applied-ai-018's picture
Add files using upload-large-folder tool
ac141ed verified
raw
history blame
142 kB
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from collections import namedtuple
import datetime
import decimal
from functools import lru_cache, partial
import inspect
import itertools
import math
import os
import pytest
import random
import sys
import textwrap
import numpy as np
try:
import pandas as pd
except ImportError:
pd = None
import pyarrow as pa
import pyarrow.compute as pc
from pyarrow.lib import ArrowNotImplementedError
from pyarrow.tests import util
try:
import pyarrow.substrait as pas
except ImportError:
pas = None
all_array_types = [
('bool', [True, False, False, True, True]),
('uint8', np.arange(5)),
('int8', np.arange(5)),
('uint16', np.arange(5)),
('int16', np.arange(5)),
('uint32', np.arange(5)),
('int32', np.arange(5)),
('uint64', np.arange(5, 10)),
('int64', np.arange(5, 10)),
('float', np.arange(0, 0.5, 0.1)),
('double', np.arange(0, 0.5, 0.1)),
('string', ['a', 'b', None, 'ddd', 'ee']),
('binary', [b'a', b'b', b'c', b'ddd', b'ee']),
(pa.binary(3), [b'abc', b'bcd', b'cde', b'def', b'efg']),
(pa.list_(pa.int8()), [[1, 2], [3, 4], [5, 6], None, [9, 16]]),
(pa.large_list(pa.int16()), [[1], [2, 3, 4], [5, 6], None, [9, 16]]),
(pa.struct([('a', pa.int8()), ('b', pa.int8())]), [
{'a': 1, 'b': 2}, None, {'a': 3, 'b': 4}, None, {'a': 5, 'b': 6}]),
]
exported_functions = [
func for (name, func) in sorted(pc.__dict__.items())
if hasattr(func, '__arrow_compute_function__')]
exported_option_classes = [
cls for (name, cls) in sorted(pc.__dict__.items())
if (isinstance(cls, type) and
cls is not pc.FunctionOptions and
issubclass(cls, pc.FunctionOptions))]
numerical_arrow_types = [
pa.int8(),
pa.int16(),
pa.int64(),
pa.uint8(),
pa.uint16(),
pa.uint64(),
pa.float32(),
pa.float64()
]
def test_exported_functions():
# Check that all exported concrete functions can be called with
# the right number of arguments.
# Note that unregistered functions (e.g. with a mismatching name)
# will raise KeyError.
functions = exported_functions
assert len(functions) >= 10
for func in functions:
desc = func.__arrow_compute_function__
if desc['options_required']:
# Skip this function as it will fail with a different error
# message if we don't pass an options instance.
continue
arity = desc['arity']
if arity == 0:
continue
if arity is Ellipsis:
args = [object()] * 3
else:
args = [object()] * arity
with pytest.raises(TypeError,
match="Got unexpected argument type "
"<class 'object'> for compute function"):
func(*args)
def test_hash_aggregate_not_exported():
# Ensure we are not leaking hash aggregate functions
# which are not callable by themselves.
for func in exported_functions:
arrow_f = pc.get_function(func.__arrow_compute_function__["name"])
assert arrow_f.kind != "hash_aggregate"
def test_exported_option_classes():
classes = exported_option_classes
assert len(classes) >= 10
for cls in classes:
# Option classes must have an introspectable constructor signature,
# and that signature should not have any *args or **kwargs.
sig = inspect.signature(cls)
for param in sig.parameters.values():
assert param.kind not in (param.VAR_POSITIONAL,
param.VAR_KEYWORD)
@pytest.mark.filterwarnings(
"ignore:pyarrow.CumulativeSumOptions is deprecated as of 14.0"
)
def test_option_class_equality():
options = [
pc.ArraySortOptions(),
pc.AssumeTimezoneOptions("UTC"),
pc.CastOptions.safe(pa.int8()),
pc.CountOptions(),
pc.DayOfWeekOptions(count_from_zero=False, week_start=0),
pc.DictionaryEncodeOptions(),
pc.RunEndEncodeOptions(),
pc.ElementWiseAggregateOptions(skip_nulls=True),
pc.ExtractRegexOptions("pattern"),
pc.FilterOptions(),
pc.IndexOptions(pa.scalar(1)),
pc.JoinOptions(),
pc.ListSliceOptions(0, -1, 1, True),
pc.MakeStructOptions(["field", "names"],
field_nullability=[True, True],
field_metadata=[pa.KeyValueMetadata({"a": "1"}),
pa.KeyValueMetadata({"b": "2"})]),
pc.MapLookupOptions(pa.scalar(1), "first"),
pc.MatchSubstringOptions("pattern"),
pc.ModeOptions(),
pc.NullOptions(),
pc.PadOptions(5),
pc.PairwiseOptions(period=1),
pc.PartitionNthOptions(1, null_placement="at_start"),
pc.CumulativeOptions(start=None, skip_nulls=False),
pc.QuantileOptions(),
pc.RandomOptions(),
pc.RankOptions(sort_keys="ascending",
null_placement="at_start", tiebreaker="max"),
pc.ReplaceSliceOptions(0, 1, "a"),
pc.ReplaceSubstringOptions("a", "b"),
pc.RoundOptions(2, "towards_infinity"),
pc.RoundBinaryOptions("towards_infinity"),
pc.RoundTemporalOptions(1, "second", week_starts_monday=True),
pc.RoundToMultipleOptions(100, "towards_infinity"),
pc.ScalarAggregateOptions(),
pc.SelectKOptions(0, sort_keys=[("b", "ascending")]),
pc.SetLookupOptions(pa.array([1])),
pc.SliceOptions(0, 1, 1),
pc.SortOptions([("dummy", "descending")], null_placement="at_start"),
pc.SplitOptions(),
pc.SplitPatternOptions("pattern"),
pc.StrftimeOptions(),
pc.StrptimeOptions("%Y", "s", True),
pc.StructFieldOptions(indices=[]),
pc.TakeOptions(),
pc.TDigestOptions(),
pc.TrimOptions(" "),
pc.Utf8NormalizeOptions("NFKC"),
pc.VarianceOptions(),
pc.WeekOptions(week_starts_monday=True, count_from_zero=False,
first_week_is_fully_in_year=False),
]
# Timezone database might not be installed on Windows
if sys.platform != "win32" or util.windows_has_tzdata():
options.append(pc.AssumeTimezoneOptions("Europe/Ljubljana"))
classes = {type(option) for option in options}
for cls in exported_option_classes:
# Timezone database might not be installed on Windows
if (
cls not in classes
and (sys.platform != "win32" or util.windows_has_tzdata())
and cls != pc.AssumeTimezoneOptions
):
try:
options.append(cls())
except TypeError:
pytest.fail(f"Options class is not tested: {cls}")
for option in options:
assert option == option
assert repr(option).startswith(option.__class__.__name__)
buf = option.serialize()
deserialized = pc.FunctionOptions.deserialize(buf)
assert option == deserialized
# TODO remove the check under the if statement and the filterwarnings
# mark when the deprecated class CumulativeSumOptions is removed.
if repr(option).startswith("CumulativeSumOptions"):
assert repr(deserialized).startswith("CumulativeOptions")
else:
assert repr(option) == repr(deserialized)
for option1, option2 in zip(options, options[1:]):
assert option1 != option2
assert repr(pc.IndexOptions(pa.scalar(1))) == "IndexOptions(value=int64:1)"
assert repr(pc.ArraySortOptions()) == \
"ArraySortOptions(order=Ascending, null_placement=AtEnd)"
def test_list_functions():
assert len(pc.list_functions()) > 10
assert "add" in pc.list_functions()
def _check_get_function(name, expected_func_cls, expected_ker_cls,
min_num_kernels=1):
func = pc.get_function(name)
assert isinstance(func, expected_func_cls)
n = func.num_kernels
assert n >= min_num_kernels
assert n == len(func.kernels)
assert all(isinstance(ker, expected_ker_cls) for ker in func.kernels)
def test_get_function_scalar():
_check_get_function("add", pc.ScalarFunction, pc.ScalarKernel, 8)
def test_get_function_vector():
_check_get_function("unique", pc.VectorFunction, pc.VectorKernel, 8)
def test_get_function_scalar_aggregate():
_check_get_function("mean", pc.ScalarAggregateFunction,
pc.ScalarAggregateKernel, 8)
def test_get_function_hash_aggregate():
_check_get_function("hash_sum", pc.HashAggregateFunction,
pc.HashAggregateKernel, 1)
def test_call_function_with_memory_pool():
arr = pa.array(["foo", "bar", "baz"])
indices = np.array([2, 2, 1])
result1 = arr.take(indices)
result2 = pc.call_function('take', [arr, indices],
memory_pool=pa.default_memory_pool())
expected = pa.array(["baz", "baz", "bar"])
assert result1.equals(expected)
assert result2.equals(expected)
result3 = pc.take(arr, indices, memory_pool=pa.default_memory_pool())
assert result3.equals(expected)
def test_pickle_functions(pickle_module):
# Pickle registered functions
for name in pc.list_functions():
func = pc.get_function(name)
reconstructed = pickle_module.loads(pickle_module.dumps(func))
assert type(reconstructed) is type(func)
assert reconstructed.name == func.name
assert reconstructed.arity == func.arity
assert reconstructed.num_kernels == func.num_kernels
def test_pickle_global_functions(pickle_module):
# Pickle global wrappers (manual or automatic) of registered functions
for name in pc.list_functions():
try:
func = getattr(pc, name)
except AttributeError:
# hash_aggregate functions are not exported as callables.
continue
reconstructed = pickle_module.loads(pickle_module.dumps(func))
assert reconstructed is func
def test_function_attributes():
# Sanity check attributes of registered functions
for name in pc.list_functions():
func = pc.get_function(name)
assert isinstance(func, pc.Function)
assert func.name == name
kernels = func.kernels
assert func.num_kernels == len(kernels)
assert all(isinstance(ker, pc.Kernel) for ker in kernels)
repr(func)
for ker in kernels:
repr(ker)
def test_input_type_conversion():
# Automatic array conversion from Python
arr = pc.add([1, 2], [4, None])
assert arr.to_pylist() == [5, None]
# Automatic scalar conversion from Python
arr = pc.add([1, 2], 4)
assert arr.to_pylist() == [5, 6]
# Other scalar type
assert pc.equal(["foo", "bar", None],
"foo").to_pylist() == [True, False, None]
@pytest.mark.parametrize('arrow_type', numerical_arrow_types)
def test_sum_array(arrow_type):
arr = pa.array([1, 2, 3, 4], type=arrow_type)
assert arr.sum().as_py() == 10
assert pc.sum(arr).as_py() == 10
arr = pa.array([1, 2, 3, 4, None], type=arrow_type)
assert arr.sum().as_py() == 10
assert pc.sum(arr).as_py() == 10
arr = pa.array([None], type=arrow_type)
assert arr.sum().as_py() is None # noqa: E711
assert pc.sum(arr).as_py() is None # noqa: E711
assert arr.sum(min_count=0).as_py() == 0
assert pc.sum(arr, min_count=0).as_py() == 0
arr = pa.array([], type=arrow_type)
assert arr.sum().as_py() is None # noqa: E711
assert arr.sum(min_count=0).as_py() == 0
assert pc.sum(arr, min_count=0).as_py() == 0
@pytest.mark.parametrize('arrow_type', numerical_arrow_types)
def test_sum_chunked_array(arrow_type):
arr = pa.chunked_array([pa.array([1, 2, 3, 4], type=arrow_type)])
assert pc.sum(arr).as_py() == 10
arr = pa.chunked_array([
pa.array([1, 2], type=arrow_type), pa.array([3, 4], type=arrow_type)
])
assert pc.sum(arr).as_py() == 10
arr = pa.chunked_array([
pa.array([1, 2], type=arrow_type),
pa.array([], type=arrow_type),
pa.array([3, 4], type=arrow_type)
])
assert pc.sum(arr).as_py() == 10
arr = pa.chunked_array((), type=arrow_type)
assert arr.num_chunks == 0
assert pc.sum(arr).as_py() is None # noqa: E711
assert pc.sum(arr, min_count=0).as_py() == 0
def test_mode_array():
# ARROW-9917
arr = pa.array([1, 1, 3, 4, 3, 5], type='int64')
mode = pc.mode(arr)
assert len(mode) == 1
assert mode[0].as_py() == {"mode": 1, "count": 2}
mode = pc.mode(arr, n=2)
assert len(mode) == 2
assert mode[0].as_py() == {"mode": 1, "count": 2}
assert mode[1].as_py() == {"mode": 3, "count": 2}
arr = pa.array([], type='int64')
assert len(pc.mode(arr)) == 0
arr = pa.array([1, 1, 3, 4, 3, None], type='int64')
mode = pc.mode(arr, skip_nulls=False)
assert len(mode) == 0
mode = pc.mode(arr, min_count=6)
assert len(mode) == 0
mode = pc.mode(arr, skip_nulls=False, min_count=5)
assert len(mode) == 0
arr = pa.array([True, False])
mode = pc.mode(arr, n=2)
assert len(mode) == 2
assert mode[0].as_py() == {"mode": False, "count": 1}
assert mode[1].as_py() == {"mode": True, "count": 1}
def test_mode_chunked_array():
# ARROW-9917
arr = pa.chunked_array([pa.array([1, 1, 3, 4, 3, 5], type='int64')])
mode = pc.mode(arr)
assert len(mode) == 1
assert mode[0].as_py() == {"mode": 1, "count": 2}
mode = pc.mode(arr, n=2)
assert len(mode) == 2
assert mode[0].as_py() == {"mode": 1, "count": 2}
assert mode[1].as_py() == {"mode": 3, "count": 2}
arr = pa.chunked_array((), type='int64')
assert arr.num_chunks == 0
assert len(pc.mode(arr)) == 0
def test_empty_chunked_array():
msg = "cannot construct ChunkedArray from empty vector and omitted type"
with pytest.raises(pa.ArrowInvalid, match=msg):
pa.chunked_array([])
pa.chunked_array([], type=pa.int8())
def test_variance():
data = [1, 2, 3, 4, 5, 6, 7, 8]
assert pc.variance(data).as_py() == 5.25
assert pc.variance(data, ddof=0).as_py() == 5.25
assert pc.variance(data, ddof=1).as_py() == 6.0
def test_count_substring():
for (ty, offset) in [(pa.string(), pa.int32()),
(pa.large_string(), pa.int64())]:
arr = pa.array(["ab", "cab", "abcab", "ba", "AB", None], type=ty)
result = pc.count_substring(arr, "ab")
expected = pa.array([1, 1, 2, 0, 0, None], type=offset)
assert expected == result
result = pc.count_substring(arr, "ab", ignore_case=True)
expected = pa.array([1, 1, 2, 0, 1, None], type=offset)
assert expected == result
def test_count_substring_regex():
for (ty, offset) in [(pa.string(), pa.int32()),
(pa.large_string(), pa.int64())]:
arr = pa.array(["ab", "cab", "baAacaa", "ba", "AB", None], type=ty)
result = pc.count_substring_regex(arr, "a+")
expected = pa.array([1, 1, 3, 1, 0, None], type=offset)
assert expected.equals(result)
result = pc.count_substring_regex(arr, "a+", ignore_case=True)
expected = pa.array([1, 1, 2, 1, 1, None], type=offset)
assert expected.equals(result)
def test_find_substring():
for ty in [pa.string(), pa.binary(), pa.large_string(), pa.large_binary()]:
arr = pa.array(["ab", "cab", "ba", None], type=ty)
result = pc.find_substring(arr, "ab")
assert result.to_pylist() == [0, 1, -1, None]
result = pc.find_substring_regex(arr, "a?b")
assert result.to_pylist() == [0, 1, 0, None]
arr = pa.array(["ab*", "cAB*", "ba", "aB?"], type=ty)
result = pc.find_substring(arr, "aB*", ignore_case=True)
assert result.to_pylist() == [0, 1, -1, -1]
result = pc.find_substring_regex(arr, "a?b", ignore_case=True)
assert result.to_pylist() == [0, 1, 0, 0]
def test_match_like():
arr = pa.array(["ab", "ba%", "ba", "ca%d", None])
result = pc.match_like(arr, r"_a\%%")
expected = pa.array([False, True, False, True, None])
assert expected.equals(result)
arr = pa.array(["aB", "bA%", "ba", "ca%d", None])
result = pc.match_like(arr, r"_a\%%", ignore_case=True)
expected = pa.array([False, True, False, True, None])
assert expected.equals(result)
result = pc.match_like(arr, r"_a\%%", ignore_case=False)
expected = pa.array([False, False, False, True, None])
assert expected.equals(result)
def test_match_substring():
arr = pa.array(["ab", "abc", "ba", None])
result = pc.match_substring(arr, "ab")
expected = pa.array([True, True, False, None])
assert expected.equals(result)
arr = pa.array(["áB", "Ábc", "ba", None])
result = pc.match_substring(arr, "áb", ignore_case=True)
expected = pa.array([True, True, False, None])
assert expected.equals(result)
result = pc.match_substring(arr, "áb", ignore_case=False)
expected = pa.array([False, False, False, None])
assert expected.equals(result)
def test_match_substring_regex():
arr = pa.array(["ab", "abc", "ba", "c", None])
result = pc.match_substring_regex(arr, "^a?b")
