peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/tests
/parquet
/test_pandas.py
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
import io | |
import json | |
import numpy as np | |
import pytest | |
import pyarrow as pa | |
from pyarrow.fs import LocalFileSystem, SubTreeFileSystem | |
from pyarrow.util import guid | |
from pyarrow.vendored.version import Version | |
try: | |
import pyarrow.parquet as pq | |
from pyarrow.tests.parquet.common import (_read_table, _test_dataframe, | |
_write_table) | |
except ImportError: | |
pq = None | |
try: | |
import pandas as pd | |
import pandas.testing as tm | |
from pyarrow.tests.parquet.common import (_roundtrip_pandas_dataframe, | |
alltypes_sample) | |
except ImportError: | |
pd = tm = None | |
# Marks all of the tests in this module | |
# Ignore these with pytest ... -m 'not parquet' | |
pytestmark = pytest.mark.parquet | |
def test_pandas_parquet_custom_metadata(tempdir): | |
df = alltypes_sample(size=10000) | |
filename = tempdir / 'pandas_roundtrip.parquet' | |
arrow_table = pa.Table.from_pandas(df) | |
assert b'pandas' in arrow_table.schema.metadata | |
_write_table(arrow_table, filename) | |
metadata = pq.read_metadata(filename).metadata | |
assert b'pandas' in metadata | |
js = json.loads(metadata[b'pandas'].decode('utf8')) | |
assert js['index_columns'] == [{'kind': 'range', | |
'name': None, | |
'start': 0, 'stop': 10000, | |
'step': 1}] | |
def test_merging_parquet_tables_with_different_pandas_metadata(tempdir): | |
# ARROW-3728: Merging Parquet Files - Pandas Meta in Schema Mismatch | |
schema = pa.schema([ | |
pa.field('int', pa.int16()), | |
pa.field('float', pa.float32()), | |
pa.field('string', pa.string()) | |
]) | |
df1 = pd.DataFrame({ | |
'int': np.arange(3, dtype=np.uint8), | |
'float': np.arange(3, dtype=np.float32), | |
'string': ['ABBA', 'EDDA', 'ACDC'] | |
}) | |
df2 = pd.DataFrame({ | |
'int': [4, 5], | |
'float': [1.1, None], | |
'string': [None, None] | |
}) | |
table1 = pa.Table.from_pandas(df1, schema=schema, preserve_index=False) | |
table2 = pa.Table.from_pandas(df2, schema=schema, preserve_index=False) | |
assert not table1.schema.equals(table2.schema, check_metadata=True) | |
assert table1.schema.equals(table2.schema) | |
writer = pq.ParquetWriter(tempdir / 'merged.parquet', schema=schema) | |
writer.write_table(table1) | |
writer.write_table(table2) | |
def test_pandas_parquet_column_multiindex(tempdir): | |
df = alltypes_sample(size=10) | |
df.columns = pd.MultiIndex.from_tuples( | |
list(zip(df.columns, df.columns[::-1])), | |
names=['level_1', 'level_2'] | |
) | |
filename = tempdir / 'pandas_roundtrip.parquet' | |
arrow_table = pa.Table.from_pandas(df) | |
assert arrow_table.schema.pandas_metadata is not None | |
_write_table(arrow_table, filename) | |
table_read = pq.read_pandas(filename) | |
df_read = table_read.to_pandas() | |
tm.assert_frame_equal(df, df_read) | |
def test_pandas_parquet_2_0_roundtrip_read_pandas_no_index_written(tempdir): | |
df = alltypes_sample(size=10000) | |
filename = tempdir / 'pandas_roundtrip.parquet' | |
arrow_table = pa.Table.from_pandas(df, preserve_index=False) | |
js = arrow_table.schema.pandas_metadata | |
assert not js['index_columns'] | |
# ARROW-2170 | |
# While index_columns should be empty, columns needs to be filled still. | |
assert js['columns'] | |
