peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/src
/arrow
/python
/helpers.cc
// Licensed to the Apache Software Foundation (ASF) under one | |
// or more contributor license agreements. See the NOTICE file | |
// distributed with this work for additional information | |
// regarding copyright ownership. The ASF licenses this file | |
// to you under the Apache License, Version 2.0 (the | |
// "License"); you may not use this file except in compliance | |
// with the License. You may obtain a copy of the License at | |
// | |
// http://www.apache.org/licenses/LICENSE-2.0 | |
// | |
// Unless required by applicable law or agreed to in writing, | |
// software distributed under the License is distributed on an | |
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
// KIND, either express or implied. See the License for the | |
// specific language governing permissions and limitations | |
// under the License. | |
// helpers.h includes a NumPy header, so we include this first | |
namespace arrow { | |
using internal::checked_cast; | |
namespace py { | |
std::shared_ptr<DataType> GetPrimitiveType(Type::type type) { | |
switch (type) { | |
case Type::NA: | |
return null(); | |
GET_PRIMITIVE_TYPE(UINT8, uint8); | |
GET_PRIMITIVE_TYPE(INT8, int8); | |
GET_PRIMITIVE_TYPE(UINT16, uint16); | |
GET_PRIMITIVE_TYPE(INT16, int16); | |
GET_PRIMITIVE_TYPE(UINT32, uint32); | |
GET_PRIMITIVE_TYPE(INT32, int32); | |
GET_PRIMITIVE_TYPE(UINT64, uint64); | |
GET_PRIMITIVE_TYPE(INT64, int64); | |
GET_PRIMITIVE_TYPE(DATE32, date32); | |
GET_PRIMITIVE_TYPE(DATE64, date64); | |
GET_PRIMITIVE_TYPE(BOOL, boolean); | |
GET_PRIMITIVE_TYPE(HALF_FLOAT, float16); | |
GET_PRIMITIVE_TYPE(FLOAT, float32); | |
GET_PRIMITIVE_TYPE(DOUBLE, float64); | |
GET_PRIMITIVE_TYPE(BINARY, binary); | |
GET_PRIMITIVE_TYPE(STRING, utf8); | |
GET_PRIMITIVE_TYPE(LARGE_BINARY, large_binary); | |
GET_PRIMITIVE_TYPE(LARGE_STRING, large_utf8); | |
GET_PRIMITIVE_TYPE(BINARY_VIEW, binary_view); | |
GET_PRIMITIVE_TYPE(STRING_VIEW, utf8_view); | |
GET_PRIMITIVE_TYPE(INTERVAL_MONTH_DAY_NANO, month_day_nano_interval); | |
default: | |
return nullptr; | |
} | |
} | |
PyObject* PyHalf_FromHalf(npy_half value) { | |
PyObject* result = PyArrayScalar_New(Half); | |
if (result != NULL) { | |
PyArrayScalar_ASSIGN(result, Half, value); | |
} | |
return result; | |
} | |
Status PyFloat_AsHalf(PyObject* obj, npy_half* out) { | |
if (PyArray_IsScalar(obj, Half)) { | |
*out = PyArrayScalar_VAL(obj, Half); | |
return Status::OK(); | |
} else { | |
// XXX: cannot use npy_double_to_half() without linking with Numpy | |
return Status::TypeError("Expected np.float16 instance"); | |
} | |
} | |
namespace internal { | |
std::string PyBytes_AsStdString(PyObject* obj) { | |
DCHECK(PyBytes_Check(obj)); | |
return std::string(PyBytes_AS_STRING(obj), PyBytes_GET_SIZE(obj)); | |
} | |
Status PyUnicode_AsStdString(PyObject* obj, std::string* out) { | |
DCHECK(PyUnicode_Check(obj)); | |
Py_ssize_t size; | |
// The utf-8 representation is cached on the unicode object | |
const char* data = PyUnicode_AsUTF8AndSize(obj, &size); | |
RETURN_IF_PYERROR(); | |
*out = std::string(data, size); | |