expected = pa.array([True, True, True, False, None])
assert expected.equals(result)
arr = pa.array(["aB", "Abc", "BA", "c", None])
result = pc.match_substring_regex(arr, "^a?b", ignore_case=True)
expected = pa.array([True, True, True, False, None])
assert expected.equals(result)
result = pc.match_substring_regex(arr, "^a?b", ignore_case=False)
expected = pa.array([False, False, False, False, None])
assert expected.equals(result)
def test_trim():
# \u3000 is unicode whitespace
arr = pa.array([" foo", None, " \u3000foo bar \t"])
result = pc.utf8_trim_whitespace(arr)
expected = pa.array(["foo", None, "foo bar"])
assert expected.equals(result)
arr = pa.array([" foo", None, " \u3000foo bar \t"])
result = pc.ascii_trim_whitespace(arr)
expected = pa.array(["foo", None, "\u3000foo bar"])
assert expected.equals(result)
arr = pa.array([" foo", None, " \u3000foo bar \t"])
result = pc.utf8_trim(arr, characters=' f\u3000')
expected = pa.array(["oo", None, "oo bar \t"])
assert expected.equals(result)
# Positional option
result = pc.utf8_trim(arr, ' f\u3000')
expected = pa.array(["oo", None, "oo bar \t"])
assert expected.equals(result)
def test_slice_compatibility():
arr = pa.array(["", "𝑓", "𝑓ö", "𝑓öõ", "𝑓öõḍ", "𝑓öõḍš"])
for start in range(-6, 6):
for stop in itertools.chain(range(-6, 6), [None]):
for step in [-3, -2, -1, 1, 2, 3]:
expected = pa.array([k.as_py()[start:stop:step]
for k in arr])
result = pc.utf8_slice_codeunits(
arr, start=start, stop=stop, step=step)
assert expected.equals(result)
# Positional options
assert pc.utf8_slice_codeunits(arr,
start, stop, step) == result
def test_binary_slice_compatibility():
data = [b"", b"a", b"a\xff", b"ab\x00", b"abc\xfb", b"ab\xf2de"]
arr = pa.array(data)
for start, stop, step in itertools.product(range(-6, 6),
range(-6, 6),
range(-3, 4)):
if step == 0:
continue
expected = pa.array([k.as_py()[start:stop:step]
for k in arr])
result = pc.binary_slice(
arr, start=start, stop=stop, step=step)
assert expected.equals(result)
# Positional options
assert pc.binary_slice(arr, start, stop, step) == result
# Fixed size binary input / output
for item in data:
fsb_scalar = pa.scalar(item, type=pa.binary(len(item)))
expected = item[start:stop:step]
actual = pc.binary_slice(fsb_scalar, start, stop, step)
assert actual.type == pa.binary(len(expected))
assert actual.as_py() == expected
def test_split_pattern():
arr = pa.array(["-foo---bar--", "---foo---b"])
result = pc.split_pattern(arr, pattern="---")
expected = pa.array([["-foo", "bar--"], ["", "foo", "b"]])
assert expected.equals(result)
result = pc.split_pattern(arr, "---", max_splits=1)
expected = pa.array([["-foo", "bar--"], ["", "foo---b"]])
assert expected.equals(result)
result = pc.split_pattern(arr, "---", max_splits=1, reverse=True)
expected = pa.array([["-foo", "bar--"], ["---foo", "b"]])
assert expected.equals(result)
def test_split_whitespace_utf8():
arr = pa.array(["foo bar", " foo \u3000\tb"])
result = pc.utf8_split_whitespace(arr)
expected = pa.array([["foo", "bar"], ["", "foo", "b"]])
assert expected.equals(result)
result = pc.utf8_split_whitespace(arr, max_splits=1)
expected = pa.array([["foo", "bar"], ["", "foo \u3000\tb"]])
assert expected.equals(result)
result = pc.utf8_split_whitespace(arr, max_splits=1, reverse=True)
expected = pa.array([["foo", "bar"], [" foo", "b"]])
assert expected.equals(result)
def test_split_whitespace_ascii():
arr = pa.array(["foo bar", " foo \u3000\tb"])
result = pc.ascii_split_whitespace(arr)
expected = pa.array([["foo", "bar"], ["", "foo", "\u3000", "b"]])
assert expected.equals(result)
result = pc.ascii_split_whitespace(arr, max_splits=1)
expected = pa.array([["foo", "bar"], ["", "foo \u3000\tb"]])
assert expected.equals(result)
result = pc.ascii_split_whitespace(arr, max_splits=1, reverse=True)
expected = pa.array([["foo", "bar"], [" foo \u3000", "b"]])
assert expected.equals(result)
def test_split_pattern_regex():
arr = pa.array(["-foo---bar--", "---foo---b"])
result = pc.split_pattern_regex(arr, pattern="-+")
expected = pa.array([["", "foo", "bar", ""], ["", "foo", "b"]])
assert expected.equals(result)
result = pc.split_pattern_regex(arr, "-+", max_splits=1)
expected = pa.array([["", "foo---bar--"], ["", "foo---b"]])
assert expected.equals(result)
with pytest.raises(NotImplementedError,
match="Cannot split in reverse with regex"):
result = pc.split_pattern_regex(
arr, pattern="---", max_splits=1, reverse=True)
def test_min_max():
# An example generated function wrapper with possible options
data = [4, 5, 6, None, 1]
s = pc.min_max(data)
assert s.as_py() == {'min': 1, 'max': 6}
s = pc.min_max(data, options=pc.ScalarAggregateOptions())
assert s.as_py() == {'min': 1, 'max': 6}
s = pc.min_max(data, options=pc.ScalarAggregateOptions(skip_nulls=True))
assert s.as_py() == {'min': 1, 'max': 6}
s = pc.min_max(data, options=pc.ScalarAggregateOptions(skip_nulls=False))
assert s.as_py() == {'min': None, 'max': None}
# Options as dict of kwargs
s = pc.min_max(data, options={'skip_nulls': False})
assert s.as_py() == {'min': None, 'max': None}
# Options as named functions arguments
s = pc.min_max(data, skip_nulls=False)
assert s.as_py() == {'min': None, 'max': None}
# Both options and named arguments
with pytest.raises(TypeError):
s = pc.min_max(
data, options=pc.ScalarAggregateOptions(), skip_nulls=False)
# Wrong options type
options = pc.TakeOptions()
with pytest.raises(TypeError):
s = pc.min_max(data, options=options)
# Missing argument
with pytest.raises(TypeError, match="min_max takes 1 positional"):
s = pc.min_max()
def test_any():
# ARROW-1846
options = pc.ScalarAggregateOptions(skip_nulls=False, min_count=0)
a = pa.array([], type='bool')
assert pc.any(a).as_py() is None
assert pc.any(a, min_count=0).as_py() is False
assert pc.any(a, options=options).as_py() is False
a = pa.array([False, None, True])
assert pc.any(a).as_py() is True
assert pc.any(a, options=options).as_py() is True
a = pa.array([False, None, False])
assert pc.any(a).as_py() is False
assert pc.any(a, options=options).as_py() is None
def test_all():
# ARROW-10301
options = pc.ScalarAggregateOptions(skip_nulls=False, min_count=0)
a = pa.array([], type='bool')
assert pc.all(a).as_py() is None
assert pc.all(a, min_count=0).as_py() is True
assert pc.all(a, options=options).as_py() is True
a = pa.array([False, True])
assert pc.all(a).as_py() is False
assert pc.all(a, options=options).as_py() is False
a = pa.array([True, None])
assert pc.all(a).as_py() is True
assert pc.all(a, options=options).as_py() is None
a = pa.chunked_array([[True], [True, None]])
assert pc.all(a).as_py() is True
assert pc.all(a, options=options).as_py() is None
a = pa.chunked_array([[True], [False]])
assert pc.all(a).as_py() is False
assert pc.all(a, options=options).as_py() is False
def test_is_valid():
# An example generated function wrapper without options
data = [4, 5, None]
assert pc.is_valid(data).to_pylist() == [True, True, False]
with pytest.raises(TypeError):
pc.is_valid(data, options=None)
def test_generated_docstrings():
# With options
assert pc.min_max.__doc__ == textwrap.dedent("""\
Compute the minimum and maximum values of a numeric array.
Null values are ignored by default.
This can be changed through ScalarAggregateOptions.
Parameters
----------
array : Array-like
Argument to compute function.
skip_nulls : bool, default True
Whether to skip (ignore) nulls in the input.
If False, any null in the input forces the output to null.
min_count : int, default 1
Minimum number of non-null values in the input. If the number
of non-null values is below `min_count`, the output is null.
options : pyarrow.compute.ScalarAggregateOptions, optional
Alternative way of passing options.
memory_pool : pyarrow.MemoryPool, optional
If not passed, will allocate memory from the default memory pool.
""")
# Without options
assert pc.add.__doc__ == textwrap.dedent("""\
Add the arguments element-wise.
Results will wrap around on integer overflow.
Use function "add_checked" if you want overflow
to return an error.
Parameters
----------
x : Array-like or scalar-like
Argument to compute function.
y : Array-like or scalar-like
Argument to compute function.
memory_pool : pyarrow.MemoryPool, optional
If not passed, will allocate memory from the default memory pool.
""")
# Varargs with options
assert pc.min_element_wise.__doc__ == textwrap.dedent("""\
Find the element-wise minimum value.
Nulls are ignored (by default) or propagated.
NaN is preferred over null, but not over any valid value.
Parameters
----------
*args : Array-like or scalar-like
Argument to compute function.
skip_nulls : bool, default True
Whether to skip (ignore) nulls in the input.
If False, any null in the input forces the output to null.
options : pyarrow.compute.ElementWiseAggregateOptions, optional
Alternative way of passing options.
memory_pool : pyarrow.MemoryPool, optional
If not passed, will allocate memory from the default memory pool.
""")
assert pc.filter.__doc__ == textwrap.dedent("""\
Filter with a boolean selection filter.
The output is populated with values from the input at positions
where the selection filter is non-zero. Nulls in the selection filter
are handled based on FilterOptions.
Parameters
----------
input : Array-like or scalar-like
Argument to compute function.
selection_filter : Array-like or scalar-like
Argument to compute function.
null_selection_behavior : str, default "drop"
How to handle nulls in the selection filter.
Accepted values are "drop", "emit_null".
options : pyarrow.compute.FilterOptions, optional
Alternative way of passing options.
memory_pool : pyarrow.MemoryPool, optional
If not passed, will allocate memory from the default memory pool.
Examples
--------
>>> import pyarrow as pa
>>> arr = pa.array(["a", "b", "c", None, "e"])
>>> mask = pa.array([True, False, None, False, True])
>>> arr.filter(mask)
<pyarrow.lib.StringArray object at ...>
[
"a",
"e"
]
>>> arr.filter(mask, null_selection_behavior='emit_null')
<pyarrow.lib.StringArray object at ...>
[
"a",
null,
"e"
]
""")
def test_generated_signatures():
# The self-documentation provided by signatures should show acceptable
# options and their default values.
# Without options
sig = inspect.signature(pc.add)
assert str(sig) == "(x, y, /, *, memory_pool=None)"
# With options
sig = inspect.signature(pc.min_max)
assert str(sig) == ("(array, /, *, skip_nulls=True, min_count=1, "
"options=None, memory_pool=None)")
# With positional options
sig = inspect.signature(pc.quantile)
assert str(sig) == ("(array, /, q=0.5, *, interpolation='linear', "
"skip_nulls=True, min_count=0, "
"options=None, memory_pool=None)")
# Varargs with options
sig = inspect.signature(pc.binary_join_element_wise)
assert str(sig) == ("(*strings, null_handling='emit_null', "
"null_replacement='', options=None, "
"memory_pool=None)")
# Varargs without options
sig = inspect.signature(pc.choose)
assert str(sig) == "(indices, /, *values, memory_pool=None)"
# Nullary with options
sig = inspect.signature(pc.random)
assert str(sig) == ("(n, *, initializer='system', "
"options=None, memory_pool=None)")
# We use isprintable to find about codepoints that Python doesn't know, but
# utf8proc does (or in a future version of Python the other way around).
# These codepoints cannot be compared between Arrow and the Python
# implementation.
@lru_cache()
def find_new_unicode_codepoints():
new = set()
characters = [chr(c) for c in range(0x80, 0x11000)
if not (0xD800 <= c < 0xE000)]
is_printable = pc.utf8_is_printable(pa.array(characters)).to_pylist()
for i, c in enumerate(characters):
if is_printable[i] != c.isprintable():
new.add(ord(c))
return new
# Python claims there are not alpha, not sure why, they are in
# gc='Other Letter': https://graphemica.com/%E1%B3%B2
unknown_issue_is_alpha = {0x1cf2, 0x1cf3}
# utf8proc does not know if codepoints are lower case
utf8proc_issue_is_lower = {
0xaa, 0xba, 0x2b0, 0x2b1, 0x2b2, 0x2b3, 0x2b4,
0x2b5, 0x2b6, 0x2b7, 0x2b8, 0x2c0, 0x2c1, 0x2e0,
0x2e1, 0x2e2, 0x2e3, 0x2e4, 0x37a, 0x1d2c, 0x1d2d,
0x1d2e, 0x1d2f, 0x1d30, 0x1d31, 0x1d32, 0x1d33,
0x1d34, 0x1d35, 0x1d36, 0x1d37, 0x1d38, 0x1d39,
0x1d3a, 0x1d3b, 0x1d3c, 0x1d3d, 0x1d3e, 0x1d3f,
0x1d40, 0x1d41, 0x1d42, 0x1d43, 0x1d44, 0x1d45,
0x1d46, 0x1d47, 0x1d48, 0x1d49, 0x1d4a, 0x1d4b,
0x1d4c, 0x1d4d, 0x1d4e, 0x1d4f, 0x1d50, 0x1d51,
0x1d52, 0x1d53, 0x1d54, 0x1d55, 0x1d56, 0x1d57,
0x1d58, 0x1d59, 0x1d5a, 0x1d5b, 0x1d5c, 0x1d5d,
0x1d5e, 0x1d5f, 0x1d60, 0x1d61, 0x1d62, 0x1d63,
0x1d64, 0x1d65, 0x1d66, 0x1d67, 0x1d68, 0x1d69,
0x1d6a, 0x1d78, 0x1d9b, 0x1d9c, 0x1d9d, 0x1d9e,
0x1d9f, 0x1da0, 0x1da1, 0x1da2, 0x1da3, 0x1da4,
0x1da5, 0x1da6, 0x1da7, 0x1da8, 0x1da9, 0x1daa,
0x1dab, 0x1dac, 0x1dad, 0x1dae, 0x1daf, 0x1db0,
0x1db1, 0x1db2, 0x1db3, 0x1db4, 0x1db5, 0x1db6,
0x1db7, 0x1db8, 0x1db9, 0x1dba, 0x1dbb, 0x1dbc,
0x1dbd, 0x1dbe, 0x1dbf, 0x2071, 0x207f, 0x2090,
0x2091, 0x2092, 0x2093, 0x2094, 0x2095, 0x2096,
0x2097, 0x2098, 0x2099, 0x209a, 0x209b, 0x209c,
0x2c7c, 0x2c7d, 0xa69c, 0xa69d, 0xa770, 0xa7f8,
0xa7f9, 0xab5c, 0xab5d, 0xab5e, 0xab5f, }
# utf8proc does not store if a codepoint is numeric
numeric_info_missing = {
0x3405, 0x3483, 0x382a, 0x3b4d, 0x4e00, 0x4e03,
0x4e07, 0x4e09, 0x4e5d, 0x4e8c, 0x4e94, 0x4e96,
0x4ebf, 0x4ec0, 0x4edf, 0x4ee8, 0x4f0d, 0x4f70,
0x5104, 0x5146, 0x5169, 0x516b, 0x516d, 0x5341,
0x5343, 0x5344, 0x5345, 0x534c, 0x53c1, 0x53c2,
0x53c3, 0x53c4, 0x56db, 0x58f1, 0x58f9, 0x5e7a,
0x5efe, 0x5eff, 0x5f0c, 0x5f0d, 0x5f0e, 0x5f10,
0x62fe, 0x634c, 0x67d2, 0x6f06, 0x7396, 0x767e,
0x8086, 0x842c, 0x8cae, 0x8cb3, 0x8d30, 0x9621,
0x9646, 0x964c, 0x9678, 0x96f6, 0xf96b, 0xf973,
0xf978, 0xf9b2, 0xf9d1, 0xf9d3, 0xf9fd, 0x10fc5,
0x10fc6, 0x10fc7, 0x10fc8, 0x10fc9, 0x10fca,
0x10fcb, }
# utf8proc has no no digit/numeric information
digit_info_missing = {
0xb2, 0xb3, 0xb9, 0x1369, 0x136a, 0x136b, 0x136c,
0x136d, 0x136e, 0x136f, 0x1370, 0x1371, 0x19da, 0x2070,
0x2074, 0x2075, 0x2076, 0x2077, 0x2078, 0x2079, 0x2080,
0x2081, 0x2082, 0x2083, 0x2084, 0x2085, 0x2086, 0x2087,
0x2088, 0x2089, 0x2460, 0x2461, 0x2462, 0x2463, 0x2464,
0x2465, 0x2466, 0x2467, 0x2468, 0x2474, 0x2475, 0x2476,
0x2477, 0x2478, 0x2479, 0x247a, 0x247b, 0x247c, 0x2488,
0x2489, 0x248a, 0x248b, 0x248c, 0x248d, 0x248e, 0x248f,
0x2490, 0x24ea, 0x24f5, 0x24f6, 0x24f7, 0x24f8, 0x24f9,
0x24fa, 0x24fb, 0x24fc, 0x24fd, 0x24ff, 0x2776, 0x2777,
0x2778, 0x2779, 0x277a, 0x277b, 0x277c, 0x277d, 0x277e,
0x2780, 0x2781, 0x2782, 0x2783, 0x2784, 0x2785, 0x2786,
0x2787, 0x2788, 0x278a, 0x278b, 0x278c, 0x278d, 0x278e,
0x278f, 0x2790, 0x2791, 0x2792, 0x10a40, 0x10a41,
0x10a42, 0x10a43, 0x10e60, 0x10e61, 0x10e62, 0x10e63,
0x10e64, 0x10e65, 0x10e66, 0x10e67, 0x10e68, }
numeric_info_missing = {
0x3405, 0x3483, 0x382a, 0x3b4d, 0x4e00, 0x4e03,
0x4e07, 0x4e09, 0x4e5d, 0x4e8c, 0x4e94, 0x4e96,
0x4ebf, 0x4ec0, 0x4edf, 0x4ee8, 0x4f0d, 0x4f70,
0x5104, 0x5146, 0x5169, 0x516b, 0x516d, 0x5341,