_write_table(arrow_table, filename) | |
table_read = pq.read_pandas(filename) | |
js = table_read.schema.pandas_metadata | |
assert not js['index_columns'] | |
read_metadata = table_read.schema.metadata | |
assert arrow_table.schema.metadata == read_metadata | |
df_read = table_read.to_pandas() | |
tm.assert_frame_equal(df, df_read) | |
def test_pandas_parquet_native_file_roundtrip(): | |
df = _test_dataframe(10000) | |
arrow_table = pa.Table.from_pandas(df) | |
imos = pa.BufferOutputStream() | |
_write_table(arrow_table, imos, version='2.6') | |
buf = imos.getvalue() | |
reader = pa.BufferReader(buf) | |
df_read = _read_table(reader).to_pandas() | |
tm.assert_frame_equal(df, df_read) | |
def test_read_pandas_column_subset(): | |
df = _test_dataframe(10000) | |
arrow_table = pa.Table.from_pandas(df) | |
imos = pa.BufferOutputStream() | |
_write_table(arrow_table, imos, version='2.6') | |
buf = imos.getvalue() | |
reader = pa.BufferReader(buf) | |
df_read = pq.read_pandas( | |
reader, columns=['strings', 'uint8'], | |
).to_pandas() | |
tm.assert_frame_equal(df[['strings', 'uint8']], df_read) | |
def test_pandas_parquet_empty_roundtrip(): | |
df = _test_dataframe(0) | |
arrow_table = pa.Table.from_pandas(df) | |
imos = pa.BufferOutputStream() | |
_write_table(arrow_table, imos, version='2.6') | |
buf = imos.getvalue() | |
reader = pa.BufferReader(buf) | |
df_read = _read_table(reader).to_pandas() | |
tm.assert_frame_equal(df, df_read) | |
def test_pandas_can_write_nested_data(): | |
data = { | |
"agg_col": [ | |
{"page_type": 1}, | |
{"record_type": 1}, | |
{"non_consecutive_home": 0}, | |
], | |
"uid_first": "1001" | |
} | |
df = pd.DataFrame(data=data) | |
arrow_table = pa.Table.from_pandas(df) | |
imos = pa.BufferOutputStream() | |
# This succeeds under V2 | |
_write_table(arrow_table, imos) | |
def test_pandas_parquet_pyfile_roundtrip(tempdir): | |
filename = tempdir / 'pandas_pyfile_roundtrip.parquet' | |
size = 5 | |
df = pd.DataFrame({ | |
'int64': np.arange(size, dtype=np.int64), | |
'float32': np.arange(size, dtype=np.float32), | |
'float64': np.arange(size, dtype=np.float64), | |
'bool': np.random.randn(size) > 0, | |
'strings': ['foo', 'bar', None, 'baz', 'qux'] | |
}) | |
arrow_table = pa.Table.from_pandas(df) | |
with filename.open('wb') as f: | |
_write_table(arrow_table, f, version="2.6") | |
data = io.BytesIO(filename.read_bytes()) | |
table_read = _read_table(data) | |
df_read = table_read.to_pandas() | |
tm.assert_frame_equal(df, df_read) | |
def test_pandas_parquet_configuration_options(tempdir): | |
size = 10000 | |
np.random.seed(0) | |
df = pd.DataFrame({ | |
'uint8': np.arange(size, dtype=np.uint8), | |
'uint16': np.arange(size, dtype=np.uint16), | |
'uint32': np.arange(size, dtype=np.uint32), | |
'uint64': np.arange(size, dtype=np.uint64), | |
'int8': np.arange(size, dtype=np.int16), | |
'int16': np.arange(size, dtype=np.int16), | |
'int32': np.arange(size, dtype=np.int32), | |
'int64': np.arange(size, dtype=np.int64), | |
'float32': np.arange(size, dtype=np.float32), | |
'float64': np.arange(size, dtype=np.float64), | |
'bool': np.random.randn(size) > 0 | |
}) | |
filename = tempdir / 'pandas_roundtrip.parquet' | |
arrow_table = pa.Table.from_pandas(df) | |
for use_dictionary in [True, False]: | |
_write_table(arrow_table, filename, version='2.6', | |
use_dictionary=use_dictionary) | |
