE; | |
}; | |
// ---------------------------------------------------------------------- | |
// VectorKernel (for VectorFunction) | |
/// \brief Kernel data structure for implementations of VectorFunction. In | |
/// contains an optional finalizer function, the null handling and memory | |
/// pre-allocation preferences (which have different defaults from | |
/// ScalarKernel), and some other execution-related options. | |
struct ARROW_EXPORT VectorKernel : public Kernel { | |
/// \brief See VectorKernel::finalize member for usage | |
using FinalizeFunc = std::function<Status(KernelContext*, std::vector<Datum>*)>; | |
/// \brief Function for executing a stateful VectorKernel against a | |
/// ChunkedArray input. Does not need to be defined for all VectorKernels | |
using ChunkedExec = Status (*)(KernelContext*, const ExecBatch&, Datum* out); | |
VectorKernel() = default; | |
VectorKernel(std::vector<InputType> in_types, OutputType out_type, ArrayKernelExec exec, | |
KernelInit init = NULLPTR, FinalizeFunc finalize = NULLPTR) | |
: Kernel(std::move(in_types), std::move(out_type), std::move(init)), | |
exec(exec), | |
finalize(std::move(finalize)) {} | |
VectorKernel(std::shared_ptr<KernelSignature> sig, ArrayKernelExec exec, | |
KernelInit init = NULLPTR, FinalizeFunc finalize = NULLPTR) | |
: Kernel(std::move(sig), std::move(init)), | |
exec(exec), | |
finalize(std::move(finalize)) {} | |
/// \brief Perform a single invocation of this kernel. Any required state is | |
/// managed through the KernelContext. | |
ArrayKernelExec exec; | |
/// \brief Execute the kernel on a ChunkedArray. Does not need to be defined | |
ChunkedExec exec_chunked = NULLPTR; | |
/// \brief For VectorKernel, convert intermediate results into finalized | |
/// results. Mutates input argument. Some kernels may accumulate state | |
/// (example: hashing-related functions) through processing chunked inputs, and | |
/// then need to attach some accumulated state to each of the outputs of | |
/// processing each chunk of data. | |
FinalizeFunc finalize; | |
/// Since vector kernels generally are implemented rather differently from | |
/// scalar/elementwise kernels (and they may not even yield arrays of the same | |
/// size), so we make the developer opt-in to any memory preallocation rather | |
/// than having to turn it off. | |
NullHandling::type null_handling = NullHandling::COMPUTED_NO_PREALLOCATE; | |
MemAllocation::type mem_allocation = MemAllocation::NO_PREALLOCATE; | |
/// \brief Writing execution results into larger contiguous allocations | |
/// requires that the kernel be able to write into sliced output ArrayData*, | |
/// including sliced output validity bitmaps. Some kernel implementations may | |
/// not be able to do this, so setting this to false disables this | |
/// functionality. | |
bool can_write_into_slices = true; | |
/// Some vector kernels can do chunkwise execution using ExecSpanIterator, | |
/// in some cases accumulating some state. Other kernels (like Take) need to | |
/// be passed whole arrays and don't work on ChunkedArray inputs | |
bool can_execute_chunkwise = true; | |
/// Some kernels (like unique and value_counts) yield non-chunked output from | |
/// chunked-array inputs. This option controls how the results are boxed when | |
/// returned from ExecVectorFunction | |
/// | |
/// true -> ChunkedArray | |
/// false -> Array | |
bool output_chunked = true; | |
}; | |
// ---------------------------------------------------------------------- | |
// ScalarAggregateKernel (for ScalarAggregateFunction) | |
using ScalarAggregateConsume = Status (*)(KernelContext*, const ExecSpan&); | |
using ScalarAggregateMerge = Status (*)(KernelContext*, KernelState&&, KernelState*); | |
// Finalize returns Datum to permit multiple return values | |
using ScalarAggregateFinalize = Status (*)(KernelContext*, Datum*); | |
/// \brief Kernel data structure for implementations of | |
/// ScalarAggregateFunction. The four necessary components of an aggregation | |
/// kernel are the init, consume, merge, and finalize functions. | |
/// | |
/// * init: creates a new KernelState for a kernel. | |
/// * consume: processes an ExecSpan and updates the KernelState found in the | |
/// KernelContext. | |
/// * merge: combines one KernelState with another. | |
/// * finalize: produces the end result of the aggregation using the | |