0x5343, 0x5344, 0x5345, 0x534c, 0x53c1, 0x53c2,
0x53c3, 0x53c4, 0x56db, 0x58f1, 0x58f9, 0x5e7a,
0x5efe, 0x5eff, 0x5f0c, 0x5f0d, 0x5f0e, 0x5f10,
0x62fe, 0x634c, 0x67d2, 0x6f06, 0x7396, 0x767e,
0x8086, 0x842c, 0x8cae, 0x8cb3, 0x8d30, 0x9621,
0x9646, 0x964c, 0x9678, 0x96f6, 0xf96b, 0xf973,
0xf978, 0xf9b2, 0xf9d1, 0xf9d3, 0xf9fd, }
codepoints_ignore = {
'is_alnum': numeric_info_missing | digit_info_missing |
unknown_issue_is_alpha,
'is_alpha': unknown_issue_is_alpha,
'is_digit': digit_info_missing,
'is_numeric': numeric_info_missing,
'is_lower': utf8proc_issue_is_lower
}
@pytest.mark.parametrize('function_name', ['is_alnum', 'is_alpha',
'is_ascii', 'is_decimal',
'is_digit', 'is_lower',
'is_numeric', 'is_printable',
'is_space', 'is_upper', ])
@pytest.mark.parametrize('variant', ['ascii', 'utf8'])
def test_string_py_compat_boolean(function_name, variant):
arrow_name = variant + "_" + function_name
py_name = function_name.replace('_', '')
ignore = codepoints_ignore.get(function_name, set()) | \
find_new_unicode_codepoints()
for i in range(128 if ascii else 0x11000):
if i in range(0xD800, 0xE000):
continue # bug? pyarrow doesn't allow utf16 surrogates
# the issues we know of, we skip
if i in ignore:
continue
# Compare results with the equivalent Python predicate
# (except "is_space" where functions are known to be incompatible)
c = chr(i)
if hasattr(pc, arrow_name) and function_name != 'is_space':
ar = pa.array([c])
arrow_func = getattr(pc, arrow_name)
assert arrow_func(ar)[0].as_py() == getattr(c, py_name)()
def test_pad():
arr = pa.array([None, 'a', 'abcd'])
assert pc.ascii_center(arr, width=3).tolist() == [None, ' a ', 'abcd']
assert pc.ascii_lpad(arr, width=3).tolist() == [None, ' a', 'abcd']
assert pc.ascii_rpad(arr, width=3).tolist() == [None, 'a ', 'abcd']
assert pc.ascii_center(arr, 3).tolist() == [None, ' a ', 'abcd']
assert pc.ascii_lpad(arr, 3).tolist() == [None, ' a', 'abcd']
assert pc.ascii_rpad(arr, 3).tolist() == [None, 'a ', 'abcd']
arr = pa.array([None, 'á', 'abcd'])
assert pc.utf8_center(arr, width=3).tolist() == [None, ' á ', 'abcd']
assert pc.utf8_lpad(arr, width=3).tolist() == [None, ' á', 'abcd']
assert pc.utf8_rpad(arr, width=3).tolist() == [None, 'á ', 'abcd']
assert pc.utf8_center(arr, 3).tolist() == [None, ' á ', 'abcd']
assert pc.utf8_lpad(arr, 3).tolist() == [None, ' á', 'abcd']
assert pc.utf8_rpad(arr, 3).tolist() == [None, 'á ', 'abcd']
@pytest.mark.pandas
def test_replace_slice():
offsets = range(-3, 4)
arr = pa.array([None, '', 'a', 'ab', 'abc', 'abcd', 'abcde'])
series = arr.to_pandas()
for start in offsets:
for stop in offsets:
expected = series.str.slice_replace(start, stop, 'XX')
actual = pc.binary_replace_slice(
arr, start=start, stop=stop, replacement='XX')
assert actual.tolist() == expected.tolist()
# Positional options
assert pc.binary_replace_slice(arr, start, stop, 'XX') == actual
arr = pa.array([None, '', 'π', 'πb', 'πbθ', 'πbθd', 'πbθde'])
series = arr.to_pandas()
for start in offsets:
for stop in offsets:
expected = series.str.slice_replace(start, stop, 'XX')
actual = pc.utf8_replace_slice(
arr, start=start, stop=stop, replacement='XX')
assert actual.tolist() == expected.tolist()
def test_replace_plain():
data = pa.array(['foozfoo', 'food', None])
ar = pc.replace_substring(data, pattern='foo', replacement='bar')
assert ar.tolist() == ['barzbar', 'bard', None]
ar = pc.replace_substring(data, 'foo', 'bar')
assert ar.tolist() == ['barzbar', 'bard', None]
ar = pc.replace_substring(data, pattern='foo', replacement='bar',
max_replacements=1)
assert ar.tolist() == ['barzfoo', 'bard', None]
ar = pc.replace_substring(data, 'foo', 'bar', max_replacements=1)
assert ar.tolist() == ['barzfoo', 'bard', None]
def test_replace_regex():
data = pa.array(['foo', 'mood', None])
expected = ['f00', 'm00d', None]
ar = pc.replace_substring_regex(data, pattern='(.)oo', replacement=r'\100')
assert ar.tolist() == expected
ar = pc.replace_substring_regex(data, '(.)oo', replacement=r'\100')
assert ar.tolist() == expected
ar = pc.replace_substring_regex(data, '(.)oo', r'\100')
assert ar.tolist() == expected
def test_extract_regex():
ar = pa.array(['a1', 'zb2z'])
expected = [{'letter': 'a', 'digit': '1'}, {'letter': 'b', 'digit': '2'}]
struct = pc.extract_regex(ar, pattern=r'(?P<letter>[ab])(?P<digit>\d)')
assert struct.tolist() == expected
struct = pc.extract_regex(ar, r'(?P<letter>[ab])(?P<digit>\d)')
assert struct.tolist() == expected
def test_binary_join():
ar_list = pa.array([['foo', 'bar'], None, []])
expected = pa.array(['foo-bar', None, ''])
assert pc.binary_join(ar_list, '-').equals(expected)
separator_array = pa.array(['1', '2'], type=pa.binary())
expected = pa.array(['a1b', 'c2d'], type=pa.binary())
ar_list = pa.array([['a', 'b'], ['c', 'd']], type=pa.list_(pa.binary()))
assert pc.binary_join(ar_list, separator_array).equals(expected)
def test_binary_join_element_wise():
null = pa.scalar(None, type=pa.string())
arrs = [[None, 'a', 'b'], ['c', None, 'd'], [None, '-', '--']]
assert pc.binary_join_element_wise(*arrs).to_pylist() == \
[None, None, 'b--d']
assert pc.binary_join_element_wise('a', 'b', '-').as_py() == 'a-b'
assert pc.binary_join_element_wise('a', null, '-').as_py() is None
assert pc.binary_join_element_wise('a', 'b', null).as_py() is None
skip = pc.JoinOptions(null_handling='skip')
assert pc.binary_join_element_wise(*arrs, options=skip).to_pylist() == \
[None, 'a', 'b--d']
assert pc.binary_join_element_wise(
'a', 'b', '-', options=skip).as_py() == 'a-b'
assert pc.binary_join_element_wise(
'a', null, '-', options=skip).as_py() == 'a'
assert pc.binary_join_element_wise(
'a', 'b', null, options=skip).as_py() is None
replace = pc.JoinOptions(null_handling='replace', null_replacement='spam')
assert pc.binary_join_element_wise(*arrs, options=replace).to_pylist() == \
[None, 'a-spam', 'b--d']
assert pc.binary_join_element_wise(
'a', 'b', '-', options=replace).as_py() == 'a-b'
assert pc.binary_join_element_wise(
'a', null, '-', options=replace).as_py() == 'a-spam'
assert pc.binary_join_element_wise(
'a', 'b', null, options=replace).as_py() is None
@pytest.mark.parametrize(('ty', 'values'), all_array_types)
def test_take(ty, values):
arr = pa.array(values, type=ty)
for indices_type in [pa.int8(), pa.int64()]:
indices = pa.array([0, 4, 2, None], type=indices_type)
result = arr.take(indices)
result.validate()
expected = pa.array([values[0], values[4], values[2], None], type=ty)
assert result.equals(expected)
# empty indices
indices = pa.array([], type=indices_type)
result = arr.take(indices)
result.validate()
expected = pa.array([], type=ty)
assert result.equals(expected)
indices = pa.array([2, 5])
with pytest.raises(IndexError):
arr.take(indices)
indices = pa.array([2, -1])
with pytest.raises(IndexError):
arr.take(indices)
def test_take_indices_types():
arr = pa.array(range(5))
for indices_type in ['uint8', 'int8', 'uint16', 'int16',
'uint32', 'int32', 'uint64', 'int64']:
indices = pa.array([0, 4, 2, None], type=indices_type)
result = arr.take(indices)
result.validate()
expected = pa.array([0, 4, 2, None])
assert result.equals(expected)
for indices_type in [pa.float32(), pa.float64()]:
indices = pa.array([0, 4, 2], type=indices_type)
with pytest.raises(NotImplementedError):
arr.take(indices)
def test_take_on_chunked_array():
# ARROW-9504
arr = pa.chunked_array([
[
"a",
"b",
"c",
"d",
"e"
],
[
"f",
"g",
"h",
"i",
"j"
]
])
indices = np.array([0, 5, 1, 6, 9, 2])
result = arr.take(indices)
expected = pa.chunked_array([["a", "f", "b", "g", "j", "c"]])
assert result.equals(expected)
indices = pa.chunked_array([[1], [9, 2]])
result = arr.take(indices)
expected = pa.chunked_array([
[
"b"
],
[
"j",
"c"
]
])
assert result.equals(expected)
@pytest.mark.parametrize('ordered', [False, True])
def test_take_dictionary(ordered):
arr = pa.DictionaryArray.from_arrays([0, 1, 2, 0, 1, 2], ['a', 'b', 'c'],
ordered=ordered)
result = arr.take(pa.array([0, 1, 3]))
result.validate()
assert result.to_pylist() == ['a', 'b', 'a']
assert result.dictionary.to_pylist() == ['a', 'b', 'c']
assert result.type.ordered is ordered
def test_take_null_type():
# ARROW-10027
arr = pa.array([None] * 10)
chunked_arr = pa.chunked_array([[None] * 5] * 2)
batch = pa.record_batch([arr], names=['a'])
table = pa.table({'a': arr})
indices = pa.array([1, 3, 7, None])
assert len(arr.take(indices)) == 4
assert len(chunked_arr.take(indices)) == 4
assert len(batch.take(indices).column(0)) == 4
assert len(table.take(indices).column(0)) == 4
@pytest.mark.parametrize(('ty', 'values'), all_array_types)
def test_drop_null(ty, values):
arr = pa.array(values, type=ty)
result = arr.drop_null()
result.validate(full=True)
indices = [i for i in range(len(arr)) if arr[i].is_valid]
expected = arr.take(pa.array(indices))
assert result.equals(expected)
def test_drop_null_chunked_array():
arr = pa.chunked_array([["a", None], ["c", "d", None], [None], []])
expected_drop = pa.chunked_array([["a"], ["c", "d"], [], []])
result = arr.drop_null()
assert result.equals(expected_drop)
def test_drop_null_record_batch():
batch = pa.record_batch(
[pa.array(["a", None, "c", "d", None])], names=["a'"])
result = batch.drop_null()
expected = pa.record_batch([pa.array(["a", "c", "d"])], names=["a'"])
assert result.equals(expected)
batch = pa.record_batch(
[pa.array(["a", None, "c", "d", None]),
pa.array([None, None, "c", None, "e"])], names=["a'", "b'"])
result = batch.drop_null()
expected = pa.record_batch(
[pa.array(["c"]), pa.array(["c"])], names=["a'", "b'"])
assert result.equals(expected)
def test_drop_null_table():
table = pa.table([pa.array(["a", None, "c", "d", None])], names=["a"])
expected = pa.table([pa.array(["a", "c", "d"])], names=["a"])
result = table.drop_null()
assert result.equals(expected)
table = pa.table([pa.chunked_array([["a", None], ["c", "d", None]]),
pa.chunked_array([["a", None], [None, "d", None]]),
pa.chunked_array([["a"], ["b"], [None], ["d", None]])],
names=["a", "b", "c"])
expected = pa.table([pa.array(["a", "d"]),
pa.array(["a", "d"]),
pa.array(["a", "d"])],
names=["a", "b", "c"])
result = table.drop_null()
assert result.equals(expected)
table = pa.table([pa.chunked_array([["a", "b"], ["c", "d", "e"]]),
pa.chunked_array([["A"], ["B"], [None], ["D", None]]),
pa.chunked_array([["a`", None], ["c`", "d`", None]])],
names=["a", "b", "c"])
expected = pa.table([pa.array(["a", "d"]),
pa.array(["A", "D"]),
pa.array(["a`", "d`"])],
names=["a", "b", "c"])
result = table.drop_null()
assert result.equals(expected)
def test_drop_null_null_type():
arr = pa.array([None] * 10)
chunked_arr = pa.chunked_array([[None] * 5] * 2)
batch = pa.record_batch([arr], names=['a'])
table = pa.table({'a': arr})
assert len(arr.drop_null()) == 0
assert len(chunked_arr.drop_null()) == 0
assert len(batch.drop_null().column(0)) == 0
assert len(table.drop_null().column(0)) == 0
@pytest.mark.parametrize(('ty', 'values'), all_array_types)
def test_filter(ty, values):
arr = pa.array(values, type=ty)
mask = pa.array([True, False, False, True, None])
result = arr.filter(mask, null_selection_behavior='drop')
result.validate()
assert result.equals(pa.array([values[0], values[3]], type=ty))
result = arr.filter(mask, null_selection_behavior='emit_null')
result.validate()
assert result.equals(pa.array([values[0], values[3], None], type=ty))
# non-boolean dtype
mask = pa.array([0, 1, 0, 1, 0])
with pytest.raises(NotImplementedError):
arr.filter(mask)
# wrong length
mask = pa.array([True, False, True])
with pytest.raises(ValueError, match="must all be the same length"):
arr.filter(mask)
def test_filter_chunked_array():
arr = pa.chunked_array([["a", None], ["c", "d", "e"]])
expected_drop = pa.chunked_array([["a"], ["e"]])
expected_null = pa.chunked_array([["a"], [None, "e"]])
for mask in [
# mask is array
pa.array([True, False, None, False, True]),
# mask is chunked array
pa.chunked_array([[True, False, None], [False, True]]),
# mask is python object
[True, False, None, False, True]
]:
result = arr.filter(mask)
assert result.equals(expected_drop)
result = arr.filter(mask, null_selection_behavior="emit_null")
assert result.equals(expected_null)
def test_filter_record_batch():
batch = pa.record_batch(
[pa.array(["a", None, "c", "d", "e"])], names=["a'"])
# mask is array
mask = pa.array([True, False, None, False, True])
result = batch.filter(mask)
expected = pa.record_batch([pa.array(["a", "e"])], names=["a'"])
assert result.equals(expected)
result = batch.filter(mask, null_selection_behavior="emit_null")
expected = pa.record_batch([pa.array(["a", None, "e"])], names=["a'"])
assert result.equals(expected)
def test_filter_table():
table = pa.table([pa.array(["a", None, "c", "d", "e"])], names=["a"])
expected_drop = pa.table([pa.array(["a", "e"])], names=["a"])
expected_null = pa.table([pa.array(["a", None, "e"])], names=["a"])
for mask in [
# mask is array
pa.array([True, False, None, False, True]),
# mask is chunked array
pa.chunked_array([[True, False], [None, False, True]]),
# mask is python object
[True, False, None, False, True]
]:
result = table.filter(mask)
assert result.equals(expected_drop)
result = table.filter(mask, null_selection_behavior="emit_null")
assert result.equals(expected_null)
def test_filter_errors():
arr = pa.chunked_array([["a", None], ["c", "d", "e"]])
batch = pa.record_batch(
[pa.array(["a", None, "c", "d", "e"])], names=["a'"])
table = pa.table([pa.array(["a", None, "c", "d", "e"])], names=["a"])
for obj in [arr, batch, table]:
# non-boolean dtype
mask = pa.array([0, 1, 0, 1, 0])
with pytest.raises(NotImplementedError):
obj.filter(mask)
# wrong length
mask = pa.array([True, False, True])
with pytest.raises(pa.ArrowInvalid,
match="must all be the same length"):
obj.filter(mask)
scalar = pa.scalar(True)
for filt in [batch, table, scalar]:
with pytest.raises(TypeError):
table.filter(filt)
def test_filter_null_type():
# ARROW-10027
arr = pa.array([None] * 10)
chunked_arr = pa.chunked_array([[None] * 5] * 2)
batch = pa.record_batch([arr], names=['a'])
table = pa.table({'a': arr})
mask = pa.array([True, False] * 5)
assert len(arr.filter(mask)) == 5
assert len(chunked_arr.filter(mask)) == 5
assert len(batch.filter(mask).column(0)) == 5
assert len(table.filter(mask).column(0)) == 5
@pytest.mark.parametrize("typ", ["array", "chunked_array"])
def test_compare_array(typ):
if typ == "array":
def con(values):
return pa.array(values)
else:
def con(values):
return pa.chunked_array([values])
arr1 = con([1, 2, 3, 4, None])
arr2 = con([1, 1, 4, None, 4])
result = pc.equal(arr1, arr2)
assert result.equals(con([True, False, False, None, None]))
result = pc.not_equal(arr1, arr2)
assert result.equals(con([False, True, True, None, None]))
result = pc.less(arr1, arr2)
assert result.equals(con([False, False, True, None, None]))
result = pc.less_equal(arr1, arr2)
assert result.equals(con([True, False, True, None, None]))
result = pc.greater(arr1, arr2)