return Status::OK(); | |
} | |
std::string PyObject_StdStringRepr(PyObject* obj) { | |
OwnedRef unicode_ref(PyObject_Repr(obj)); | |
OwnedRef bytes_ref; | |
if (unicode_ref) { | |
bytes_ref.reset( | |
PyUnicode_AsEncodedString(unicode_ref.obj(), "utf8", "backslashreplace")); | |
} | |
if (!bytes_ref) { | |
PyErr_Clear(); | |
std::stringstream ss; | |
ss << "<object of type '" << Py_TYPE(obj)->tp_name << "' repr() failed>"; | |
return ss.str(); | |
} | |
return PyBytes_AsStdString(bytes_ref.obj()); | |
} | |
Status PyObject_StdStringStr(PyObject* obj, std::string* out) { | |
OwnedRef string_ref(PyObject_Str(obj)); | |
RETURN_IF_PYERROR(); | |
return PyUnicode_AsStdString(string_ref.obj(), out); | |
} | |
Result<bool> IsModuleImported(const std::string& module_name) { | |
// PyImport_GetModuleDict returns with a borrowed reference | |
OwnedRef key(PyUnicode_FromString(module_name.c_str())); | |
auto is_imported = PyDict_Contains(PyImport_GetModuleDict(), key.obj()); | |
RETURN_IF_PYERROR(); | |
return is_imported; | |
} | |
Status ImportModule(const std::string& module_name, OwnedRef* ref) { | |
PyObject* module = PyImport_ImportModule(module_name.c_str()); | |
RETURN_IF_PYERROR(); | |
ref->reset(module); | |
return Status::OK(); | |
} | |
Status ImportFromModule(PyObject* module, const std::string& name, OwnedRef* ref) { | |
PyObject* attr = PyObject_GetAttrString(module, name.c_str()); | |
RETURN_IF_PYERROR(); | |
ref->reset(attr); | |
return Status::OK(); | |
} | |
namespace { | |
Status IntegerOverflowStatus(PyObject* obj, const std::string& overflow_message) { | |
if (overflow_message.empty()) { | |
std::string obj_as_stdstring; | |
RETURN_NOT_OK(PyObject_StdStringStr(obj, &obj_as_stdstring)); | |
return Status::Invalid("Value ", obj_as_stdstring, | |
" too large to fit in C integer type"); | |
} else { | |
return Status::Invalid(overflow_message); | |
} | |
} | |
Result<OwnedRef> PyObjectToPyInt(PyObject* obj) { | |
// Try to call __index__ or __int__ on `obj` | |
// (starting from Python 3.10, the latter isn't done anymore by PyLong_AsLong*). | |
OwnedRef ref(PyNumber_Index(obj)); | |
if (ref) { | |
return std::move(ref); | |
} | |
PyErr_Clear(); | |
const auto nb = Py_TYPE(obj)->tp_as_number; | |
if (nb && nb->nb_int) { | |
ref.reset(nb->nb_int(obj)); | |
if (!ref) { | |
RETURN_IF_PYERROR(); | |
} | |
DCHECK(ref); | |
return std::move(ref); | |
} | |
return Status::TypeError( | |
"object of type ", | |
PyObject_StdStringRepr(reinterpret_cast<PyObject*>(Py_TYPE(obj))), | |
" cannot be converted to int"); | |
} | |
// Extract C signed int from Python object | |
template <typename Int, enable_if_t<std::is_signed<Int>::value, Int> = 0> | |
Status CIntFromPythonImpl(PyObject* obj, Int* out, const std::string& overflow_message) { | |
static_assert(sizeof(Int) <= sizeof(long long), // NOLINT | |
"integer type larger than long long"); | |
OwnedRef ref; | |
if (!PyLong_Check(obj)) { | |
ARROW_ASSIGN_OR_RAISE(ref, PyObjectToPyInt(obj)); | |
obj = ref.obj(); | |
} | |
if (sizeof(Int) > sizeof(long)) { // NOLINT | |
const auto value = PyLong_AsLongLong(obj); | |
if (ARROW_PREDICT_FALSE(value == -1)) { | |
RETURN_IF_PYERROR(); | |
} | |