table_read = _read_table(filename) | |
df_read = table_read.to_pandas() | |
tm.assert_frame_equal(df, df_read) | |
for write_statistics in [True, False]: | |
_write_table(arrow_table, filename, version='2.6', | |
write_statistics=write_statistics) | |
table_read = _read_table(filename) | |
df_read = table_read.to_pandas() | |
tm.assert_frame_equal(df, df_read) | |
for compression in ['NONE', 'SNAPPY', 'GZIP', 'LZ4', 'ZSTD']: | |
if (compression != 'NONE' and | |
not pa.lib.Codec.is_available(compression)): | |
continue | |
_write_table(arrow_table, filename, version='2.6', | |
compression=compression) | |
table_read = _read_table(filename) | |
df_read = table_read.to_pandas() | |
tm.assert_frame_equal(df, df_read) | |
def test_spark_flavor_preserves_pandas_metadata(): | |
df = _test_dataframe(size=100) | |
df.index = np.arange(0, 10 * len(df), 10) | |
df.index.name = 'foo' | |
result = _roundtrip_pandas_dataframe(df, {'version': '2.0', | |
'flavor': 'spark'}) | |
tm.assert_frame_equal(result, df) | |
def test_index_column_name_duplicate(tempdir): | |
data = { | |
'close': { | |
pd.Timestamp('2017-06-30 01:31:00'): 154.99958999999998, | |
pd.Timestamp('2017-06-30 01:32:00'): 154.99958999999998, | |
}, | |
'time': { | |
pd.Timestamp('2017-06-30 01:31:00'): pd.Timestamp( | |
'2017-06-30 01:31:00' | |
), | |
pd.Timestamp('2017-06-30 01:32:00'): pd.Timestamp( | |
'2017-06-30 01:32:00' | |
), | |
} | |
} | |
path = str(tempdir / 'data.parquet') | |
# Pandas v2 defaults to [ns], but Arrow defaults to [us] time units | |
# so we need to cast the pandas dtype. Pandas v1 will always silently | |
# coerce to [ns] due to lack of non-[ns] support. | |
dfx = pd.DataFrame(data, dtype='datetime64[us]').set_index('time', drop=False) | |
tdfx = pa.Table.from_pandas(dfx) | |
_write_table(tdfx, path) | |
arrow_table = _read_table(path) | |
result_df = arrow_table.to_pandas() | |
tm.assert_frame_equal(result_df, dfx) | |
def test_multiindex_duplicate_values(tempdir): | |
num_rows = 3 | |
numbers = list(range(num_rows)) | |
index = pd.MultiIndex.from_arrays( | |
[['foo', 'foo', 'bar'], numbers], | |
names=['foobar', 'some_numbers'], | |
) | |
df = pd.DataFrame({'numbers': numbers}, index=index) | |
table = pa.Table.from_pandas(df) | |
filename = tempdir / 'dup_multi_index_levels.parquet' | |
_write_table(table, filename) | |
result_table = _read_table(filename) | |
assert table.equals(result_table) | |
result_df = result_table.to_pandas() | |
tm.assert_frame_equal(result_df, df) | |
def test_backwards_compatible_index_naming(datadir): | |
expected_string = b"""\ | |
carat cut color clarity depth table price x y z | |
0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43 | |
0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31 | |
0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31 | |
0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63 | |
0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75 | |
0.24 Very Good J VVS2 62.8 57.0 336 3.94 3.96 2.48 | |
0.24 Very Good I VVS1 62.3 57.0 336 3.95 3.98 2.47 | |
0.26 Very Good H SI1 61.9 55.0 337 4.07 4.11 2.53 | |
0.22 Fair E VS2 65.1 61.0 337 3.87 3.78 2.49 | |
0.23 Very Good H VS1 59.4 61.0 338 4.00 4.05 2.39""" | |
expected = pd.read_csv(io.BytesIO(expected_string), sep=r'\s{2,}', | |
index_col=None, header=0, engine='python') | |
