peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/include
/arrow
/tensor.h
// Licensed to the Apache Software Foundation (ASF) under one | |
// or more contributor license agreements. See the NOTICE file | |
// distributed with this work for additional information | |
// regarding copyright ownership. The ASF licenses this file | |
// to you under the Apache License, Version 2.0 (the | |
// "License"); you may not use this file except in compliance | |
// with the License. You may obtain a copy of the License at | |
// | |
// http://www.apache.org/licenses/LICENSE-2.0 | |
// | |
// Unless required by applicable law or agreed to in writing, | |
// software distributed under the License is distributed on an | |
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
// KIND, either express or implied. See the License for the | |
// specific language governing permissions and limitations | |
// under the License. | |
namespace arrow { | |
static inline bool is_tensor_supported(Type::type type_id) { | |
switch (type_id) { | |
case Type::UINT8: | |
case Type::INT8: | |
case Type::UINT16: | |
case Type::INT16: | |
case Type::UINT32: | |
case Type::INT32: | |
case Type::UINT64: | |
case Type::INT64: | |
case Type::HALF_FLOAT: | |
case Type::FLOAT: | |
case Type::DOUBLE: | |
return true; | |
default: | |
break; | |
} | |
return false; | |
} | |
namespace internal { | |
ARROW_EXPORT | |
Status ComputeRowMajorStrides(const FixedWidthType& type, | |
const std::vector<int64_t>& shape, | |
std::vector<int64_t>* strides); | |
ARROW_EXPORT | |
Status ComputeColumnMajorStrides(const FixedWidthType& type, | |
const std::vector<int64_t>& shape, | |
std::vector<int64_t>* strides); | |
ARROW_EXPORT | |
bool IsTensorStridesContiguous(const std::shared_ptr<DataType>& type, | |
const std::vector<int64_t>& shape, | |
const std::vector<int64_t>& strides); | |
ARROW_EXPORT | |
Status ValidateTensorParameters(const std::shared_ptr<DataType>& type, | |
const std::shared_ptr<Buffer>& data, | |
const std::vector<int64_t>& shape, | |
const std::vector<int64_t>& strides, | |
const std::vector<std::string>& dim_names); | |
} // namespace internal | |
class ARROW_EXPORT Tensor { | |
public: | |
/// \brief Create a Tensor with full parameters | |
/// | |
/// This factory function will return Status::Invalid when the parameters are | |
/// inconsistent | |
/// | |
/// \param[in] type The data type of the tensor values | |
/// \param[in] data The buffer of the tensor content | |
/// \param[in] shape The shape of the tensor | |
/// \param[in] strides The strides of the tensor | |
/// (if this is empty, the data assumed to be row-major) | |
/// \param[in] dim_names The names of the tensor dimensions | |
static inline Result<std::shared_ptr<Tensor>> Make( | |
const std::shared_ptr<DataType>& type, const std::shared_ptr<Buffer>& data, | |
const std::vector<int64_t>& shape, const std::vector<int64_t>& strides = {}, | |
const std::vector<std::string>& dim_names = {}) { | |
ARROW_RETURN_NOT_OK( | |
internal::ValidateTensorParameters(type, data, shape, strides, dim_names)); | |
return std::make_shared<Tensor>(type, data, shape, strides, dim_names); | |
} | |
virtual ~Tensor() = default; | |
/// Constructor with no dimension names or strides, data assumed to be row-major | |
Tensor(const std::shared_ptr<DataType>& type, const std::shared_ptr<Buffer>& data, | |
const std::vector<int64_t>& shape); | |
/// Constructor with non-negative strides | |
Tensor(const std::shared_ptr<DataType>& type, const std::shared_ptr<Buffer>& data, | |
const std::vector<int64_t>& shape, const std::vector<int64_t>& strides); | |
/// Constructor with non-negative strides and dimension names | |
Tensor(const std::shared_ptr<DataType>& type, const std::shared_ptr<Buffer>& data, | |
const std::vector<int64_t>& shape, const std::vector<int64_t>& strides, | |
const std::vector<std::string>& dim_names); | |
std::shared_ptr<DataType> type() const { return type_; } | |
std::shared_ptr<Buffer> data() const { return data_; } | |
const uint8_t* raw_data() const { return data_->data(); } | |
uint8_t* raw_mutable_data() { return data_->mutable_data(); } | |
const std::vector<int64_t>& shape() const { return shape_; } | |
const std::vector<int64_t>& strides() const { return strides_; } | |