if (ARROW_PREDICT_FALSE(value < std::numeric_limits<Int>::min() || | |
value > std::numeric_limits<Int>::max())) { | |
return IntegerOverflowStatus(obj, overflow_message); | |
} | |
*out = static_cast<Int>(value); | |
} else { | |
const auto value = PyLong_AsLong(obj); | |
if (ARROW_PREDICT_FALSE(value == -1)) { | |
RETURN_IF_PYERROR(); | |
} | |
if (ARROW_PREDICT_FALSE(value < std::numeric_limits<Int>::min() || | |
value > std::numeric_limits<Int>::max())) { | |
return IntegerOverflowStatus(obj, overflow_message); | |
} | |
*out = static_cast<Int>(value); | |
} | |
return Status::OK(); | |
} | |
// Extract C unsigned int from Python object | |
template <typename Int, enable_if_t<std::is_unsigned<Int>::value, Int> = 0> | |
Status CIntFromPythonImpl(PyObject* obj, Int* out, const std::string& overflow_message) { | |
static_assert(sizeof(Int) <= sizeof(unsigned long long), // NOLINT | |
"integer type larger than unsigned long long"); | |
OwnedRef ref; | |
if (!PyLong_Check(obj)) { | |
ARROW_ASSIGN_OR_RAISE(ref, PyObjectToPyInt(obj)); | |
obj = ref.obj(); | |
} | |
if (sizeof(Int) > sizeof(unsigned long)) { // NOLINT | |
const auto value = PyLong_AsUnsignedLongLong(obj); | |
if (ARROW_PREDICT_FALSE(value == static_cast<decltype(value)>(-1))) { | |
RETURN_IF_PYERROR(); | |
} | |
if (ARROW_PREDICT_FALSE(value > std::numeric_limits<Int>::max())) { | |
return IntegerOverflowStatus(obj, overflow_message); | |
} | |
*out = static_cast<Int>(value); | |
} else { | |
const auto value = PyLong_AsUnsignedLong(obj); | |
if (ARROW_PREDICT_FALSE(value == static_cast<decltype(value)>(-1))) { | |
RETURN_IF_PYERROR(); | |
} | |
if (ARROW_PREDICT_FALSE(value > std::numeric_limits<Int>::max())) { | |
return IntegerOverflowStatus(obj, overflow_message); | |
} | |
*out = static_cast<Int>(value); | |
} | |
return Status::OK(); | |
} | |
} // namespace | |
template <typename Int> | |
Status CIntFromPython(PyObject* obj, Int* out, const std::string& overflow_message) { | |
if (PyBool_Check(obj)) { | |
return Status::TypeError("Expected integer, got bool"); | |
} | |
return CIntFromPythonImpl(obj, out, overflow_message); | |
} | |
template Status CIntFromPython(PyObject*, int8_t*, const std::string&); | |
template Status CIntFromPython(PyObject*, int16_t*, const std::string&); | |
template Status CIntFromPython(PyObject*, int32_t*, const std::string&); | |
template Status CIntFromPython(PyObject*, int64_t*, const std::string&); | |
template Status CIntFromPython(PyObject*, uint8_t*, const std::string&); | |
template Status CIntFromPython(PyObject*, uint16_t*, const std::string&); | |
template Status CIntFromPython(PyObject*, uint32_t*, const std::string&); | |
template Status CIntFromPython(PyObject*, uint64_t*, const std::string&); | |
inline bool MayHaveNaN(PyObject* obj) { | |
// Some core types can be very quickly type-checked and do not allow NaN values | |
const int64_t non_nan_tpflags = Py_TPFLAGS_LONG_SUBCLASS | Py_TPFLAGS_LIST_SUBCLASS | | |
Py_TPFLAGS_TUPLE_SUBCLASS | Py_TPFLAGS_BYTES_SUBCLASS | | |
Py_TPFLAGS_UNICODE_SUBCLASS | Py_TPFLAGS_DICT_SUBCLASS | | |
Py_TPFLAGS_BASE_EXC_SUBCLASS | Py_TPFLAGS_TYPE_SUBCLASS; | |
