peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/tests
/test_tensor.py
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
import os | |
import sys | |
import pytest | |
import warnings | |
import weakref | |
import numpy as np | |
import pyarrow as pa | |
tensor_type_pairs = [ | |
('i1', pa.int8()), | |
('i2', pa.int16()), | |
('i4', pa.int32()), | |
('i8', pa.int64()), | |
('u1', pa.uint8()), | |
('u2', pa.uint16()), | |
('u4', pa.uint32()), | |
('u8', pa.uint64()), | |
('f2', pa.float16()), | |
('f4', pa.float32()), | |
('f8', pa.float64()) | |
] | |
def test_tensor_attrs(): | |
data = np.random.randn(10, 4) | |
tensor = pa.Tensor.from_numpy(data) | |
assert tensor.ndim == 2 | |
assert tensor.dim_names == [] | |
assert tensor.size == 40 | |
assert tensor.shape == data.shape | |
assert tensor.strides == data.strides | |
assert tensor.is_contiguous | |
assert tensor.is_mutable | |
# not writeable | |
data2 = data.copy() | |
data2.flags.writeable = False | |
tensor = pa.Tensor.from_numpy(data2) | |
assert not tensor.is_mutable | |
# With dim_names | |
tensor = pa.Tensor.from_numpy(data, dim_names=('x', 'y')) | |
assert tensor.ndim == 2 | |
assert tensor.dim_names == ['x', 'y'] | |
assert tensor.dim_name(0) == 'x' | |
assert tensor.dim_name(1) == 'y' | |
wr = weakref.ref(tensor) | |
assert wr() is not None | |
del tensor | |
assert wr() is None | |
def test_tensor_base_object(): | |
tensor = pa.Tensor.from_numpy(np.random.randn(10, 4)) | |
n = sys.getrefcount(tensor) | |
array = tensor.to_numpy() # noqa | |
assert sys.getrefcount(tensor) == n + 1 | |
def test_tensor_numpy_roundtrip(dtype_str, arrow_type): | |
dtype = np.dtype(dtype_str) | |
# Casting np.float64 -> uint32 or uint64 throws a RuntimeWarning | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
data = (100 * np.random.randn(10, 4)).astype(dtype) | |
tensor = pa.Tensor.from_numpy(data) | |
assert tensor.type == arrow_type | |
repr(tensor) | |
result = tensor.to_numpy() | |
assert (data == result).all() | |
def test_tensor_ipc_roundtrip(tmpdir): | |
data = np.random.randn(10, 4) | |
tensor = pa.Tensor.from_numpy(data) | |
path = os.path.join(str(tmpdir), 'pyarrow-tensor-ipc-roundtrip') | |
mmap = pa.create_memory_map(path, 1024) | |
pa.ipc.write_tensor(tensor, mmap) | |
mmap.seek(0) | |
result = pa.ipc.read_tensor(mmap) | |
assert result.equals(tensor) | |
def test_tensor_ipc_read_from_compressed(tempdir): | |
# ARROW-5910 | |
data = np.random.randn(10, 4) | |
tensor = pa.Tensor.from_numpy(data) | |
path = tempdir / 'tensor-compressed-file' | |
out_stream = pa.output_stream(path, compression='gzip') | |
pa.ipc.write_tensor(tensor, out_stream) | |
out_stream.close() | |
result = pa.ipc.read_tensor(pa.input_stream(path, compression='gzip')) | |
assert result.equals(tensor) | |
def test_tensor_ipc_strided(tmpdir): | |
data1 = np.random.randn(10, 4) | |
tensor1 = pa.Tensor.from_numpy(data1[::2]) | |
data2 = np.random.randn(10, 6, 4) | |
tensor2 = pa.Tensor.from_numpy(data2[::, ::2, ::]) | |
path = os.path.join(str(tmpdir), 'pyarrow-tensor-ipc-strided') | |
mmap = pa.create_memory_map(path, 2048) | |
for tensor in [tensor1, tensor2]: | |
mmap.seek(0) | |
pa.ipc.write_tensor(tensor, mmap) | |
mmap.seek(0) | |
result = pa.ipc.read_tensor(mmap) | |
assert result.equals(tensor) | |
def test_tensor_equals(): | |
def eq(a, b): | |
assert a.equals(b) | |
assert a == b | |
assert not (a != b) | |
def ne(a, b): | |
assert not a.equals(b) | |
assert not (a == b) | |
assert a != b | |
data = np.random.randn(10, 6, 4)[::, ::2, ::] | |
tensor1 = pa.Tensor.from_numpy(data) | |
tensor2 = pa.Tensor.from_numpy(np.ascontiguousarray(data)) | |
eq(tensor1, tensor2) | |
data = data.copy() | |
data[9, 0, 0] = 1.0 | |
tensor2 = pa.Tensor.from_numpy(np.ascontiguousarray(data)) | |
ne(tensor1, tensor2) | |
def test_tensor_hashing(): | |
# Tensors are unhashable | |
with pytest.raises(TypeError, match="unhashable"): | |
hash(pa.Tensor.from_numpy(np.arange(10))) | |
def test_tensor_size(): | |
data = np.random.randn(10, 4) | |
tensor = pa.Tensor.from_numpy(data) | |
assert pa.ipc.get_tensor_size(tensor) > (data.size * 8) | |
def test_read_tensor(tmpdir): | |
# Create and write tensor tensor | |
data = np.random.randn(10, 4) | |
tensor = pa.Tensor.from_numpy(data) | |
data_size = pa.ipc.get_tensor_size(tensor) | |
path = os.path.join(str(tmpdir), 'pyarrow-tensor-ipc-read-tensor') | |
write_mmap = pa.create_memory_map(path, data_size) | |
pa.ipc.write_tensor(tensor, write_mmap) | |
# Try to read tensor | |
read_mmap = pa.memory_map(path, mode='r') | |
array = pa.ipc.read_tensor(read_mmap).to_numpy() | |
np.testing.assert_equal(data, array) | |
def test_tensor_memoryview(): | |
# Tensors support the PEP 3118 buffer protocol | |
for dtype, expected_format in [(np.int8, '=b'), | |
(np.int64, '=q'), | |
(np.uint64, '=Q'), | |
(np.float16, 'e'), | |
(np.float64, 'd'), | |
]: | |
data = np.arange(10, dtype=dtype) | |
dtype = data.dtype | |
lst = data.tolist() | |
tensor = pa.Tensor.from_numpy(data) | |
m = memoryview(tensor) | |
assert m.format == expected_format | |
assert m.shape == data.shape | |
assert m.strides == data.strides | |
assert m.ndim == 1 | |
assert m.nbytes == data.nbytes | |
assert m.itemsize == data.itemsize | |
assert m.itemsize * 8 == tensor.type.bit_width | |
assert np.frombuffer(m, dtype).tolist() == lst | |
del tensor, data | |
assert np.frombuffer(m, dtype).tolist() == lst | |