int ndim() const { return static_cast<int>(shape_.size()); } | |
const std::vector<std::string>& dim_names() const { return dim_names_; } | |
const std::string& dim_name(int i) const; | |
/// Total number of value cells in the tensor | |
int64_t size() const; | |
/// Return true if the underlying data buffer is mutable | |
bool is_mutable() const { return data_->is_mutable(); } | |
/// Either row major or column major | |
bool is_contiguous() const; | |
/// AKA "C order" | |
bool is_row_major() const; | |
/// AKA "Fortran order" | |
bool is_column_major() const; | |
Type::type type_id() const; | |
bool Equals(const Tensor& other, const EqualOptions& = EqualOptions::Defaults()) const; | |
/// Compute the number of non-zero values in the tensor | |
Result<int64_t> CountNonZero() const; | |
/// Return the offset of the given index on the given strides | |
static int64_t CalculateValueOffset(const std::vector<int64_t>& strides, | |
const std::vector<int64_t>& index) { | |
const int64_t n = static_cast<int64_t>(index.size()); | |
int64_t offset = 0; | |
for (int64_t i = 0; i < n; ++i) { | |
offset += index[i] * strides[i]; | |
} | |
return offset; | |
} | |
int64_t CalculateValueOffset(const std::vector<int64_t>& index) const { | |
return Tensor::CalculateValueOffset(strides_, index); | |
} | |
/// Returns the value at the given index without data-type and bounds checks | |
template <typename ValueType> | |
const typename ValueType::c_type& Value(const std::vector<int64_t>& index) const { | |
using c_type = typename ValueType::c_type; | |
const int64_t offset = CalculateValueOffset(index); | |
const c_type* ptr = reinterpret_cast<const c_type*>(raw_data() + offset); | |
return *ptr; | |
} | |
Status Validate() const { | |
return internal::ValidateTensorParameters(type_, data_, shape_, strides_, dim_names_); | |
} | |
protected: | |
Tensor() {} | |
std::shared_ptr<DataType> type_; | |
std::shared_ptr<Buffer> data_; | |
std::vector<int64_t> shape_; | |
std::vector<int64_t> strides_; | |
/// These names are optional | |
std::vector<std::string> dim_names_; | |
template <typename SparseIndexType> | |
friend class SparseTensorImpl; | |
private: | |
ARROW_DISALLOW_COPY_AND_ASSIGN(Tensor); | |
}; | |
template <typename TYPE> | |
class NumericTensor : public Tensor { | |
public: | |
using TypeClass = TYPE; | |
using value_type = typename TypeClass::c_type; | |
/// \brief Create a NumericTensor with full parameters | |
/// | |
/// This factory function will return Status::Invalid when the parameters are | |
/// inconsistent | |
/// | |
/// \param[in] data The buffer of the tensor content | |
/// \param[in] shape The shape of the tensor | |
/// \param[in] strides The strides of the tensor | |
/// (if this is empty, the data assumed to be row-major) | |
/// \param[in] dim_names The names of the tensor dimensions | |
static Result<std::shared_ptr<NumericTensor<TYPE>>> Make( | |
const std::shared_ptr<Buffer>& data, const std::vector<int64_t>& shape, | |
const std::vector<int64_t>& strides = {}, | |
const std::vector<std::string>& dim_names = {}) { | |
ARROW_RETURN_NOT_OK(internal::ValidateTensorParameters( | |
TypeTraits<TYPE>::type_singleton(), data, shape, strides, dim_names)); | |
return std::make_shared<NumericTensor<TYPE>>(data, shape, strides, dim_names); | |
} | |
/// Constructor with non-negative strides and dimension names | |
NumericTensor(const std::shared_ptr<Buffer>& data, const std::vector<int64_t>& shape, | |
const std::vector<int64_t>& strides, | |
const std::vector<std::string>& dim_names) | |
: Tensor(TypeTraits<TYPE>::type_singleton(), data, shape, strides, dim_names) {} | |
/// Constructor with no dimension names or strides, data assumed to be row-major | |
NumericTensor(const std::shared_ptr<Buffer>& data, const std::vector<int64_t>& shape) | |
: NumericTensor(data, shape, {}, {}) {} | |
/// Constructor with non-negative strides | |
NumericTensor(const std::shared_ptr<Buffer>& data, const std::vector<int64_t>& shape, | |
const std::vector<int64_t>& strides) | |
: NumericTensor(data, shape, strides, {}) {} | |
const value_type& Value(const std::vector<int64_t>& index) const { | |
return Tensor::Value<TypeClass>(index); | |
} | |
}; | |
} // namespace arrow | |