return !PyType_HasFeature(Py_TYPE(obj), non_nan_tpflags); | |
} | |
bool PyFloat_IsNaN(PyObject* obj) { | |
return PyFloat_Check(obj) && std::isnan(PyFloat_AsDouble(obj)); | |
} | |
namespace { | |
static bool pandas_static_initialized = false; | |
// Once initialized, these variables hold borrowed references to Pandas static data. | |
// We should not use OwnedRef here because Python destructors would be | |
// called on a finalized interpreter. | |
static PyObject* pandas_NA = nullptr; | |
static PyObject* pandas_NaT = nullptr; | |
static PyObject* pandas_Timedelta = nullptr; | |
static PyObject* pandas_Timestamp = nullptr; | |
static PyTypeObject* pandas_NaTType = nullptr; | |
static PyObject* pandas_DateOffset = nullptr; | |
} // namespace | |
void InitPandasStaticData() { | |
// NOTE: This is called with the GIL held. We needn't (and shouldn't, | |
// to avoid deadlocks) use an additional C++ lock (ARROW-10519). | |
if (pandas_static_initialized) { | |
return; | |
} | |
OwnedRef pandas; | |
// Import pandas | |
Status s = ImportModule("pandas", &pandas); | |
if (!s.ok()) { | |
return; | |
} | |
// Since ImportModule can release the GIL, another thread could have | |
// already initialized the static data. | |
if (pandas_static_initialized) { | |
return; | |
} | |
OwnedRef ref; | |
// set NaT sentinel and its type | |
if (ImportFromModule(pandas.obj(), "NaT", &ref).ok()) { | |
pandas_NaT = ref.obj(); | |
// PyObject_Type returns a new reference but we trust that pandas.NaT will | |
// outlive our use of this PyObject* | |
pandas_NaTType = Py_TYPE(ref.obj()); | |
} | |
// retain a reference to Timedelta | |
if (ImportFromModule(pandas.obj(), "Timedelta", &ref).ok()) { | |
pandas_Timedelta = ref.obj(); | |
} | |
// retain a reference to Timestamp | |
if (ImportFromModule(pandas.obj(), "Timestamp", &ref).ok()) { | |
pandas_Timestamp = ref.obj(); | |
} | |
// if pandas.NA exists, retain a reference to it | |
if (ImportFromModule(pandas.obj(), "NA", &ref).ok()) { | |
pandas_NA = ref.obj(); | |
} | |
// Import DateOffset type | |
if (ImportFromModule(pandas.obj(), "DateOffset", &ref).ok()) { | |
pandas_DateOffset = ref.obj(); | |
} | |
pandas_static_initialized = true; | |
} | |
bool PandasObjectIsNull(PyObject* obj) { | |
if (!MayHaveNaN(obj)) { | |
return false; | |
} | |
if (obj == Py_None) { | |
return true; | |
} | |
if (PyFloat_IsNaN(obj) || (pandas_NA && obj == pandas_NA) || | |
(pandas_NaTType && PyObject_TypeCheck(obj, pandas_NaTType)) || | |
(internal::PyDecimal_Check(obj) && internal::PyDecimal_ISNAN(obj))) { | |
return true; | |
} | |
return false; | |
} | |
bool IsPandasTimedelta(PyObject* obj) { | |
return pandas_Timedelta && PyObject_IsInstance(obj, pandas_Timedelta); | |
} | |
bool IsPandasTimestamp(PyObject* obj) { | |
return pandas_Timestamp && PyObject_IsInstance(obj, pandas_Timestamp); | |
} | |
PyObject* BorrowPandasDataOffsetType() { return pandas_DateOffset; } | |
Status InvalidValue(PyObject* obj, const std::string& why) { | |
auto obj_as_str = PyObject_StdStringRepr(obj); | |
return Status::Invalid("Could not convert ", std::move(obj_as_str), " with type ", | |
Py_TYPE(obj)->tp_name, ": ", why); | |
} | |