assert result.equals(con([False, True, False, None, None]))
result = pc.greater_equal(arr1, arr2)
assert result.equals(con([True, True, False, None, None]))
@pytest.mark.parametrize("typ", ["array", "chunked_array"])
def test_compare_string_scalar(typ):
if typ == "array":
def con(values):
return pa.array(values)
else:
def con(values):
return pa.chunked_array([values])
arr = con(['a', 'b', 'c', None])
scalar = pa.scalar('b')
result = pc.equal(arr, scalar)
assert result.equals(con([False, True, False, None]))
if typ == "array":
nascalar = pa.scalar(None, type="string")
result = pc.equal(arr, nascalar)
isnull = pc.is_null(result)
assert isnull.equals(con([True, True, True, True]))
result = pc.not_equal(arr, scalar)
assert result.equals(con([True, False, True, None]))
result = pc.less(arr, scalar)
assert result.equals(con([True, False, False, None]))
result = pc.less_equal(arr, scalar)
assert result.equals(con([True, True, False, None]))
result = pc.greater(arr, scalar)
assert result.equals(con([False, False, True, None]))
result = pc.greater_equal(arr, scalar)
assert result.equals(con([False, True, True, None]))
@pytest.mark.parametrize("typ", ["array", "chunked_array"])
def test_compare_scalar(typ):
if typ == "array":
def con(values):
return pa.array(values)
else:
def con(values):
return pa.chunked_array([values])
arr = con([1, 2, 3, None])
scalar = pa.scalar(2)
result = pc.equal(arr, scalar)
assert result.equals(con([False, True, False, None]))
if typ == "array":
nascalar = pa.scalar(None, type="int64")
result = pc.equal(arr, nascalar)
assert result.to_pylist() == [None, None, None, None]
result = pc.not_equal(arr, scalar)
assert result.equals(con([True, False, True, None]))
result = pc.less(arr, scalar)
assert result.equals(con([True, False, False, None]))
result = pc.less_equal(arr, scalar)
assert result.equals(con([True, True, False, None]))
result = pc.greater(arr, scalar)
assert result.equals(con([False, False, True, None]))
result = pc.greater_equal(arr, scalar)
assert result.equals(con([False, True, True, None]))
def test_compare_chunked_array_mixed():
arr = pa.array([1, 2, 3, 4, None])
arr_chunked = pa.chunked_array([[1, 2, 3], [4, None]])
arr_chunked2 = pa.chunked_array([[1, 2], [3, 4, None]])
expected = pa.chunked_array([[True, True, True, True, None]])
for left, right in [
(arr, arr_chunked),
(arr_chunked, arr),
(arr_chunked, arr_chunked2),
]:
result = pc.equal(left, right)
assert result.equals(expected)
def test_arithmetic_add():
left = pa.array([1, 2, 3, 4, 5])
right = pa.array([0, -1, 1, 2, 3])
result = pc.add(left, right)
expected = pa.array([1, 1, 4, 6, 8])
assert result.equals(expected)
def test_arithmetic_subtract():
left = pa.array([1, 2, 3, 4, 5])
right = pa.array([0, -1, 1, 2, 3])
result = pc.subtract(left, right)
expected = pa.array([1, 3, 2, 2, 2])
assert result.equals(expected)
def test_arithmetic_multiply():
left = pa.array([1, 2, 3, 4, 5])
right = pa.array([0, -1, 1, 2, 3])
result = pc.multiply(left, right)
expected = pa.array([0, -2, 3, 8, 15])
assert result.equals(expected)
@pytest.mark.parametrize("ty", ["round", "round_to_multiple"])
def test_round_to_integer(ty):
if ty == "round":
round = pc.round
RoundOptions = partial(pc.RoundOptions, ndigits=0)
elif ty == "round_to_multiple":
round = pc.round_to_multiple
RoundOptions = partial(pc.RoundToMultipleOptions, multiple=1)
values = [3.2, 3.5, 3.7, 4.5, -3.2, -3.5, -3.7, None]
rmode_and_expected = {
"down": [3, 3, 3, 4, -4, -4, -4, None],
"up": [4, 4, 4, 5, -3, -3, -3, None],
"towards_zero": [3, 3, 3, 4, -3, -3, -3, None],
"towards_infinity": [4, 4, 4, 5, -4, -4, -4, None],
"half_down": [3, 3, 4, 4, -3, -4, -4, None],
"half_up": [3, 4, 4, 5, -3, -3, -4, None],
"half_towards_zero": [3, 3, 4, 4, -3, -3, -4, None],
"half_towards_infinity": [3, 4, 4, 5, -3, -4, -4, None],
"half_to_even": [3, 4, 4, 4, -3, -4, -4, None],
"half_to_odd": [3, 3, 4, 5, -3, -3, -4, None],
}
for round_mode, expected in rmode_and_expected.items():
options = RoundOptions(round_mode=round_mode)
result = round(values, options=options)
np.testing.assert_array_equal(result, pa.array(expected))
def test_round():
values = [320, 3.5, 3.075, 4.5, -3.212, -35.1234, -3.045, None]
ndigits_and_expected = {
-2: [300, 0, 0, 0, -0, -0, -0, None],
-1: [320, 0, 0, 0, -0, -40, -0, None],
0: [320, 4, 3, 5, -3, -35, -3, None],
1: [320, 3.5, 3.1, 4.5, -3.2, -35.1, -3, None],
2: [320, 3.5, 3.08, 4.5, -3.21, -35.12, -3.05, None],
}
for ndigits, expected in ndigits_and_expected.items():
options = pc.RoundOptions(ndigits, "half_towards_infinity")
result = pc.round(values, options=options)
np.testing.assert_allclose(result, pa.array(expected), equal_nan=True)
assert pc.round(values, ndigits,
round_mode="half_towards_infinity") == result
assert pc.round(values, ndigits, "half_towards_infinity") == result
def test_round_to_multiple():
values = [320, 3.5, 3.075, 4.5, -3.212, -35.1234, -3.045, None]
multiple_and_expected = {
0.05: [320, 3.5, 3.1, 4.5, -3.2, -35.1, -3.05, None],
pa.scalar(0.1): [320, 3.5, 3.1, 4.5, -3.2, -35.1, -3, None],
2: [320, 4, 4, 4, -4, -36, -4, None],
10: [320, 0, 0, 0, -0, -40, -0, None],
pa.scalar(100, type=pa.decimal256(10, 4)):
[300, 0, 0, 0, -0, -0, -0, None],
}
for multiple, expected in multiple_and_expected.items():
options = pc.RoundToMultipleOptions(multiple, "half_towards_infinity")
result = pc.round_to_multiple(values, options=options)
np.testing.assert_allclose(result, pa.array(expected), equal_nan=True)
assert pc.round_to_multiple(values, multiple,
"half_towards_infinity") == result
for multiple in [0, -2, pa.scalar(-10.4)]:
with pytest.raises(pa.ArrowInvalid,
match="Rounding multiple must be positive"):
pc.round_to_multiple(values, multiple=multiple)
for multiple in [object, 99999999999999999999999]:
with pytest.raises(TypeError, match="is not a valid multiple type"):
pc.round_to_multiple(values, multiple=multiple)
def test_round_binary():
values = [123.456, 234.567, 345.678, 456.789, 123.456, 234.567, 345.678]
scales = pa.array([-3, -2, -1, 0, 1, 2, 3], pa.int32())
expected = pa.array(
[0, 200, 350, 457, 123.5, 234.57, 345.678], pa.float64())
assert pc.round_binary(values, scales) == expected
expect_zero = pa.scalar(0, pa.float64())
expect_inf = pa.scalar(10, pa.float64())
scale = pa.scalar(-1, pa.int32())
assert pc.round_binary(
5.0, scale, round_mode="half_towards_zero") == expect_zero
assert pc.round_binary(
5.0, scale, round_mode="half_towards_infinity") == expect_inf
def test_is_null():
arr = pa.array([1, 2, 3, None])
result = arr.is_null()
expected = pa.array([False, False, False, True])
assert result.equals(expected)
assert result.equals(pc.is_null(arr))
result = arr.is_valid()
expected = pa.array([True, True, True, False])
assert result.equals(expected)
assert result.equals(pc.is_valid(arr))
arr = pa.chunked_array([[1, 2], [3, None]])
result = arr.is_null()
expected = pa.chunked_array([[False, False], [False, True]])
assert result.equals(expected)
result = arr.is_valid()
expected = pa.chunked_array([[True, True], [True, False]])
assert result.equals(expected)
arr = pa.array([1, 2, 3, None, np.nan])
result = arr.is_null()
expected = pa.array([False, False, False, True, False])
assert result.equals(expected)
result = arr.is_null(nan_is_null=True)
expected = pa.array([False, False, False, True, True])
assert result.equals(expected)
def test_is_nan():
arr = pa.array([1, 2, 3, None, np.nan])
result = arr.is_nan()
expected = pa.array([False, False, False, None, True])
assert result.equals(expected)
arr = pa.array(["1", "2", None], type=pa.string())
with pytest.raises(
ArrowNotImplementedError, match="has no kernel matching input types"):
_ = arr.is_nan()
with pytest.raises(
ArrowNotImplementedError, match="has no kernel matching input types"):
arr = pa.array([b'a', b'bb', None], type=pa.large_binary())
_ = arr.is_nan()
def test_fill_null():
arr = pa.array([1, 2, None, 4], type=pa.int8())
fill_value = pa.array([5], type=pa.int8())
with pytest.raises(pa.ArrowInvalid,
match="Array arguments must all be the same length"):
arr.fill_null(fill_value)
arr = pa.array([None, None, None, None], type=pa.null())
fill_value = pa.scalar(None, type=pa.null())
result = arr.fill_null(fill_value)
expected = pa.array([None, None, None, None])
assert result.equals(expected)
arr = pa.array(['a', 'bb', None])
result = arr.fill_null('ccc')
expected = pa.array(['a', 'bb', 'ccc'])
assert result.equals(expected)
arr = pa.array([b'a', b'bb', None], type=pa.large_binary())
result = arr.fill_null('ccc')
expected = pa.array([b'a', b'bb', b'ccc'], type=pa.large_binary())
assert result.equals(expected)
arr = pa.array(['a', 'bb', None])
result = arr.fill_null(None)
expected = pa.array(['a', 'bb', None])
assert result.equals(expected)
@pytest.mark.parametrize('arrow_type', numerical_arrow_types)
def test_fill_null_array(arrow_type):
arr = pa.array([1, 2, None, 4], type=arrow_type)
fill_value = pa.scalar(5, type=arrow_type)
result = arr.fill_null(fill_value)
expected = pa.array([1, 2, 5, 4], type=arrow_type)
assert result.equals(expected)
# Implicit conversions
result = arr.fill_null(5)
assert result.equals(expected)
# ARROW-9451: Unsigned integers allow this for some reason
if not pa.types.is_unsigned_integer(arr.type):
with pytest.raises((ValueError, TypeError)):
arr.fill_null('5')
result = arr.fill_null(pa.scalar(5, type='int8'))
assert result.equals(expected)
@pytest.mark.parametrize('arrow_type', numerical_arrow_types)
def test_fill_null_chunked_array(arrow_type):
fill_value = pa.scalar(5, type=arrow_type)
arr = pa.chunked_array([pa.array([None, 2, 3, 4], type=arrow_type)])
result = arr.fill_null(fill_value)
expected = pa.chunked_array([pa.array([5, 2, 3, 4], type=arrow_type)])
assert result.equals(expected)
arr = pa.chunked_array([
pa.array([1, 2], type=arrow_type),
pa.array([], type=arrow_type),
pa.array([None, 4], type=arrow_type)
])
expected = pa.chunked_array([
pa.array([1, 2], type=arrow_type),
pa.array([], type=arrow_type),
pa.array([5, 4], type=arrow_type)
])
result = arr.fill_null(fill_value)
assert result.equals(expected)
# Implicit conversions
result = arr.fill_null(5)
assert result.equals(expected)
result = arr.fill_null(pa.scalar(5, type='int8'))
assert result.equals(expected)
def test_logical():
a = pa.array([True, False, False, None])
b = pa.array([True, True, False, True])
assert pc.and_(a, b) == pa.array([True, False, False, None])
assert pc.and_kleene(a, b) == pa.array([True, False, False, None])
assert pc.or_(a, b) == pa.array([True, True, False, None])
assert pc.or_kleene(a, b) == pa.array([True, True, False, True])
assert pc.xor(a, b) == pa.array([False, True, False, None])
assert pc.invert(a) == pa.array([False, True, True, None])
def test_dictionary_decode():
array = pa.array(["a", "a", "b", "c", "b"])
dictionary_array = array.dictionary_encode()
dictionary_array_decode = pc.dictionary_decode(dictionary_array)
assert array != dictionary_array
assert array == dictionary_array_decode
assert array == pc.dictionary_decode(array)
assert pc.dictionary_encode(dictionary_array) == dictionary_array
def test_cast():
arr = pa.array([1, 2, 3, 4], type='int64')
options = pc.CastOptions(pa.int8())
with pytest.raises(TypeError):
pc.cast(arr, target_type=None)
with pytest.raises(ValueError):
pc.cast(arr, 'int32', options=options)
with pytest.raises(ValueError):
pc.cast(arr, safe=True, options=options)
assert pc.cast(arr, options=options) == pa.array(
[1, 2, 3, 4], type='int8')
arr = pa.array([2 ** 63 - 1], type='int64')
allow_overflow_options = pc.CastOptions(
pa.int32(), allow_int_overflow=True)
with pytest.raises(pa.ArrowInvalid):
pc.cast(arr, 'int32')
assert pc.cast(arr, 'int32', safe=False) == pa.array([-1], type='int32')
assert pc.cast(arr, options=allow_overflow_options) == pa.array(
[-1], type='int32')
arr = pa.array(
[datetime.datetime(2010, 1, 1), datetime.datetime(2015, 1, 1)])
expected = pa.array([1262304000000, 1420070400000], type='timestamp[ms]')
assert pc.cast(arr, 'timestamp[ms]') == expected
arr = pa.array([[1, 2], [3, 4, 5]], type=pa.large_list(pa.int8()))
expected = pa.array([["1", "2"], ["3", "4", "5"]],
type=pa.list_(pa.utf8()))
assert pc.cast(arr, expected.type) == expected
@pytest.mark.parametrize('value_type', numerical_arrow_types)
def test_fsl_to_fsl_cast(value_type):
# Different field name and different type.
cast_type = pa.list_(pa.field("element", value_type), 2)
dtype = pa.int32()
type = pa.list_(pa.field("values", dtype), 2)
fsl = pa.FixedSizeListArray.from_arrays(
pa.array([1, 2, 3, 4, 5, 6], type=dtype), type=type)
assert cast_type == fsl.cast(cast_type).type
# Different field name and different type (with null values).
fsl = pa.FixedSizeListArray.from_arrays(
pa.array([1, None, None, 4, 5, 6], type=dtype), type=type)
assert cast_type == fsl.cast(cast_type).type
# Null FSL type.
dtype = pa.null()
type = pa.list_(pa.field("values", dtype), 2)
fsl = pa.FixedSizeListArray.from_arrays(
pa.array([None, None, None, None, None, None], type=dtype), type=type)
assert cast_type == fsl.cast(cast_type).type
# Different sized FSL
cast_type = pa.list_(pa.field("element", value_type), 3)
err_msg = 'Size of FixedSizeList is not the same.'
with pytest.raises(pa.lib.ArrowTypeError, match=err_msg):
fsl.cast(cast_type)
DecimalTypeTraits = namedtuple('DecimalTypeTraits',
('name', 'factory', 'max_precision'))
FloatToDecimalCase = namedtuple('FloatToDecimalCase',
('precision', 'scale', 'float_val'))
decimal_type_traits = [DecimalTypeTraits('decimal128', pa.decimal128, 38),
DecimalTypeTraits('decimal256', pa.decimal256, 76)]
def largest_scaled_float_not_above(val, scale):
"""
Find the largest float f such as `f * 10**scale <= val`
"""
assert val >= 0
assert scale >= 0
float_val = float(val) / 10**scale
if float_val * 10**scale > val:
# Take the float just below... it *should* satisfy
float_val = np.nextafter(float_val, 0.0)
if float_val * 10**scale > val:
float_val = np.nextafter(float_val, 0.0)
assert float_val * 10**scale <= val
return float_val
def scaled_float(int_val, scale):
"""
Return a float representation (possibly approximate) of `int_val**-scale`
"""
assert isinstance(int_val, int)
unscaled = decimal.Decimal(int_val)
scaled = unscaled.scaleb(-scale)
float_val = float(scaled)
return float_val
def integral_float_to_decimal_cast_cases(float_ty, max_precision):
"""
Return FloatToDecimalCase instances with integral values.
"""
mantissa_digits = 16
for precision in range(1, max_precision, 3):
for scale in range(0, precision, 2):
yield FloatToDecimalCase(precision, scale, 0.0)
yield FloatToDecimalCase(precision, scale, 1.0)
epsilon = 10**max(precision - mantissa_digits, scale)
abs_maxval = largest_scaled_float_not_above(
10**precision - epsilon, scale)
yield FloatToDecimalCase(precision, scale, abs_maxval)
def real_float_to_decimal_cast_cases(float_ty, max_precision):
"""
Return FloatToDecimalCase instances with real values.