table = _read_table(datadir / 'v0.7.1.parquet') | |
result = table.to_pandas() | |
tm.assert_frame_equal(result, expected) | |
def test_backwards_compatible_index_multi_level_named(datadir): | |
expected_string = b"""\ | |
carat cut color clarity depth table price x y z | |
0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43 | |
0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31 | |
0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31 | |
0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63 | |
0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75 | |
0.24 Very Good J VVS2 62.8 57.0 336 3.94 3.96 2.48 | |
0.24 Very Good I VVS1 62.3 57.0 336 3.95 3.98 2.47 | |
0.26 Very Good H SI1 61.9 55.0 337 4.07 4.11 2.53 | |
0.22 Fair E VS2 65.1 61.0 337 3.87 3.78 2.49 | |
0.23 Very Good H VS1 59.4 61.0 338 4.00 4.05 2.39""" | |
expected = pd.read_csv( | |
io.BytesIO(expected_string), sep=r'\s{2,}', | |
index_col=['cut', 'color', 'clarity'], | |
header=0, engine='python' | |
).sort_index() | |
table = _read_table(datadir / 'v0.7.1.all-named-index.parquet') | |
result = table.to_pandas() | |
tm.assert_frame_equal(result, expected) | |
def test_backwards_compatible_index_multi_level_some_named(datadir): | |
expected_string = b"""\ | |
carat cut color clarity depth table price x y z | |
0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43 | |
0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31 | |
0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31 | |
0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63 | |
0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75 | |
0.24 Very Good J VVS2 62.8 57.0 336 3.94 3.96 2.48 | |
0.24 Very Good I VVS1 62.3 57.0 336 3.95 3.98 2.47 | |
0.26 Very Good H SI1 61.9 55.0 337 4.07 4.11 2.53 | |
0.22 Fair E VS2 65.1 61.0 337 3.87 3.78 2.49 | |
0.23 Very Good H VS1 59.4 61.0 338 4.00 4.05 2.39""" | |
expected = pd.read_csv( | |
io.BytesIO(expected_string), | |
sep=r'\s{2,}', index_col=['cut', 'color', 'clarity'], | |
header=0, engine='python' | |
).sort_index() | |
expected.index = expected.index.set_names(['cut', None, 'clarity']) | |
table = _read_table(datadir / 'v0.7.1.some-named-index.parquet') | |
result = table.to_pandas() | |
tm.assert_frame_equal(result, expected) | |
def test_backwards_compatible_column_metadata_handling(datadir): | |
if Version("2.2.0") <= Version(pd.__version__): | |
# TODO: regression in pandas | |
# https://github.com/pandas-dev/pandas/issues/56775 | |
pytest.skip("Regression in pandas 2.2.0") | |
expected = pd.DataFrame( | |
{'a': [1, 2, 3], 'b': [.1, .2, .3], | |
'c': pd.date_range("2017-01-01", periods=3, tz='Europe/Brussels')}) | |
expected.index = pd.MultiIndex.from_arrays( | |
[['a', 'b', 'c'], | |
pd.date_range("2017-01-01", periods=3, tz='Europe/Brussels')], | |
names=['index', None]) | |
path = datadir / 'v0.7.1.column-metadata-handling.parquet' | |
table = _read_table(path) | |
result = table.to_pandas() | |
tm.assert_frame_equal(result, expected) | |
table = _read_table( | |
path, columns=['a']) | |
result = table.to_pandas() | |
tm.assert_frame_equal(result, expected[['a']].reset_index(drop=True)) | |
def test_categorical_index_survives_roundtrip(): | |
# ARROW-3652, addressed by ARROW-3246 | |
df = pd.DataFrame([['a', 'b'], ['c', 'd']], columns=['c1', 'c2']) | |
df['c1'] = df['c1'].astype('category') | |