Status InvalidType(PyObject* obj, const std::string& why) { | |
auto obj_as_str = PyObject_StdStringRepr(obj); | |
return Status::TypeError("Could not convert ", std::move(obj_as_str), " with type ", | |
Py_TYPE(obj)->tp_name, ": ", why); | |
} | |
Status UnboxIntegerAsInt64(PyObject* obj, int64_t* out) { | |
if (PyLong_Check(obj)) { | |
int overflow = 0; | |
*out = PyLong_AsLongLongAndOverflow(obj, &overflow); | |
if (overflow) { | |
return Status::Invalid("PyLong is too large to fit int64"); | |
} | |
} else if (PyArray_IsScalar(obj, Byte)) { | |
*out = reinterpret_cast<PyByteScalarObject*>(obj)->obval; | |
} else if (PyArray_IsScalar(obj, UByte)) { | |
*out = reinterpret_cast<PyUByteScalarObject*>(obj)->obval; | |
} else if (PyArray_IsScalar(obj, Short)) { | |
*out = reinterpret_cast<PyShortScalarObject*>(obj)->obval; | |
} else if (PyArray_IsScalar(obj, UShort)) { | |
*out = reinterpret_cast<PyUShortScalarObject*>(obj)->obval; | |
} else if (PyArray_IsScalar(obj, Int)) { | |
*out = reinterpret_cast<PyIntScalarObject*>(obj)->obval; | |
} else if (PyArray_IsScalar(obj, UInt)) { | |
*out = reinterpret_cast<PyUIntScalarObject*>(obj)->obval; | |
} else if (PyArray_IsScalar(obj, Long)) { | |
*out = reinterpret_cast<PyLongScalarObject*>(obj)->obval; | |
} else if (PyArray_IsScalar(obj, ULong)) { | |
*out = reinterpret_cast<PyULongScalarObject*>(obj)->obval; | |
} else if (PyArray_IsScalar(obj, LongLong)) { | |
*out = reinterpret_cast<PyLongLongScalarObject*>(obj)->obval; | |
} else if (PyArray_IsScalar(obj, Int64)) { | |
*out = reinterpret_cast<PyInt64ScalarObject*>(obj)->obval; | |
} else if (PyArray_IsScalar(obj, ULongLong)) { | |
*out = reinterpret_cast<PyULongLongScalarObject*>(obj)->obval; | |
} else if (PyArray_IsScalar(obj, UInt64)) { | |
*out = reinterpret_cast<PyUInt64ScalarObject*>(obj)->obval; | |
} else { | |
return Status::Invalid("Integer scalar type not recognized"); | |
} | |
return Status::OK(); | |
} | |
Status IntegerScalarToDoubleSafe(PyObject* obj, double* out) { | |
int64_t value = 0; | |
RETURN_NOT_OK(UnboxIntegerAsInt64(obj, &value)); | |
constexpr int64_t kDoubleMax = 1LL << 53; | |
constexpr int64_t kDoubleMin = -(1LL << 53); | |
if (value < kDoubleMin || value > kDoubleMax) { | |
return Status::Invalid("Integer value ", value, " is outside of the range exactly", | |
" representable by a IEEE 754 double precision value"); | |
} | |
*out = static_cast<double>(value); | |
return Status::OK(); | |
} | |
Status IntegerScalarToFloat32Safe(PyObject* obj, float* out) { | |
int64_t value = 0; | |
RETURN_NOT_OK(UnboxIntegerAsInt64(obj, &value)); | |
constexpr int64_t kFloatMax = 1LL << 24; | |
constexpr int64_t kFloatMin = -(1LL << 24); | |
if (value < kFloatMin || value > kFloatMax) { | |
return Status::Invalid("Integer value ", value, " is outside of the range exactly", | |
" representable by a IEEE 754 single precision value"); | |
} | |
*out = static_cast<float>(value); | |
return Status::OK(); | |
} | |
void DebugPrint(PyObject* obj) { | |
std::string repr = PyObject_StdStringRepr(obj); | |
PySys_WriteStderr("%s\n", repr.c_str()); | |
} | |
} // namespace internal | |
} // namespace py | |
} // namespace arrow | |