"""
mantissa_digits = 16
for precision in range(1, max_precision, 3):
for scale in range(0, precision, 2):
epsilon = 2 * 10**max(precision - mantissa_digits, 0)
abs_minval = largest_scaled_float_not_above(epsilon, scale)
abs_maxval = largest_scaled_float_not_above(
10**precision - epsilon, scale)
yield FloatToDecimalCase(precision, scale, abs_minval)
yield FloatToDecimalCase(precision, scale, abs_maxval)
def random_float_to_decimal_cast_cases(float_ty, max_precision):
"""
Return random-generated FloatToDecimalCase instances.
"""
r = random.Random(42)
for precision in range(1, max_precision, 6):
for scale in range(0, precision, 4):
for i in range(20):
unscaled = r.randrange(0, 10**precision)
float_val = scaled_float(unscaled, scale)
assert float_val * 10**scale < 10**precision
yield FloatToDecimalCase(precision, scale, float_val)
def check_cast_float_to_decimal(float_ty, float_val, decimal_ty, decimal_ctx,
max_precision):
# Use the Python decimal module to build the expected result
# using the right precision
decimal_ctx.prec = decimal_ty.precision
decimal_ctx.rounding = decimal.ROUND_HALF_EVEN
expected = decimal_ctx.create_decimal_from_float(float_val)
# Round `expected` to `scale` digits after the decimal point
expected = expected.quantize(decimal.Decimal(1).scaleb(-decimal_ty.scale))
s = pa.scalar(float_val, type=float_ty)
actual = pc.cast(s, decimal_ty).as_py()
if actual != expected:
# Allow the last digit to vary. The tolerance is higher for
# very high precisions as rounding errors can accumulate in
# the iterative algorithm (GH-35576).
diff_digits = abs(actual - expected) * 10**decimal_ty.scale
limit = 2 if decimal_ty.precision < max_precision - 1 else 4
assert diff_digits <= limit, (
f"float_val = {float_val!r}, precision={decimal_ty.precision}, "
f"expected = {expected!r}, actual = {actual!r}, "
f"diff_digits = {diff_digits!r}")
# Cannot test float32 as case generators above assume float64
@pytest.mark.parametrize('float_ty', [pa.float64()], ids=str)
@pytest.mark.parametrize('decimal_ty', decimal_type_traits,
ids=lambda v: v.name)
@pytest.mark.parametrize('case_generator',
[integral_float_to_decimal_cast_cases,
real_float_to_decimal_cast_cases,
random_float_to_decimal_cast_cases],
ids=['integrals', 'reals', 'random'])
def test_cast_float_to_decimal(float_ty, decimal_ty, case_generator):
with decimal.localcontext() as ctx:
for case in case_generator(float_ty, decimal_ty.max_precision):
check_cast_float_to_decimal(
float_ty, case.float_val,
decimal_ty.factory(case.precision, case.scale),
ctx, decimal_ty.max_precision)
@pytest.mark.parametrize('float_ty', [pa.float32(), pa.float64()], ids=str)
@pytest.mark.parametrize('decimal_traits', decimal_type_traits,
ids=lambda v: v.name)
def test_cast_float_to_decimal_random(float_ty, decimal_traits):
"""
Test float-to-decimal conversion against exactly generated values.
"""
r = random.Random(43)
np_float_ty = {
pa.float32(): np.float32,
pa.float64(): np.float64,
}[float_ty]
mantissa_bits = {
pa.float32(): 24,
pa.float64(): 53,
}[float_ty]
float_exp_min, float_exp_max = {
pa.float32(): (-126, 127),
pa.float64(): (-1022, 1023),
}[float_ty]
mantissa_digits = math.floor(math.log10(2**mantissa_bits))
max_precision = decimal_traits.max_precision
with decimal.localcontext() as ctx:
precision = mantissa_digits
ctx.prec = precision
# The scale must be chosen so as
# 1) it's within bounds for the decimal type
# 2) the floating point exponent is within bounds
min_scale = max(-max_precision,
precision + math.ceil(math.log10(2**float_exp_min)))
max_scale = min(max_precision,
math.floor(math.log10(2**float_exp_max)))
for scale in range(min_scale, max_scale):
decimal_ty = decimal_traits.factory(precision, scale)
# We want to random-generate a float from its mantissa bits
# and exponent, and compute the expected value in the
# decimal domain. The float exponent has to ensure the
# expected value doesn't overflow and doesn't lose precision.
float_exp = (-mantissa_bits +
math.floor(math.log2(10**(precision - scale))))
assert float_exp_min <= float_exp <= float_exp_max
for i in range(5):
mantissa = r.randrange(0, 2**mantissa_bits)
float_val = np.ldexp(np_float_ty(mantissa), float_exp)
assert isinstance(float_val, np_float_ty)
# Make sure we compute the exact expected value and
# round by half-to-even when converting to the expected precision.
if float_exp >= 0:
expected = decimal.Decimal(mantissa) * 2**float_exp
else:
expected = decimal.Decimal(mantissa) / 2**-float_exp
expected_as_int = round(expected.scaleb(scale))
actual = pc.cast(
pa.scalar(float_val, type=float_ty), decimal_ty).as_py()
actual_as_int = round(actual.scaleb(scale))
# We allow for a minor rounding error between expected and actual
assert abs(actual_as_int - expected_as_int) <= 1
def test_strptime():
arr = pa.array(["5/1/2020", None, "12/13/1900"])
got = pc.strptime(arr, format='%m/%d/%Y', unit='s')
expected = pa.array(
[datetime.datetime(2020, 5, 1), None, datetime.datetime(1900, 12, 13)],
type=pa.timestamp('s'))
assert got == expected
# Positional format
assert pc.strptime(arr, '%m/%d/%Y', unit='s') == got
expected = pa.array([datetime.datetime(2020, 1, 5), None, None],
type=pa.timestamp('s'))
got = pc.strptime(arr, format='%d/%m/%Y', unit='s', error_is_null=True)
assert got == expected
with pytest.raises(pa.ArrowInvalid,
match="Failed to parse string: '5/1/2020'"):
pc.strptime(arr, format='%Y-%m-%d', unit='s', error_is_null=False)
with pytest.raises(pa.ArrowInvalid,
match="Failed to parse string: '5/1/2020'"):
pc.strptime(arr, format='%Y-%m-%d', unit='s')
got = pc.strptime(arr, format='%Y-%m-%d', unit='s', error_is_null=True)
assert got == pa.array([None, None, None], type=pa.timestamp('s'))
@pytest.mark.pandas
@pytest.mark.skipif(sys.platform == "win32" and not util.windows_has_tzdata(),
reason="Timezone database is not installed on Windows")
def test_strftime():
times = ["2018-03-10 09:00", "2038-01-31 12:23", None]
timezones = ["CET", "UTC", "Europe/Ljubljana"]
formats = ["%a", "%A", "%w", "%d", "%b", "%B", "%m", "%y", "%Y", "%H", "%I",
"%p", "%M", "%z", "%Z", "%j", "%U", "%W", "%%", "%G", "%V", "%u"]
if sys.platform != "win32":
# Locale-dependent formats don't match on Windows
formats.extend(["%c", "%x", "%X"])
for timezone in timezones:
ts = pd.to_datetime(times).tz_localize(timezone)
for unit in ["s", "ms", "us", "ns"]:
tsa = pa.array(ts, type=pa.timestamp(unit, timezone))
for fmt in formats:
options = pc.StrftimeOptions(fmt)
result = pc.strftime(tsa, options=options)
expected = pa.array(ts.strftime(fmt))
assert result.equals(expected)
fmt = "%Y-%m-%dT%H:%M:%S"
# Default format
tsa = pa.array(ts, type=pa.timestamp("s", timezone))
result = pc.strftime(tsa, options=pc.StrftimeOptions())
expected = pa.array(ts.strftime(fmt))
assert result.equals(expected)
# Default format plus timezone
tsa = pa.array(ts, type=pa.timestamp("s", timezone))
result = pc.strftime(tsa, options=pc.StrftimeOptions(fmt + "%Z"))
expected = pa.array(ts.strftime(fmt + "%Z"))
assert result.equals(expected)
# Pandas %S is equivalent to %S in arrow for unit="s"
tsa = pa.array(ts, type=pa.timestamp("s", timezone))
options = pc.StrftimeOptions("%S")
result = pc.strftime(tsa, options=options)
expected = pa.array(ts.strftime("%S"))
assert result.equals(expected)
# Pandas %S.%f is equivalent to %S in arrow for unit="us"
tsa = pa.array(ts, type=pa.timestamp("us", timezone))
options = pc.StrftimeOptions("%S")
result = pc.strftime(tsa, options=options)
expected = pa.array(ts.strftime("%S.%f"))
assert result.equals(expected)
# Test setting locale
tsa = pa.array(ts, type=pa.timestamp("s", timezone))
options = pc.StrftimeOptions(fmt, locale="C")
result = pc.strftime(tsa, options=options)
expected = pa.array(ts.strftime(fmt))
assert result.equals(expected)
# Test timestamps without timezone
fmt = "%Y-%m-%dT%H:%M:%S"
ts = pd.to_datetime(times)
tsa = pa.array(ts, type=pa.timestamp("s"))
result = pc.strftime(tsa, options=pc.StrftimeOptions(fmt))
expected = pa.array(ts.strftime(fmt))
# Positional format
assert pc.strftime(tsa, fmt) == result
assert result.equals(expected)
with pytest.raises(pa.ArrowInvalid,
match="Timezone not present, cannot convert to string"):
pc.strftime(tsa, options=pc.StrftimeOptions(fmt + "%Z"))
with pytest.raises(pa.ArrowInvalid,
match="Timezone not present, cannot convert to string"):
pc.strftime(tsa, options=pc.StrftimeOptions(fmt + "%z"))
def _check_datetime_components(timestamps, timezone=None):
from pyarrow.vendored.version import Version
ts = pd.to_datetime(timestamps).tz_localize(
"UTC").tz_convert(timezone).to_series()
tsa = pa.array(ts, pa.timestamp("ns", tz=timezone))
subseconds = ((ts.dt.microsecond * 10 ** 3 +
ts.dt.nanosecond) * 10 ** -9).round(9)
iso_calendar_fields = [
pa.field('iso_year', pa.int64()),
pa.field('iso_week', pa.int64()),
pa.field('iso_day_of_week', pa.int64())
]
if Version(pd.__version__) < Version("1.1.0"):
# https://github.com/pandas-dev/pandas/issues/33206
iso_year = ts.map(lambda x: x.isocalendar()[0]).astype("int64")
iso_week = ts.map(lambda x: x.isocalendar()[1]).astype("int64")
iso_day = ts.map(lambda x: x.isocalendar()[2]).astype("int64")
else:
# Casting is required because pandas isocalendar returns int32
# while arrow isocalendar returns int64.
iso_year = ts.dt.isocalendar()["year"].astype("int64")
iso_week = ts.dt.isocalendar()["week"].astype("int64")
iso_day = ts.dt.isocalendar()["day"].astype("int64")
iso_calendar = pa.StructArray.from_arrays(
[iso_year, iso_week, iso_day],
fields=iso_calendar_fields)
# Casting is required because pandas with 2.0.0 various numeric
# date/time attributes have dtype int32 (previously int64)
year = ts.dt.year.astype("int64")
month = ts.dt.month.astype("int64")
day = ts.dt.day.astype("int64")
dayofweek = ts.dt.dayofweek.astype("int64")
dayofyear = ts.dt.dayofyear.astype("int64")
quarter = ts.dt.quarter.astype("int64")
hour = ts.dt.hour.astype("int64")
minute = ts.dt.minute.astype("int64")
second = ts.dt.second.values.astype("int64")
microsecond = ts.dt.microsecond.astype("int64")
nanosecond = ts.dt.nanosecond.astype("int64")
assert pc.year(tsa).equals(pa.array(year))
assert pc.is_leap_year(tsa).equals(pa.array(ts.dt.is_leap_year))
assert pc.month(tsa).equals(pa.array(month))
assert pc.day(tsa).equals(pa.array(day))
assert pc.day_of_week(tsa).equals(pa.array(dayofweek))
assert pc.day_of_year(tsa).equals(pa.array(dayofyear))
assert pc.iso_year(tsa).equals(pa.array(iso_year))
assert pc.iso_week(tsa).equals(pa.array(iso_week))
assert pc.iso_calendar(tsa).equals(iso_calendar)
assert pc.quarter(tsa).equals(pa.array(quarter))
assert pc.hour(tsa).equals(pa.array(hour))
assert pc.minute(tsa).equals(pa.array(minute))
assert pc.second(tsa).equals(pa.array(second))
assert pc.millisecond(tsa).equals(pa.array(microsecond // 10 ** 3))
assert pc.microsecond(tsa).equals(pa.array(microsecond % 10 ** 3))
assert pc.nanosecond(tsa).equals(pa.array(nanosecond))
assert pc.subsecond(tsa).equals(pa.array(subseconds))
assert pc.local_timestamp(tsa).equals(pa.array(ts.dt.tz_localize(None)))
if ts.dt.tz:
if ts.dt.tz is datetime.timezone.utc:
# datetime with utc returns None for dst()
is_dst = [False] * len(ts)
else:
is_dst = ts.apply(lambda x: x.dst().seconds > 0)
assert pc.is_dst(tsa).equals(pa.array(is_dst))
day_of_week_options = pc.DayOfWeekOptions(
count_from_zero=False, week_start=1)
assert pc.day_of_week(tsa, options=day_of_week_options).equals(
pa.array(dayofweek + 1))
week_options = pc.WeekOptions(
week_starts_monday=True, count_from_zero=False,
first_week_is_fully_in_year=False)
assert pc.week(tsa, options=week_options).equals(pa.array(iso_week))
@pytest.mark.pandas
def test_extract_datetime_components():
timestamps = ["1970-01-01T00:00:59.123456789",
"2000-02-29T23:23:23.999999999",
"2033-05-18T03:33:20.000000000",
"2020-01-01T01:05:05.001",
"2019-12-31T02:10:10.002",
"2019-12-30T03:15:15.003",
"2009-12-31T04:20:20.004132",
"2010-01-01T05:25:25.005321",
"2010-01-03T06:30:30.006163",
"2010-01-04T07:35:35.0",
"2006-01-01T08:40:40.0",
"2005-12-31T09:45:45.0",
"2008-12-28T00:00:00.0",
"2008-12-29T00:00:00.0",
"2012-01-01T01:02:03.0"]
timezones = ["UTC", "US/Central", "Asia/Kolkata",
"Etc/GMT-4", "Etc/GMT+4", "Australia/Broken_Hill"]
# Test timezone naive timestamp array
_check_datetime_components(timestamps)
# Test timezone aware timestamp array
if sys.platform == "win32" and not util.windows_has_tzdata():
pytest.skip('Timezone database is not installed on Windows')
else:
for timezone in timezones:
_check_datetime_components(timestamps, timezone)
@pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"])
def test_iso_calendar_longer_array(unit):
# https://github.com/apache/arrow/issues/38655
# ensure correct result for array length > 32
arr = pa.array([datetime.datetime(2022, 1, 2, 9)]*50, pa.timestamp(unit))
result = pc.iso_calendar(arr)
expected = pa.StructArray.from_arrays(
[[2021]*50, [52]*50, [7]*50],
names=['iso_year', 'iso_week', 'iso_day_of_week']
)
assert result.equals(expected)
@pytest.mark.pandas
@pytest.mark.skipif(sys.platform == "win32" and not util.windows_has_tzdata(),
reason="Timezone database is not installed on Windows")
def test_assume_timezone():
ts_type = pa.timestamp("ns")
timestamps = pd.to_datetime(["1970-01-01T00:00:59.123456789",
"2000-02-29T23:23:23.999999999",
"2033-05-18T03:33:20.000000000",
"2020-01-01T01:05:05.001",
"2019-12-31T02:10:10.002",
"2019-12-30T03:15:15.003",
"2009-12-31T04:20:20.004132",
"2010-01-01T05:25:25.005321",
"2010-01-03T06:30:30.006163",
"2010-01-04T07:35:35.0",
"2006-01-01T08:40:40.0",
"2005-12-31T09:45:45.0",
"2008-12-28T00:00:00.0",
"2008-12-29T00:00:00.0",
"2012-01-01T01:02:03.0"])
nonexistent = pd.to_datetime(["2015-03-29 02:30:00",
"2015-03-29 03:30:00"])
ambiguous = pd.to_datetime(["2018-10-28 01:20:00",
"2018-10-28 02:36:00",
"2018-10-28 03:46:00"])
ambiguous_array = pa.array(ambiguous, type=ts_type)
nonexistent_array = pa.array(nonexistent, type=ts_type)
for timezone in ["UTC", "US/Central", "Asia/Kolkata"]:
options = pc.AssumeTimezoneOptions(timezone)
ta = pa.array(timestamps, type=ts_type)
expected = timestamps.tz_localize(timezone)
result = pc.assume_timezone(ta, options=options)
assert result.equals(pa.array(expected))
result = pc.assume_timezone(ta, timezone) # Positional option
assert result.equals(pa.array(expected))
ta_zoned = pa.array(timestamps, type=pa.timestamp("ns", timezone))
with pytest.raises(pa.ArrowInvalid, match="already have a timezone:"):
pc.assume_timezone(ta_zoned, options=options)
invalid_options = pc.AssumeTimezoneOptions("Europe/Brusselsss")
with pytest.raises(ValueError, match="not found in timezone database"):
pc.assume_timezone(ta, options=invalid_options)
timezone = "Europe/Brussels"
options_nonexistent_raise = pc.AssumeTimezoneOptions(timezone)
options_nonexistent_earliest = pc.AssumeTimezoneOptions(
timezone, ambiguous="raise", nonexistent="earliest")
options_nonexistent_latest = pc.AssumeTimezoneOptions(
timezone, ambiguous="raise", nonexistent="latest")
with pytest.raises(ValueError,
match="Timestamp doesn't exist in "
f"timezone '{timezone}'"):
pc.assume_timezone(nonexistent_array,
options=options_nonexistent_raise)
expected = pa.array(nonexistent.tz_localize(
timezone, nonexistent="shift_forward"))
result = pc.assume_timezone(
nonexistent_array, options=options_nonexistent_latest)
expected.equals(result)
expected = pa.array(nonexistent.tz_localize(
timezone, nonexistent="shift_backward"))
result = pc.assume_timezone(
nonexistent_array, options=options_nonexistent_earliest)
expected.equals(result)
options_ambiguous_raise = pc.AssumeTimezoneOptions(timezone)
options_ambiguous_latest = pc.AssumeTimezoneOptions(
timezone, ambiguous="latest", nonexistent="raise")
options_ambiguous_earliest = pc.AssumeTimezoneOptions(
timezone, ambiguous="earliest", nonexistent="raise")
with pytest.raises(ValueError,
match="Timestamp is ambiguous in "
f"timezone '{timezone}'"):
pc.assume_timezone(ambiguous_array, options=options_ambiguous_raise)
expected = ambiguous.tz_localize(timezone, ambiguous=[True, True, True])
result = pc.assume_timezone(
ambiguous_array, options=options_ambiguous_earliest)
result.equals(pa.array(expected))
expected = ambiguous.tz_localize(timezone, ambiguous=[False, False, False])
result = pc.assume_timezone(
ambiguous_array, options=options_ambiguous_latest)
result.equals(pa.array(expected))
def _check_temporal_rounding(ts, values, unit):
unit_shorthand = {
"nanosecond": "ns",
"microsecond": "us",
"millisecond": "ms",
"second": "s",
"minute": "min",
"hour": "h",
"day": "D"
}
greater_unit = {
"nanosecond": "us",
"microsecond": "ms",
"millisecond": "s",
"second": "min",
"minute": "h",
"hour": "d",
}
ta = pa.array(ts)
for value in values:
frequency = str(value) + unit_shorthand[unit]
options = pc.RoundTemporalOptions(value, unit)
result = pc.ceil_temporal(ta, options=options).to_pandas()
expected = ts.dt.ceil(frequency)
np.testing.assert_array_equal(result, expected)
result = pc.floor_temporal(ta, options=options).to_pandas()
expected = ts.dt.floor(frequency)
np.testing.assert_array_equal(result, expected)
result = pc.round_temporal(ta, options=options).to_pandas()
expected = ts.dt.round(frequency)
np.testing.assert_array_equal(result, expected)