df = df.set_index(['c1']) | |
table = pa.Table.from_pandas(df) | |
bos = pa.BufferOutputStream() | |
pq.write_table(table, bos) | |
ref_df = pq.read_pandas(bos.getvalue()).to_pandas() | |
assert isinstance(ref_df.index, pd.CategoricalIndex) | |
assert ref_df.index.equals(df.index) | |
def test_categorical_order_survives_roundtrip(): | |
# ARROW-6302 | |
df = pd.DataFrame({"a": pd.Categorical( | |
["a", "b", "c", "a"], categories=["b", "c", "d"], ordered=True)}) | |
table = pa.Table.from_pandas(df) | |
bos = pa.BufferOutputStream() | |
pq.write_table(table, bos) | |
contents = bos.getvalue() | |
result = pq.read_pandas(contents).to_pandas() | |
tm.assert_frame_equal(result, df) | |
def test_pandas_categorical_na_type_row_groups(): | |
# ARROW-5085 | |
df = pd.DataFrame({"col": [None] * 100, "int": [1.0] * 100}) | |
df_category = df.astype({"col": "category", "int": "category"}) | |
table = pa.Table.from_pandas(df) | |
table_cat = pa.Table.from_pandas(df_category) | |
buf = pa.BufferOutputStream() | |
# it works | |
pq.write_table(table_cat, buf, version='2.6', chunk_size=10) | |
result = pq.read_table(buf.getvalue()) | |
# Result is non-categorical | |
assert result[0].equals(table[0]) | |
assert result[1].equals(table[1]) | |
def test_pandas_categorical_roundtrip(): | |
# ARROW-5480, this was enabled by ARROW-3246 | |
# Have one of the categories unobserved and include a null (-1) | |
codes = np.array([2, 0, 0, 2, 0, -1, 2], dtype='int32') | |
categories = ['foo', 'bar', 'baz'] | |
df = pd.DataFrame({'x': pd.Categorical.from_codes( | |
codes, categories=categories)}) | |
buf = pa.BufferOutputStream() | |
pq.write_table(pa.table(df), buf) | |
result = pq.read_table(buf.getvalue()).to_pandas() | |
assert result.x.dtype == 'category' | |
assert (result.x.cat.categories == categories).all() | |
tm.assert_frame_equal(result, df) | |
def test_categories_with_string_pyarrow_dtype(tempdir): | |
# gh-33727: writing to parquet should not fail | |
if Version(pd.__version__) < Version("1.3.0"): | |
pytest.skip("PyArrow backed string data type introduced in pandas 1.3.0") | |
df1 = pd.DataFrame({"x": ["foo", "bar", "foo"]}, dtype="string[pyarrow]") | |
df1 = df1.astype("category") | |
df2 = pd.DataFrame({"x": ["foo", "bar", "foo"]}) | |
df2 = df2.astype("category") | |
# categories should be converted to pa.Array | |
assert pa.array(df1["x"]).to_pylist() == pa.array(df2["x"]).to_pylist() | |
assert pa.array(df1["x"].cat.categories.values).to_pylist() == pa.array( | |
df2["x"].cat.categories.values).to_pylist() | |
path = str(tempdir / 'cat.parquet') | |
pq.write_table(pa.table(df1), path) | |
result = pq.read_table(path).to_pandas() | |
tm.assert_frame_equal(result, df2) | |
def test_write_to_dataset_pandas_preserve_extensiondtypes(tempdir): | |
df = pd.DataFrame({'part': 'a', "col": [1, 2, 3]}) | |
df['col'] = df['col'].astype("Int64") | |
table = pa.table(df) | |
pq.write_to_dataset( | |
table, str(tempdir / "case1"), partition_cols=['part'], | |
) | |
result = pq.read_table(str(tempdir / "case1")).to_pandas() | |
tm.assert_frame_equal(result[["col"]], df[["col"]]) | |
pq.write_to_dataset(table, str(tempdir / "case2")) | |
result = pq.read_table(str(tempdir / "case2")).to_pandas() | |
tm.assert_frame_equal(result[["col"]], df[["col"]]) | |
pq.write_table(table, str(tempdir / "data.parquet")) | |