/// KernelState in the KernelContext. | |
struct ARROW_EXPORT ScalarAggregateKernel : public Kernel { | |
ScalarAggregateKernel(std::shared_ptr<KernelSignature> sig, KernelInit init, | |
ScalarAggregateConsume consume, ScalarAggregateMerge merge, | |
ScalarAggregateFinalize finalize, const bool ordered) | |
: Kernel(std::move(sig), std::move(init)), | |
consume(consume), | |
merge(merge), | |
finalize(finalize), | |
ordered(ordered) {} | |
ScalarAggregateKernel(std::vector<InputType> in_types, OutputType out_type, | |
KernelInit init, ScalarAggregateConsume consume, | |
ScalarAggregateMerge merge, ScalarAggregateFinalize finalize, | |
const bool ordered) | |
: ScalarAggregateKernel( | |
KernelSignature::Make(std::move(in_types), std::move(out_type)), | |
std::move(init), consume, merge, finalize, ordered) {} | |
/// \brief Merge a vector of KernelStates into a single KernelState. | |
/// The merged state will be returned and will be set on the KernelContext. | |
static Result<std::unique_ptr<KernelState>> MergeAll( | |
const ScalarAggregateKernel* kernel, KernelContext* ctx, | |
std::vector<std::unique_ptr<KernelState>> states); | |
ScalarAggregateConsume consume; | |
ScalarAggregateMerge merge; | |
ScalarAggregateFinalize finalize; | |
/// \brief Whether this kernel requires ordering | |
/// Some aggregations, such as, "first", requires some kind of input order. The | |
/// order can be implicit, e.g., the order of the input data, or explicit, e.g. | |
/// the ordering specified with a window aggregation. | |
/// The caller of the aggregate kernel is responsible for passing data in some | |
/// defined order to the kernel. The flag here is a way for the kernel to tell | |
/// the caller that data passed to the kernel must be defined in some order. | |
bool ordered = false; | |
}; | |
// ---------------------------------------------------------------------- | |
// HashAggregateKernel (for HashAggregateFunction) | |
using HashAggregateResize = Status (*)(KernelContext*, int64_t); | |
using HashAggregateConsume = Status (*)(KernelContext*, const ExecSpan&); | |
using HashAggregateMerge = Status (*)(KernelContext*, KernelState&&, const ArrayData&); | |
// Finalize returns Datum to permit multiple return values | |
using HashAggregateFinalize = Status (*)(KernelContext*, Datum*); | |
/// \brief Kernel data structure for implementations of | |
/// HashAggregateFunction. The four necessary components of an aggregation | |
/// kernel are the init, consume, merge, and finalize functions. | |
/// | |
/// * init: creates a new KernelState for a kernel. | |
/// * resize: ensure that the KernelState can accommodate the specified number of groups. | |
/// * consume: processes an ExecSpan (which includes the argument as well | |
/// as an array of group identifiers) and updates the KernelState found in the | |
/// KernelContext. | |
/// * merge: combines one KernelState with another. | |
/// * finalize: produces the end result of the aggregation using the | |
/// KernelState in the KernelContext. | |
struct ARROW_EXPORT HashAggregateKernel : public Kernel { | |
HashAggregateKernel() = default; | |
HashAggregateKernel(std::shared_ptr<KernelSignature> sig, KernelInit init, | |
HashAggregateResize resize, HashAggregateConsume consume, | |
HashAggregateMerge merge, HashAggregateFinalize finalize, | |
const bool ordered) | |
: Kernel(std::move(sig), std::move(init)), | |
resize(resize), | |
consume(consume), | |
merge(merge), | |
finalize(finalize), | |
ordered(ordered) {} | |
HashAggregateKernel(std::vector<InputType> in_types, OutputType out_type, | |
KernelInit init, HashAggregateConsume consume, | |
HashAggregateResize resize, HashAggregateMerge merge, | |
HashAggregateFinalize finalize, const bool ordered) | |
: HashAggregateKernel( | |
KernelSignature::Make(std::move(in_types), std::move(out_type)), | |
std::move(init), resize, consume, merge, finalize, ordered) {} | |
HashAggregateResize resize; | |
HashAggregateConsume consume; | |
HashAggregateMerge merge; | |
HashAggregateFinalize finalize; | |
/// @brief whether the summarizer requires ordering | |
/// This is similar to ScalarAggregateKernel. See ScalarAggregateKernel | |
/// for detailed doc of this variable. | |
bool ordered = false; | |
}; | |
} // namespace compute | |
} // namespace arrow | |