# Check rounding with calendar_based_origin=True.
# Note: rounding to month is not supported in Pandas so we can't
# approximate this functionality and exclude unit == "day".
if unit != "day":
options = pc.RoundTemporalOptions(
value, unit, calendar_based_origin=True)
origin = ts.dt.floor(greater_unit[unit])
if ta.type.tz is None:
result = pc.ceil_temporal(ta, options=options).to_pandas()
expected = (ts - origin).dt.ceil(frequency) + origin
np.testing.assert_array_equal(result, expected)
result = pc.floor_temporal(ta, options=options).to_pandas()
expected = (ts - origin).dt.floor(frequency) + origin
np.testing.assert_array_equal(result, expected)
result = pc.round_temporal(ta, options=options).to_pandas()
expected = (ts - origin).dt.round(frequency) + origin
np.testing.assert_array_equal(result, expected)
# Check RoundTemporalOptions partial defaults
if unit == "day":
result = pc.ceil_temporal(ta, multiple=value).to_pandas()
expected = ts.dt.ceil(frequency)
np.testing.assert_array_equal(result, expected)
result = pc.floor_temporal(ta, multiple=value).to_pandas()
expected = ts.dt.floor(frequency)
np.testing.assert_array_equal(result, expected)
result = pc.round_temporal(ta, multiple=value).to_pandas()
expected = ts.dt.round(frequency)
np.testing.assert_array_equal(result, expected)
# We naively test ceil_is_strictly_greater by adding time unit multiple
# to regular ceiled timestamp if it is equal to the original timestamp.
# This does not work if timestamp is zoned since our logic will not
# account for DST jumps.
if ta.type.tz is None:
options = pc.RoundTemporalOptions(
value, unit, ceil_is_strictly_greater=True)
result = pc.ceil_temporal(ta, options=options)
expected = ts.dt.ceil(frequency)
expected = np.where(
expected == ts,
expected + pd.Timedelta(value, unit_shorthand[unit]),
expected)
np.testing.assert_array_equal(result, expected)
# Check RoundTemporalOptions defaults
if unit == "day":
frequency = "1D"
result = pc.ceil_temporal(ta).to_pandas()
expected = ts.dt.ceil(frequency)
np.testing.assert_array_equal(result, expected)
result = pc.floor_temporal(ta).to_pandas()
expected = ts.dt.floor(frequency)
np.testing.assert_array_equal(result, expected)
result = pc.round_temporal(ta).to_pandas()
expected = ts.dt.round(frequency)
np.testing.assert_array_equal(result, expected)
@pytest.mark.skipif(sys.platform == "win32" and not util.windows_has_tzdata(),
reason="Timezone database is not installed on Windows")
@pytest.mark.parametrize('unit', ("nanosecond", "microsecond", "millisecond",
"second", "minute", "hour", "day"))
@pytest.mark.pandas
def test_round_temporal(unit):
values = (1, 2, 3, 4, 5, 6, 7, 10, 15, 24, 60, 250, 500, 750)
timestamps = [
"1923-07-07 08:52:35.203790336",
"1931-03-17 10:45:00.641559040",
"1932-06-16 01:16:42.911994368",
"1941-05-27 11:46:43.822831872",
"1943-12-14 07:32:05.424766464",
"1954-04-12 04:31:50.699881472",
"1966-02-12 17:41:28.693282560",
"1967-02-26 05:56:46.922376960",
"1975-11-01 10:55:37.016146432",
"1982-01-21 18:43:44.517366784",
"1992-01-01 00:00:00.100000000",
"1999-12-04 05:55:34.794991104",
"2026-10-26 08:39:00.316686848"]
ts = pd.Series([pd.Timestamp(x, unit="ns") for x in timestamps])
_check_temporal_rounding(ts, values, unit)
timezones = ["Asia/Kolkata", "America/New_York", "Etc/GMT-4", "Etc/GMT+4",
"Europe/Brussels", "Pacific/Marquesas", "US/Central", "UTC"]
for timezone in timezones:
ts_zoned = ts.dt.tz_localize("UTC").dt.tz_convert(timezone)
_check_temporal_rounding(ts_zoned, values, unit)
def test_count():
arr = pa.array([1, 2, 3, None, None])
assert pc.count(arr).as_py() == 3
assert pc.count(arr, mode='only_valid').as_py() == 3
assert pc.count(arr, mode='only_null').as_py() == 2
assert pc.count(arr, mode='all').as_py() == 5
assert pc.count(arr, 'all').as_py() == 5
with pytest.raises(ValueError,
match='"something else" is not a valid count mode'):
pc.count(arr, 'something else')
def test_index():
arr = pa.array([0, 1, None, 3, 4], type=pa.int64())
assert pc.index(arr, pa.scalar(0)).as_py() == 0
assert pc.index(arr, pa.scalar(2, type=pa.int8())).as_py() == -1
assert pc.index(arr, 4).as_py() == 4
assert arr.index(3, start=2).as_py() == 3
assert arr.index(None).as_py() == -1
arr = pa.chunked_array([[1, 2], [1, 3]], type=pa.int64())
assert arr.index(1).as_py() == 0
assert arr.index(1, start=2).as_py() == 2
assert arr.index(1, start=1, end=2).as_py() == -1
def check_partition_nth(data, indices, pivot, null_placement):
indices = indices.to_pylist()
assert len(indices) == len(data)
assert sorted(indices) == list(range(len(data)))
until_pivot = [data[indices[i]] for i in range(pivot)]
after_pivot = [data[indices[i]] for i in range(pivot, len(data))]
p = data[indices[pivot]]
if p is None:
if null_placement == "at_start":
assert all(v is None for v in until_pivot)
else:
assert all(v is None for v in after_pivot)
else:
if null_placement == "at_start":
assert all(v is None or v <= p for v in until_pivot)
assert all(v >= p for v in after_pivot)
else:
assert all(v <= p for v in until_pivot)
assert all(v is None or v >= p for v in after_pivot)
def test_partition_nth():
data = list(range(100, 140))
random.shuffle(data)
pivot = 10
indices = pc.partition_nth_indices(data, pivot=pivot)
check_partition_nth(data, indices, pivot, "at_end")
# Positional pivot argument
assert pc.partition_nth_indices(data, pivot) == indices
with pytest.raises(
ValueError,
match="'partition_nth_indices' cannot be called without options"):
pc.partition_nth_indices(data)
def test_partition_nth_null_placement():
data = list(range(10)) + [None] * 10
random.shuffle(data)
for pivot in (0, 7, 13, 19):
for null_placement in ("at_start", "at_end"):
indices = pc.partition_nth_indices(data, pivot=pivot,
null_placement=null_placement)
check_partition_nth(data, indices, pivot, null_placement)
def test_select_k_array():
def validate_select_k(select_k_indices, arr, order, stable_sort=False):
sorted_indices = pc.sort_indices(arr, sort_keys=[("dummy", order)])
head_k_indices = sorted_indices.slice(0, len(select_k_indices))
if stable_sort:
assert select_k_indices == head_k_indices
else:
expected = pc.take(arr, head_k_indices)
actual = pc.take(arr, select_k_indices)
assert actual == expected
arr = pa.array([1, 2, None, 0])
for k in [0, 2, 4]:
for order in ["descending", "ascending"]:
result = pc.select_k_unstable(
arr, k=k, sort_keys=[("dummy", order)])
validate_select_k(result, arr, order)
result = pc.top_k_unstable(arr, k=k)
validate_select_k(result, arr, "descending")
result = pc.bottom_k_unstable(arr, k=k)
validate_select_k(result, arr, "ascending")
result = pc.select_k_unstable(
arr, options=pc.SelectKOptions(
k=2, sort_keys=[("dummy", "descending")])
)
validate_select_k(result, arr, "descending")
result = pc.select_k_unstable(
arr, options=pc.SelectKOptions(k=2, sort_keys=[("dummy", "ascending")])
)
validate_select_k(result, arr, "ascending")
# Position options
assert pc.select_k_unstable(arr, 2,
sort_keys=[("dummy", "ascending")]) == result
assert pc.select_k_unstable(arr, 2, [("dummy", "ascending")]) == result
def test_select_k_table():
def validate_select_k(select_k_indices, tbl, sort_keys, stable_sort=False):
sorted_indices = pc.sort_indices(tbl, sort_keys=sort_keys)
head_k_indices = sorted_indices.slice(0, len(select_k_indices))
if stable_sort:
assert select_k_indices == head_k_indices
else:
expected = pc.take(tbl, head_k_indices)
actual = pc.take(tbl, select_k_indices)
assert actual == expected
table = pa.table({"a": [1, 2, 0], "b": [1, 0, 1]})
for k in [0, 2, 4]:
result = pc.select_k_unstable(
table, k=k, sort_keys=[("a", "ascending")])
validate_select_k(result, table, sort_keys=[("a", "ascending")])
result = pc.select_k_unstable(
table, k=k, sort_keys=[(pc.field("a"), "ascending"), ("b", "ascending")])
validate_select_k(
result, table, sort_keys=[("a", "ascending"), ("b", "ascending")])
result = pc.top_k_unstable(table, k=k, sort_keys=["a"])
validate_select_k(result, table, sort_keys=[("a", "descending")])
result = pc.bottom_k_unstable(table, k=k, sort_keys=["a", "b"])
validate_select_k(
result, table, sort_keys=[("a", "ascending"), ("b", "ascending")])
with pytest.raises(
ValueError,
match="'select_k_unstable' cannot be called without options"):
pc.select_k_unstable(table)
with pytest.raises(ValueError,
match="select_k_unstable requires a nonnegative `k`"):
pc.select_k_unstable(table, k=-1, sort_keys=[("a", "ascending")])
with pytest.raises(ValueError,
match="select_k_unstable requires a "
"non-empty `sort_keys`"):
pc.select_k_unstable(table, k=2, sort_keys=[])
with pytest.raises(ValueError, match="not a valid sort order"):
pc.select_k_unstable(table, k=k, sort_keys=[("a", "nonscending")])
with pytest.raises(ValueError,
match="Invalid sort key column: No match for.*unknown"):
pc.select_k_unstable(table, k=k, sort_keys=[("unknown", "ascending")])
def test_array_sort_indices():
arr = pa.array([1, 2, None, 0])
result = pc.array_sort_indices(arr)
assert result.to_pylist() == [3, 0, 1, 2]
result = pc.array_sort_indices(arr, order="ascending")
assert result.to_pylist() == [3, 0, 1, 2]
result = pc.array_sort_indices(arr, order="descending")
assert result.to_pylist() == [1, 0, 3, 2]
result = pc.array_sort_indices(arr, order="descending",
null_placement="at_start")
assert result.to_pylist() == [2, 1, 0, 3]
result = pc.array_sort_indices(arr, "descending",
null_placement="at_start")
assert result.to_pylist() == [2, 1, 0, 3]
with pytest.raises(ValueError, match="not a valid sort order"):
pc.array_sort_indices(arr, order="nonscending")
def test_sort_indices_array():
arr = pa.array([1, 2, None, 0])
result = pc.sort_indices(arr)
assert result.to_pylist() == [3, 0, 1, 2]
result = pc.sort_indices(arr, sort_keys=[("dummy", "ascending")])
assert result.to_pylist() == [3, 0, 1, 2]
result = pc.sort_indices(arr, sort_keys=[("dummy", "descending")])
assert result.to_pylist() == [1, 0, 3, 2]
result = pc.sort_indices(arr, sort_keys=[("dummy", "descending")],
null_placement="at_start")
assert result.to_pylist() == [2, 1, 0, 3]
# Positional `sort_keys`
result = pc.sort_indices(arr, [("dummy", "descending")],
null_placement="at_start")
assert result.to_pylist() == [2, 1, 0, 3]
# Using SortOptions
result = pc.sort_indices(
arr, options=pc.SortOptions(sort_keys=[("dummy", "descending")])
)
assert result.to_pylist() == [1, 0, 3, 2]
result = pc.sort_indices(
arr, options=pc.SortOptions(sort_keys=[("dummy", "descending")],
null_placement="at_start")
)
assert result.to_pylist() == [2, 1, 0, 3]
def test_sort_indices_table():
table = pa.table({"a": [1, 1, None, 0], "b": [1, 0, 0, 1]})
result = pc.sort_indices(table, sort_keys=[("a", "ascending")])
assert result.to_pylist() == [3, 0, 1, 2]
result = pc.sort_indices(table, sort_keys=[(pc.field("a"), "ascending")],
null_placement="at_start")
assert result.to_pylist() == [2, 3, 0, 1]
result = pc.sort_indices(
table, sort_keys=[("a", "descending"), ("b", "ascending")]
)
assert result.to_pylist() == [1, 0, 3, 2]
result = pc.sort_indices(
table, sort_keys=[("a", "descending"), ("b", "ascending")],
null_placement="at_start"
)
assert result.to_pylist() == [2, 1, 0, 3]
# Positional `sort_keys`
result = pc.sort_indices(
table, [("a", "descending"), ("b", "ascending")],
null_placement="at_start"
)
assert result.to_pylist() == [2, 1, 0, 3]
with pytest.raises(ValueError, match="Must specify one or more sort keys"):
pc.sort_indices(table)
with pytest.raises(ValueError,
match="Invalid sort key column: No match for.*unknown"):
pc.sort_indices(table, sort_keys=[("unknown", "ascending")])
with pytest.raises(ValueError, match="not a valid sort order"):
pc.sort_indices(table, sort_keys=[("a", "nonscending")])
def test_is_in():
arr = pa.array([1, 2, None, 1, 2, 3])
result = pc.is_in(arr, value_set=pa.array([1, 3, None]))
assert result.to_pylist() == [True, False, True, True, False, True]
result = pc.is_in(arr, value_set=pa.array([1, 3, None]), skip_nulls=True)
assert result.to_pylist() == [True, False, False, True, False, True]
result = pc.is_in(arr, value_set=pa.array([1, 3]))
assert result.to_pylist() == [True, False, False, True, False, True]
result = pc.is_in(arr, value_set=pa.array([1, 3]), skip_nulls=True)
assert result.to_pylist() == [True, False, False, True, False, True]
def test_index_in():
arr = pa.array([1, 2, None, 1, 2, 3])
result = pc.index_in(arr, value_set=pa.array([1, 3, None]))
assert result.to_pylist() == [0, None, 2, 0, None, 1]
result = pc.index_in(arr, value_set=pa.array([1, 3, None]),
skip_nulls=True)
assert result.to_pylist() == [0, None, None, 0, None, 1]
result = pc.index_in(arr, value_set=pa.array([1, 3]))
assert result.to_pylist() == [0, None, None, 0, None, 1]
result = pc.index_in(arr, value_set=pa.array([1, 3]), skip_nulls=True)
assert result.to_pylist() == [0, None, None, 0, None, 1]
# Positional value_set
result = pc.index_in(arr, pa.array([1, 3]), skip_nulls=True)
assert result.to_pylist() == [0, None, None, 0, None, 1]
def test_quantile():
arr = pa.array([1, 2, 3, 4])
result = pc.quantile(arr)
assert result.to_pylist() == [2.5]
result = pc.quantile(arr, interpolation='lower')
assert result.to_pylist() == [2]
result = pc.quantile(arr, interpolation='higher')
assert result.to_pylist() == [3]
result = pc.quantile(arr, interpolation='nearest')
assert result.to_pylist() == [3]
result = pc.quantile(arr, interpolation='midpoint')
assert result.to_pylist() == [2.5]
result = pc.quantile(arr, interpolation='linear')
assert result.to_pylist() == [2.5]
arr = pa.array([1, 2])
result = pc.quantile(arr, q=[0.25, 0.5, 0.75])
assert result.to_pylist() == [1.25, 1.5, 1.75]
result = pc.quantile(arr, q=[0.25, 0.5, 0.75], interpolation='lower')
assert result.to_pylist() == [1, 1, 1]
result = pc.quantile(arr, q=[0.25, 0.5, 0.75], interpolation='higher')
assert result.to_pylist() == [2, 2, 2]
result = pc.quantile(arr, q=[0.25, 0.5, 0.75], interpolation='midpoint')
assert result.to_pylist() == [1.5, 1.5, 1.5]
result = pc.quantile(arr, q=[0.25, 0.5, 0.75], interpolation='nearest')
assert result.to_pylist() == [1, 1, 2]
result = pc.quantile(arr, q=[0.25, 0.5, 0.75], interpolation='linear')
assert result.to_pylist() == [1.25, 1.5, 1.75]
# Positional `q`
result = pc.quantile(arr, [0.25, 0.5, 0.75], interpolation='linear')
assert result.to_pylist() == [1.25, 1.5, 1.75]
with pytest.raises(ValueError, match="Quantile must be between 0 and 1"):
pc.quantile(arr, q=1.1)
with pytest.raises(ValueError, match="not a valid quantile interpolation"):
pc.quantile(arr, interpolation='zzz')
def test_tdigest():
arr = pa.array([1, 2, 3, 4])
result = pc.tdigest(arr)
assert result.to_pylist() == [2.5]
arr = pa.chunked_array([pa.array([1, 2]), pa.array([3, 4])])
result = pc.tdigest(arr)
assert result.to_pylist() == [2.5]
arr = pa.array([1, 2, 3, 4])
result = pc.tdigest(arr, q=[0, 0.5, 1])
assert result.to_pylist() == [1, 2.5, 4]
arr = pa.chunked_array([pa.array([1, 2]), pa.array([3, 4])])
result = pc.tdigest(arr, [0, 0.5, 1]) # positional `q`
assert result.to_pylist() == [1, 2.5, 4]
def test_fill_null_segfault():
# ARROW-12672
arr = pa.array([None], pa.bool_()).fill_null(False)
result = arr.cast(pa.int8())
assert result == pa.array([0], pa.int8())
def test_min_max_element_wise():
arr1 = pa.array([1, 2, 3])
arr2 = pa.array([3, 1, 2])
arr3 = pa.array([2, 3, None])
result = pc.max_element_wise(arr1, arr2)
assert result == pa.array([3, 2, 3])
result = pc.min_element_wise(arr1, arr2)
assert result == pa.array([1, 1, 2])