result = pq.read_table(str(tempdir / "data.parquet")).to_pandas() | |
tm.assert_frame_equal(result[["col"]], df[["col"]]) | |
def test_write_to_dataset_pandas_preserve_index(tempdir): | |
# ARROW-8251 - preserve pandas index in roundtrip | |
df = pd.DataFrame({'part': ['a', 'a', 'b'], "col": [1, 2, 3]}) | |
df.index = pd.Index(['a', 'b', 'c'], name="idx") | |
table = pa.table(df) | |
df_cat = df[["col", "part"]].copy() | |
df_cat["part"] = df_cat["part"].astype("category") | |
pq.write_to_dataset( | |
table, str(tempdir / "case1"), partition_cols=['part'], | |
) | |
result = pq.read_table(str(tempdir / "case1")).to_pandas() | |
tm.assert_frame_equal(result, df_cat) | |
pq.write_to_dataset(table, str(tempdir / "case2")) | |
result = pq.read_table(str(tempdir / "case2")).to_pandas() | |
tm.assert_frame_equal(result, df) | |
pq.write_table(table, str(tempdir / "data.parquet")) | |
result = pq.read_table(str(tempdir / "data.parquet")).to_pandas() | |
tm.assert_frame_equal(result, df) | |
def test_dataset_read_pandas_common_metadata( | |
tempdir, preserve_index, metadata_fname | |
): | |
# ARROW-1103 | |
nfiles = 5 | |
size = 5 | |
dirpath = tempdir / guid() | |
dirpath.mkdir() | |
test_data = [] | |
frames = [] | |
paths = [] | |
for i in range(nfiles): | |
df = _test_dataframe(size, seed=i) | |
df.index = pd.Index( | |
np.arange(i * size, (i + 1) * size, dtype="int64"), name='index' | |
) | |
path = dirpath / '{}.parquet'.format(i) | |
table = pa.Table.from_pandas(df, preserve_index=preserve_index) | |
# Obliterate metadata | |
table = table.replace_schema_metadata(None) | |
assert table.schema.metadata is None | |
_write_table(table, path) | |
test_data.append(table) | |
frames.append(df) | |
paths.append(path) | |
# Write _metadata common file | |
table_for_metadata = pa.Table.from_pandas( | |
df, preserve_index=preserve_index | |
) | |
pq.write_metadata(table_for_metadata.schema, dirpath / metadata_fname) | |
dataset = pq.ParquetDataset(dirpath) | |
columns = ['uint8', 'strings'] | |
result = dataset.read_pandas(columns=columns).to_pandas() | |
expected = pd.concat([x[columns] for x in frames]) | |
expected.index.name = ( | |
df.index.name if preserve_index is not False else None) | |
tm.assert_frame_equal(result, expected) | |
def test_read_pandas_passthrough_keywords(tempdir): | |
# ARROW-11464 - previously not all keywords were passed through (such as | |
# the filesystem keyword) | |
df = pd.DataFrame({'a': [1, 2, 3]}) | |
filename = tempdir / 'data.parquet' | |
_write_table(df, filename) | |
result = pq.read_pandas( | |
'data.parquet', | |
filesystem=SubTreeFileSystem(str(tempdir), LocalFileSystem()) | |
) | |
assert result.equals(pa.table(df)) | |
def test_read_pandas_map_fields(tempdir): | |
# ARROW-10140 - table created from Pandas with mapping fields | |
df = pd.DataFrame({ | |
'col1': pd.Series([ | |
[('id', 'something'), ('value2', 'else')], | |
[('id', 'something2'), ('value', 'else2')], | |
]), | |
'col2': pd.Series(['foo', 'bar']) | |
}) | |
filename = tempdir / 'data.parquet' | |
udt = pa.map_(pa.string(), pa.string()) | |
schema = pa.schema([pa.field('col1', udt), pa.field('col2', pa.string())]) | |
arrow_table = pa.Table.from_pandas(df, schema) | |
_write_table(arrow_table, filename) | |
result = pq.read_pandas(filename).to_pandas() | |
tm.assert_frame_equal(result, df) | |