result = pc.max_element_wise(arr1, arr2, arr3)
assert result == pa.array([3, 3, 3])
result = pc.min_element_wise(arr1, arr2, arr3)
assert result == pa.array([1, 1, 2])
# with specifying the option
result = pc.max_element_wise(arr1, arr3, skip_nulls=True)
assert result == pa.array([2, 3, 3])
result = pc.min_element_wise(arr1, arr3, skip_nulls=True)
assert result == pa.array([1, 2, 3])
result = pc.max_element_wise(
arr1, arr3, options=pc.ElementWiseAggregateOptions())
assert result == pa.array([2, 3, 3])
result = pc.min_element_wise(
arr1, arr3, options=pc.ElementWiseAggregateOptions())
assert result == pa.array([1, 2, 3])
# not skipping nulls
result = pc.max_element_wise(arr1, arr3, skip_nulls=False)
assert result == pa.array([2, 3, None])
result = pc.min_element_wise(arr1, arr3, skip_nulls=False)
assert result == pa.array([1, 2, None])
@pytest.mark.parametrize('start', (1.25, 10.5, -10.5))
@pytest.mark.parametrize('skip_nulls', (True, False))
def test_cumulative_sum(start, skip_nulls):
# Exact tests (e.g., integral types)
start_int = int(start)
starts = [None, start_int, pa.scalar(start_int, type=pa.int8()),
pa.scalar(start_int, type=pa.int64())]
for strt in starts:
arrays = [
pa.array([1, 2, 3]),
pa.array([0, None, 20, 30]),
pa.chunked_array([[0, None], [20, 30]])
]
expected_arrays = [
pa.array([1, 3, 6]),
pa.array([0, None, 20, 50])
if skip_nulls else pa.array([0, None, None, None]),
pa.chunked_array([[0, None, 20, 50]])
if skip_nulls else pa.chunked_array([[0, None, None, None]])
]
for i, arr in enumerate(arrays):
result = pc.cumulative_sum(arr, start=strt, skip_nulls=skip_nulls)
# Add `start` offset to expected array before comparing
expected = pc.add(expected_arrays[i], strt if strt is not None
else 0)
assert result.equals(expected)
starts = [None, start, pa.scalar(start, type=pa.float32()),
pa.scalar(start, type=pa.float64())]
for strt in starts:
arrays = [
pa.array([1.125, 2.25, 3.03125]),
pa.array([1, np.nan, 2, -3, 4, 5]),
pa.array([1, np.nan, None, 3, None, 5])
]
expected_arrays = [
np.array([1.125, 3.375, 6.40625]),
np.array([1, np.nan, np.nan, np.nan, np.nan, np.nan]),
np.array([1, np.nan, None, np.nan, None, np.nan])
if skip_nulls else np.array([1, np.nan, None, None, None, None])
]
for i, arr in enumerate(arrays):
result = pc.cumulative_sum(arr, start=strt, skip_nulls=skip_nulls)
# Add `start` offset to expected array before comparing
expected = pc.add(expected_arrays[i], strt if strt is not None
else 0)
np.testing.assert_array_almost_equal(result.to_numpy(
zero_copy_only=False), expected.to_numpy(zero_copy_only=False))
for strt in ['a', pa.scalar('arrow'), 1.1]:
with pytest.raises(pa.ArrowInvalid):
pc.cumulative_sum([1, 2, 3], start=strt)
@pytest.mark.parametrize('start', (1.25, 10.5, -10.5))
@pytest.mark.parametrize('skip_nulls', (True, False))
def test_cumulative_prod(start, skip_nulls):
# Exact tests (e.g., integral types)
start_int = int(start)
starts = [None, start_int, pa.scalar(start_int, type=pa.int8()),
pa.scalar(start_int, type=pa.int64())]
for strt in starts:
arrays = [
pa.array([1, 2, 3]),
pa.array([1, None, 20, 5]),
pa.chunked_array([[1, None], [20, 5]])
]
expected_arrays = [
pa.array([1, 2, 6]),
pa.array([1, None, 20, 100])
if skip_nulls else pa.array([1, None, None, None]),
pa.chunked_array([[1, None, 20, 100]])
if skip_nulls else pa.chunked_array([[1, None, None, None]])
]
for i, arr in enumerate(arrays):
result = pc.cumulative_prod(arr, start=strt, skip_nulls=skip_nulls)
# Multiply `start` offset to expected array before comparing
expected = pc.multiply(expected_arrays[i], strt if strt is not None
else 1)
assert result.equals(expected)
starts = [None, start, pa.scalar(start, type=pa.float32()),
pa.scalar(start, type=pa.float64())]
for strt in starts:
arrays = [
pa.array([1.5, 2.5, 3.5]),
pa.array([1, np.nan, 2, -3, 4, 5]),
pa.array([1, np.nan, None, 3, None, 5])
]
expected_arrays = [
np.array([1.5, 3.75, 13.125]),
np.array([1, np.nan, np.nan, np.nan, np.nan, np.nan]),
np.array([1, np.nan, None, np.nan, None, np.nan])
if skip_nulls else np.array([1, np.nan, None, None, None, None])
]
for i, arr in enumerate(arrays):
result = pc.cumulative_prod(arr, start=strt, skip_nulls=skip_nulls)
# Multiply `start` offset to expected array before comparing
expected = pc.multiply(expected_arrays[i], strt if strt is not None
else 1)
np.testing.assert_array_almost_equal(result.to_numpy(
zero_copy_only=False), expected.to_numpy(zero_copy_only=False))
for strt in ['a', pa.scalar('arrow'), 1.1]:
with pytest.raises(pa.ArrowInvalid):
pc.cumulative_prod([1, 2, 3], start=strt)
@pytest.mark.parametrize('start', (0.5, 3.5, 6.5))
@pytest.mark.parametrize('skip_nulls', (True, False))
def test_cumulative_max(start, skip_nulls):
# Exact tests (e.g., integral types)
start_int = int(start)
starts = [None, start_int, pa.scalar(start_int, type=pa.int8()),
pa.scalar(start_int, type=pa.int64())]
for strt in starts:
arrays = [
pa.array([2, 1, 3, 5, 4, 6]),
pa.array([2, 1, None, 5, 4, None]),
pa.chunked_array([[2, 1, None], [5, 4, None]])
]
expected_arrays = [
pa.array([2, 2, 3, 5, 5, 6]),
pa.array([2, 2, None, 5, 5, None])
if skip_nulls else pa.array([2, 2, None, None, None, None]),
pa.chunked_array([[2, 2, None, 5, 5, None]])
if skip_nulls else
pa.chunked_array([[2, 2, None, None, None, None]])
]
for i, arr in enumerate(arrays):
result = pc.cumulative_max(arr, start=strt, skip_nulls=skip_nulls)
# Max `start` offset with expected array before comparing
expected = pc.max_element_wise(
expected_arrays[i], strt if strt is not None else int(-1e9),
skip_nulls=False)
assert result.equals(expected)
starts = [None, start, pa.scalar(start, type=pa.float32()),
pa.scalar(start, type=pa.float64())]
for strt in starts:
arrays = [
pa.array([2.5, 1.3, 3.7, 5.1, 4.9, 6.2]),
pa.array([2.5, 1.3, 3.7, np.nan, 4.9, 6.2]),
pa.array([2.5, 1.3, None, np.nan, 4.9, None])
]
expected_arrays = [
np.array([2.5, 2.5, 3.7, 5.1, 5.1, 6.2]),
np.array([2.5, 2.5, 3.7, 3.7, 4.9, 6.2]),
np.array([2.5, 2.5, None, 2.5, 4.9, None])
if skip_nulls else np.array([2.5, 2.5, None, None, None, None])
]
for i, arr in enumerate(arrays):
result = pc.cumulative_max(arr, start=strt, skip_nulls=skip_nulls)
# Max `start` offset with expected array before comparing
expected = pc.max_element_wise(
expected_arrays[i], strt if strt is not None else -1e9,
skip_nulls=False)
np.testing.assert_array_almost_equal(result.to_numpy(
zero_copy_only=False), expected.to_numpy(zero_copy_only=False))
for strt in ['a', pa.scalar('arrow'), 1.1]:
with pytest.raises(pa.ArrowInvalid):
pc.cumulative_max([1, 2, 3], start=strt)
@pytest.mark.parametrize('start', (0.5, 3.5, 6.5))
@pytest.mark.parametrize('skip_nulls', (True, False))
def test_cumulative_min(start, skip_nulls):
# Exact tests (e.g., integral types)
start_int = int(start)
starts = [None, start_int, pa.scalar(start_int, type=pa.int8()),
pa.scalar(start_int, type=pa.int64())]
for strt in starts:
arrays = [
pa.array([5, 6, 4, 2, 3, 1]),
pa.array([5, 6, None, 2, 3, None]),
pa.chunked_array([[5, 6, None], [2, 3, None]])
]
expected_arrays = [
pa.array([5, 5, 4, 2, 2, 1]),
pa.array([5, 5, None, 2, 2, None])
if skip_nulls else pa.array([5, 5, None, None, None, None]),
pa.chunked_array([[5, 5, None, 2, 2, None]])
if skip_nulls else
pa.chunked_array([[5, 5, None, None, None, None]])
]
for i, arr in enumerate(arrays):
result = pc.cumulative_min(arr, start=strt, skip_nulls=skip_nulls)
# Min `start` offset with expected array before comparing
expected = pc.min_element_wise(
expected_arrays[i], strt if strt is not None else int(1e9),
skip_nulls=False)
assert result.equals(expected)
starts = [None, start, pa.scalar(start, type=pa.float32()),
pa.scalar(start, type=pa.float64())]
for strt in starts:
arrays = [
pa.array([5.5, 6.3, 4.7, 2.1, 3.9, 1.2]),
pa.array([5.5, 6.3, 4.7, np.nan, 3.9, 1.2]),
pa.array([5.5, 6.3, None, np.nan, 3.9, None])
]
expected_arrays = [
np.array([5.5, 5.5, 4.7, 2.1, 2.1, 1.2]),
np.array([5.5, 5.5, 4.7, 4.7, 3.9, 1.2]),
np.array([5.5, 5.5, None, 5.5, 3.9, None])
if skip_nulls else np.array([5.5, 5.5, None, None, None, None])
]
for i, arr in enumerate(arrays):
result = pc.cumulative_min(arr, start=strt, skip_nulls=skip_nulls)
# Min `start` offset with expected array before comparing
expected = pc.min_element_wise(
expected_arrays[i], strt if strt is not None else 1e9,
skip_nulls=False)
np.testing.assert_array_almost_equal(result.to_numpy(
zero_copy_only=False), expected.to_numpy(zero_copy_only=False))
for strt in ['a', pa.scalar('arrow'), 1.1]:
with pytest.raises(pa.ArrowInvalid):
pc.cumulative_max([1, 2, 3], start=strt)
def test_make_struct():
assert pc.make_struct(1, 'a').as_py() == {'0': 1, '1': 'a'}
assert pc.make_struct(1, 'a', field_names=['i', 's']).as_py() == {
'i': 1, 's': 'a'}
assert pc.make_struct([1, 2, 3],
"a b c".split()) == pa.StructArray.from_arrays([
[1, 2, 3],
"a b c".split()], names='0 1'.split())
with pytest.raises(ValueError,
match="Array arguments must all be the same length"):
pc.make_struct([1, 2, 3, 4], "a b c".split())
with pytest.raises(ValueError, match="0 arguments but 2 field names"):
pc.make_struct(field_names=['one', 'two'])
def test_map_lookup():
ty = pa.map_(pa.utf8(), pa.int32())
arr = pa.array([[('one', 1), ('two', 2)], [('none', 3)],
[], [('one', 5), ('one', 7)], None], type=ty)
result_first = pa.array([1, None, None, 5, None], type=pa.int32())
result_last = pa.array([1, None, None, 7, None], type=pa.int32())
result_all = pa.array([[1], None, None, [5, 7], None],
type=pa.list_(pa.int32()))
assert pc.map_lookup(arr, 'one', 'first') == result_first
assert pc.map_lookup(arr, pa.scalar(
'one', type=pa.utf8()), 'first') == result_first
assert pc.map_lookup(arr, pa.scalar(
'one', type=pa.utf8()), 'last') == result_last
assert pc.map_lookup(arr, pa.scalar(
'one', type=pa.utf8()), 'all') == result_all
def test_struct_fields_options():
a = pa.array([4, 5, 6], type=pa.int64())
b = pa.array(["bar", None, ""])
c = pa.StructArray.from_arrays([a, b], ["a", "b"])
arr = pa.StructArray.from_arrays([a, c], ["a", "c"])
assert pc.struct_field(arr, '.c.b') == b
assert pc.struct_field(arr, b'.c.b') == b
assert pc.struct_field(arr, ['c', 'b']) == b
assert pc.struct_field(arr, [1, 'b']) == b
assert pc.struct_field(arr, (b'c', 'b')) == b
assert pc.struct_field(arr, pc.field(('c', 'b'))) == b
assert pc.struct_field(arr, '.a') == a
assert pc.struct_field(arr, ['a']) == a
assert pc.struct_field(arr, 'a') == a
assert pc.struct_field(arr, pc.field(('a',))) == a
assert pc.struct_field(arr, indices=[1, 1]) == b
assert pc.struct_field(arr, (1, 1)) == b
assert pc.struct_field(arr, [0]) == a
assert pc.struct_field(arr, []) == arr
with pytest.raises(pa.ArrowInvalid, match="No match for FieldRef"):
pc.struct_field(arr, 'foo')
with pytest.raises(pa.ArrowInvalid, match="No match for FieldRef"):
pc.struct_field(arr, '.c.foo')
# drill into a non-struct array and continue to ask for a field
with pytest.raises(pa.ArrowInvalid, match="No match for FieldRef"):
pc.struct_field(arr, '.a.foo')
# TODO: https://issues.apache.org/jira/browse/ARROW-14853
# assert pc.struct_field(arr) == arr
def test_case_when():
assert pc.case_when(pc.make_struct([True, False, None],
[False, True, None]),
[1, 2, 3],
[11, 12, 13]) == pa.array([1, 12, None])
def test_list_element():
element_type = pa.struct([('a', pa.float64()), ('b', pa.int8())])
list_type = pa.list_(element_type)
l1 = [{'a': .4, 'b': 2}, None, {'a': .2, 'b': 4}, None, {'a': 5.6, 'b': 6}]
l2 = [None, {'a': .52, 'b': 3}, {'a': .7, 'b': 4}, None, {'a': .6, 'b': 8}]
lists = pa.array([l1, l2], list_type)
index = 1
result = pa.compute.list_element(lists, index)
expected = pa.array([None, {'a': 0.52, 'b': 3}], element_type)
assert result.equals(expected)
index = 4
result = pa.compute.list_element(lists, index)
expected = pa.array([{'a': 5.6, 'b': 6}, {'a': .6, 'b': 8}], element_type)
assert result.equals(expected)
def test_count_distinct():
samples = [datetime.datetime(year=y, month=1, day=1) for y in range(1992, 2092)]
arr = pa.array(samples, pa.timestamp("ns"))
assert pc.count_distinct(arr) == pa.scalar(len(samples), type=pa.int64())
def test_count_distinct_options():
arr = pa.array([1, 2, 3, None, None])
assert pc.count_distinct(arr).as_py() == 3
assert pc.count_distinct(arr, mode='only_valid').as_py() == 3
assert pc.count_distinct(arr, mode='only_null').as_py() == 1
assert pc.count_distinct(arr, mode='all').as_py() == 4
assert pc.count_distinct(arr, 'all').as_py() == 4
def test_utf8_normalize():
arr = pa.array(["01²3"])
assert pc.utf8_normalize(arr, form="NFC") == arr
assert pc.utf8_normalize(arr, form="NFKC") == pa.array(["0123"])
assert pc.utf8_normalize(arr, "NFD") == arr
assert pc.utf8_normalize(arr, "NFKD") == pa.array(["0123"])
with pytest.raises(
ValueError,
match='"NFZ" is not a valid Unicode normalization form'):
pc.utf8_normalize(arr, form="NFZ")
def test_random():
# (note negative integer initializers are accepted)
for initializer in ['system', 42, -42, b"abcdef"]:
assert pc.random(0, initializer=initializer) == \
pa.array([], type=pa.float64())
# System random initialization => outputs all distinct
arrays = [tuple(pc.random(100).to_pylist()) for i in range(10)]
assert len(set(arrays)) == len(arrays)
arrays = [tuple(pc.random(100, initializer=i % 7).to_pylist())
for i in range(0, 100)]
assert len(set(arrays)) == 7
# Arbitrary hashable objects can be given as initializer
initializers = [object(), (4, 5, 6), "foo"]
initializers.extend(os.urandom(10) for i in range(10))
arrays = [tuple(pc.random(100, initializer=i).to_pylist())
for i in initializers]
assert len(set(arrays)) == len(arrays)
with pytest.raises(TypeError,
match=r"initializer should be 'system', an integer, "
r"or a hashable object; got \[\]"):
pc.random(100, initializer=[])
@pytest.mark.parametrize(
"tiebreaker,expected_values",
[("min", [3, 1, 4, 6, 4, 6, 1]),
("max", [3, 2, 5, 7, 5, 7, 2]),
("first", [3, 1, 4, 6, 5, 7, 2]),
("dense", [2, 1, 3, 4, 3, 4, 1])]
)
def test_rank_options_tiebreaker(tiebreaker, expected_values):
arr = pa.array([1.2, 0.0, 5.3, None, 5.3, None, 0.0])
rank_options = pc.RankOptions(sort_keys="ascending",
null_placement="at_end",
tiebreaker=tiebreaker)
result = pc.rank(arr, options=rank_options)
expected = pa.array(expected_values, type=pa.uint64())
assert result.equals(expected)
def test_rank_options():
arr = pa.array([1.2, 0.0, 5.3, None, 5.3, None, 0.0])
expected = pa.array([3, 1, 4, 6, 5, 7, 2], type=pa.uint64())
# Ensure rank can be called without specifying options
result = pc.rank(arr)
assert result.equals(expected)
# Ensure default RankOptions
result = pc.rank(arr, options=pc.RankOptions())
assert result.equals(expected)
# Ensure sort_keys tuple usage
result = pc.rank(arr, options=pc.RankOptions(
sort_keys=[("b", "ascending")])
)
assert result.equals(expected)
result = pc.rank(arr, null_placement="at_start")
expected_at_start = pa.array([5, 3, 6, 1, 7, 2, 4], type=pa.uint64())
assert result.equals(expected_at_start)
result = pc.rank(arr, sort_keys="descending")
expected_descending = pa.array([3, 4, 1, 6, 2, 7, 5], type=pa.uint64())
assert result.equals(expected_descending)
with pytest.raises(ValueError,
match=r'"NonExisting" is not a valid tiebreaker'):
pc.RankOptions(sort_keys="descending",
null_placement="at_end",
tiebreaker="NonExisting")
def create_sample_expressions():
# We need a schema for substrait conversion
schema = pa.schema([pa.field("i64", pa.int64()), pa.field(
"foo", pa.struct([pa.field("bar", pa.string())]))])
# Creates a bunch of sample expressions for testing
# serialization and deserialization. The expressions are categorized
# to reflect certain nuances in Substrait conversion.
a = pc.scalar(1)
b = pc.scalar(1.1)
c = pc.scalar(True)
d = pc.scalar("string")
e = pc.scalar(None)
f = pc.scalar({'a': 1})
g = pc.scalar(pa.scalar(1))
h = pc.scalar(np.int64(2))
j = pc.scalar(False)
# These expression consist entirely of literals
literal_exprs = [a, b, c, d, e, g, h, j]
# These expressions include at least one function call
exprs_with_call = [a == b, a != b, a > b, c & j, c | j, ~c, d.is_valid(),
a + b, a - b, a * b, a / b, pc.negate(a),
pc.add(a, b), pc.subtract(a, b), pc.divide(a, b),
pc.multiply(a, b), pc.power(a, a), pc.sqrt(a),
pc.exp(b), pc.cos(b), pc.sin(b), pc.tan(b),
pc.acos(b), pc.atan(b), pc.asin(b), pc.atan2(b, b),
pc.abs(b), pc.sign(a), pc.bit_wise_not(a),
pc.bit_wise_and(a, a), pc.bit_wise_or(a, a),
pc.bit_wise_xor(a, a), pc.is_nan(b), pc.is_finite(b),
pc.coalesce(a, b),
a.cast(pa.int32(), safe=False)]
# These expressions test out various reference styles and may include function
# calls. Named references are used here.
exprs_with_ref = [pc.field('i64') > 5, pc.field('i64') == 5,
pc.field('i64') == 7,
pc.field(('foo', 'bar')) == 'value',
pc.field('foo', 'bar') == 'value']
# Similar to above but these use numeric references instead of string refs
exprs_with_numeric_refs = [pc.field(0) > 5, pc.field(0) == 5,
pc.field(0) == 7,
pc.field((1, 0)) == 'value',
pc.field(1, 0) == 'value']
# Expressions that behave uniquely when converting to/from substrait
special_cases = [
f, # Struct literals lose their field names
a.isin([1, 2, 3]), # isin converts to an or list
pc.field('i64').is_null() # pyarrow always specifies a FunctionOptions
# for is_null which, being the default, is
# dropped on serialization
]
all_exprs = literal_exprs.copy()
all_exprs += exprs_with_call
all_exprs += exprs_with_ref
all_exprs += special_cases
return {
"all": all_exprs,
"literals": literal_exprs,
"calls": exprs_with_call,
"refs": exprs_with_ref,
"numeric_refs": exprs_with_numeric_refs,
"special": special_cases,
"schema": schema
}
# Tests the Arrow-specific serialization mechanism
def test_expression_serialization_arrow(pickle_module):
for expr in create_sample_expressions()["all"]:
assert isinstance(expr, pc.Expression)
restored = pickle_module.loads(pickle_module.dumps(expr))
assert expr.equals(restored)
@pytest.mark.substrait
def test_expression_serialization_substrait():
exprs = create_sample_expressions()
schema = exprs["schema"]
# Basic literals don't change on binding and so they will round
# trip without any change
for expr in exprs["literals"]:
serialized = expr.to_substrait(schema)
deserialized = pc.Expression.from_substrait(serialized)
assert expr.equals(deserialized)
# Expressions are bound when they get serialized. Since bound
# expressions are not equal to their unbound variants we cannot
# compare the round tripped with the original
for expr in exprs["calls"]:
serialized = expr.to_substrait(schema)
deserialized = pc.Expression.from_substrait(serialized)
# We can't compare the expressions themselves because of the bound
# unbound difference. But we can compare the string representation
assert str(deserialized) == str(expr)
serialized_again = deserialized.to_substrait(schema)
deserialized_again = pc.Expression.from_substrait(serialized_again)
assert deserialized.equals(deserialized_again)
for expr, expr_norm in zip(exprs["refs"], exprs["numeric_refs"]):
serialized = expr.to_substrait(schema)
deserialized = pc.Expression.from_substrait(serialized)
assert str(deserialized) == str(expr_norm)
serialized_again = deserialized.to_substrait(schema)
deserialized_again = pc.Expression.from_substrait(serialized_again)
assert deserialized.equals(deserialized_again)
# For the special cases we get various wrinkles in serialization but we
# should always get the same thing from round tripping twice
for expr in exprs["special"]:
serialized = expr.to_substrait(schema)
deserialized = pc.Expression.from_substrait(serialized)
serialized_again = deserialized.to_substrait(schema)
deserialized_again = pc.Expression.from_substrait(serialized_again)
assert deserialized.equals(deserialized_again)
# Special case, we lose the field names of struct literals
f = exprs["special"][0]
serialized = f.to_substrait(schema)
deserialized = pc.Expression.from_substrait(serialized)
assert deserialized.equals(pc.scalar({'': 1}))
# Special case, is_in converts to a == opt[0] || a == opt[1] ...
a = pc.scalar(1)
expr = a.isin([1, 2, 3])
target = (a == 1) | (a == 2) | (a == 3)
serialized = expr.to_substrait(schema)
deserialized = pc.Expression.from_substrait(serialized)
# Compare str's here to bypass the bound/unbound difference
assert str(target) == str(deserialized)
serialized_again = deserialized.to_substrait(schema)
deserialized_again = pc.Expression.from_substrait(serialized_again)
assert deserialized.equals(deserialized_again)
def test_expression_construction():
zero = pc.scalar(0)
one = pc.scalar(1)
true = pc.scalar(True)
false = pc.scalar(False)
string = pc.scalar("string")
field = pc.field("field")
nested_mixed_types = pc.field(b"a", 1, "b")
nested_field = pc.field(("nested", "field"))
nested_field2 = pc.field("nested", "field")
zero | one == string
~true == false
for typ in ("bool", pa.bool_()):
field.cast(typ) == true
field.isin([1, 2])
nested_mixed_types.isin(["foo", "bar"])
nested_field.isin(["foo", "bar"])
nested_field2.isin(["foo", "bar"])
with pytest.raises(TypeError):
field.isin(1)
with pytest.raises(pa.ArrowInvalid):
field != object()
def test_expression_boolean_operators():
# https://issues.apache.org/jira/browse/ARROW-11412
true = pc.scalar(True)
false = pc.scalar(False)
with pytest.raises(ValueError, match="cannot be evaluated to python True"):
true and false
with pytest.raises(ValueError, match="cannot be evaluated to python True"):
true or false
with pytest.raises(ValueError, match="cannot be evaluated to python True"):
bool(true)
with pytest.raises(ValueError, match="cannot be evaluated to python True"):
not true
def test_expression_call_function():
field = pc.field("field")
# no options
assert str(pc.hour(field)) == "hour(field)"
# default options
assert str(pc.round(field)) == "round(field)"
# specified options
assert str(pc.round(field, ndigits=1)) == \
"round(field, {ndigits=1, round_mode=HALF_TO_EVEN})"
# Will convert non-expression arguments if possible
assert str(pc.add(field, 1)) == "add(field, 1)"
assert str(pc.add(field, pa.scalar(1))) == "add(field, 1)"
# Invalid pc.scalar input gives original error message
msg = "only other expressions allowed as arguments"
with pytest.raises(TypeError, match=msg):
pc.add(field, object)
def test_cast_table_raises():
table = pa.table({'a': [1, 2]})
with pytest.raises(pa.lib.ArrowTypeError):
pc.cast(table, pa.int64())
@pytest.mark.parametrize("start,stop,expected", (
(0, None, [[1, 2, 3], [4, 5, None], [6, None, None], None]),
(0, 1, [[1], [4], [6], None]),
(0, 2, [[1, 2], [4, 5], [6, None], None]),
(1, 2, [[2], [5], [None], None]),
(2, 4, [[3, None], [None, None], [None, None], None])
))
@pytest.mark.parametrize("step", (1, 2))
@pytest.mark.parametrize("value_type", (pa.string, pa.int16, pa.float64))
@pytest.mark.parametrize("list_type", (pa.list_, pa.large_list, "fixed"))
def test_list_slice_output_fixed(start, stop, step, expected, value_type,
list_type):
if list_type == "fixed":
arr = pa.array([[1, 2, 3], [4, 5, None], [6, None, None], None],
pa.list_(pa.int8(), 3)).cast(pa.list_(value_type(), 3))
else:
arr = pa.array([[1, 2, 3], [4, 5], [6], None],
pa.list_(pa.int8())).cast(list_type(value_type()))
args = arr, start, stop, step, True
if stop is None and list_type != "fixed":
msg = ("Unable to produce FixedSizeListArray from "
"non-FixedSizeListArray without `stop` being set.")
with pytest.raises(pa.ArrowNotImplementedError, match=msg):
pc.list_slice(*args)
else:
result = pc.list_slice(*args)
pylist = result.cast(pa.list_(pa.int8(),
result.type.list_size)).to_pylist()
assert pylist == [e[::step] if e else e for e in expected]
@pytest.mark.parametrize("start,stop", (
(0, None,),
(0, 1,),
(0, 2,),
(1, 2,),
(2, 4,)
))
@pytest.mark.parametrize("step", (1, 2))
@pytest.mark.parametrize("value_type", (pa.string, pa.int16, pa.float64))
@pytest.mark.parametrize("list_type", (pa.list_, pa.large_list, "fixed"))
def test_list_slice_output_variable(start, stop, step, value_type, list_type):
if list_type == "fixed":
data = [[1, 2, 3], [4, 5, None], [6, None, None], None]
arr = pa.array(
data,
pa.list_(pa.int8(), 3)).cast(pa.list_(value_type(), 3))
else:
data = [[1, 2, 3], [4, 5], [6], None]
arr = pa.array(data,
pa.list_(pa.int8())).cast(list_type(value_type()))
# Gets same list type (ListArray vs LargeList)
if list_type == "fixed":
list_type = pa.list_ # non fixed output type
result = pc.list_slice(arr, start, stop, step,
return_fixed_size_list=False)
assert result.type == list_type(value_type())
pylist = result.cast(pa.list_(pa.int8())).to_pylist()
# Variable output slicing follows Python's slice semantics
expected = [d[start:stop:step] if d is not None else None for d in data]
assert pylist == expected
@pytest.mark.parametrize("return_fixed_size", (True, False, None))
@pytest.mark.parametrize("type", (
lambda: pa.list_(pa.field('col', pa.int8())),
lambda: pa.list_(pa.field('col', pa.int8()), 1),
lambda: pa.large_list(pa.field('col', pa.int8()))))
def test_list_slice_field_names_retained(return_fixed_size, type):
arr = pa.array([[1]], type())
out = pc.list_slice(arr, 0, 1, return_fixed_size_list=return_fixed_size)
assert arr.type.field(0).name == out.type.field(0).name
# Verify out type matches in type if return_fixed_size_list==None
if return_fixed_size is None:
assert arr.type == out.type
def test_list_slice_bad_parameters():
arr = pa.array([[1]], pa.list_(pa.int8(), 1))
msg = r"`start`(.*) should be greater than 0 and smaller than `stop`(.*)"
with pytest.raises(pa.ArrowInvalid, match=msg):
pc.list_slice(arr, -1, 1) # negative start?
with pytest.raises(pa.ArrowInvalid, match=msg):
pc.list_slice(arr, 2, 1) # start > stop?
# TODO(ARROW-18281): start==stop -> empty lists
with pytest.raises(pa.ArrowInvalid, match=msg):
pc.list_slice(arr, 0, 0) # start == stop?
# Step not >= 1
msg = "`step` must be >= 1, got: "
with pytest.raises(pa.ArrowInvalid, match=msg + "0"):
pc.list_slice(arr, 0, 1, step=0)
with pytest.raises(pa.ArrowInvalid, match=msg + "-1"):
pc.list_slice(arr, 0, 1, step=-1)
def check_run_end_encode_decode(run_end_encode_opts=None):
arr = pa.array([1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3])
encoded = pc.run_end_encode(arr, options=run_end_encode_opts)
decoded = pc.run_end_decode(encoded)
assert decoded.type == arr.type
assert decoded.equals(arr)
def test_run_end_encode():
check_run_end_encode_decode()
check_run_end_encode_decode(pc.RunEndEncodeOptions(pa.int16()))
check_run_end_encode_decode(pc.RunEndEncodeOptions('int32'))
check_run_end_encode_decode(pc.RunEndEncodeOptions(pa.int64()))
def test_pairwise_diff():
arr = pa.array([1, 2, 3, None, 4, 5])
expected = pa.array([None, 1, 1, None, None, 1])
result = pa.compute.pairwise_diff(arr, period=1)
assert result.equals(expected)
arr = pa.array([1, 2, 3, None, 4, 5])
expected = pa.array([None, None, 2, None, 1, None])
result = pa.compute.pairwise_diff(arr, period=2)
assert result.equals(expected)
# negative period
arr = pa.array([1, 2, 3, None, 4, 5], type=pa.int8())
expected = pa.array([-1, -1, None, None, -1, None], type=pa.int8())
result = pa.compute.pairwise_diff(arr, period=-1)
assert result.equals(expected)
# wrap around overflow
arr = pa.array([1, 2, 3, None, 4, 5], type=pa.uint8())
expected = pa.array([255, 255, None, None, 255, None], type=pa.uint8())
result = pa.compute.pairwise_diff(arr, period=-1)
assert result.equals(expected)
# fail on overflow
arr = pa.array([1, 2, 3, None, 4, 5], type=pa.uint8())
with pytest.raises(pa.ArrowInvalid,
match="overflow"):
pa.compute.pairwise_diff_checked(arr, period=-1)