applied-ai-018's picture
Add files using upload-large-folder tool
ac141ed verified
raw
history blame
28.6 kB
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import pytest
import numpy as np
import pyarrow as pa
from pyarrow import compute as pc
# UDFs are all tested with a dataset scan
pytestmark = pytest.mark.dataset
# For convenience, most of the test here doesn't care about udf func docs
empty_udf_doc = {"summary": "", "description": ""}
try:
import pyarrow.dataset as ds
except ImportError:
ds = None
def mock_udf_context(batch_length=10):
from pyarrow._compute import _get_udf_context
return _get_udf_context(pa.default_memory_pool(), batch_length)
class MyError(RuntimeError):
pass
@pytest.fixture(scope="session")
def sum_agg_func_fixture():
"""
Register a unary aggregate function (mean)
"""
def func(ctx, x, *args):
return pa.scalar(np.nansum(x))
func_name = "sum_udf"
func_doc = empty_udf_doc
pc.register_aggregate_function(func,
func_name,
func_doc,
{
"x": pa.float64(),
},
pa.float64()
)
return func, func_name
@pytest.fixture(scope="session")
def exception_agg_func_fixture():
def func(ctx, x):
raise RuntimeError("Oops")
return pa.scalar(len(x))
func_name = "y=exception_len(x)"
func_doc = empty_udf_doc
pc.register_aggregate_function(func,
func_name,
func_doc,
{
"x": pa.int64(),
},
pa.int64()
)
return func, func_name
@pytest.fixture(scope="session")
def wrong_output_dtype_agg_func_fixture(scope="session"):
def func(ctx, x):
return pa.scalar(len(x), pa.int32())
func_name = "y=wrong_output_dtype(x)"
func_doc = empty_udf_doc
pc.register_aggregate_function(func,
func_name,
func_doc,
{
"x": pa.int64(),
},
pa.int64()
)
return func, func_name
@pytest.fixture(scope="session")
def wrong_output_type_agg_func_fixture(scope="session"):
def func(ctx, x):
return len(x)
func_name = "y=wrong_output_type(x)"
func_doc = empty_udf_doc
pc.register_aggregate_function(func,
func_name,
func_doc,
{
"x": pa.int64(),
},
pa.int64()
)
return func, func_name
@pytest.fixture(scope="session")
def binary_func_fixture():
"""
Register a binary scalar function.
"""
def binary_function(ctx, m, x):
return pc.call_function("multiply", [m, x],
memory_pool=ctx.memory_pool)
func_name = "y=mx"
binary_doc = {"summary": "y=mx",
"description": "find y from y = mx"}
pc.register_scalar_function(binary_function,
func_name,
binary_doc,
{"m": pa.int64(),
"x": pa.int64(),
},
pa.int64())
return binary_function, func_name
@pytest.fixture(scope="session")
def ternary_func_fixture():
"""
Register a ternary scalar function.
"""
def ternary_function(ctx, m, x, c):
mx = pc.call_function("multiply", [m, x],
memory_pool=ctx.memory_pool)
return pc.call_function("add", [mx, c],
memory_pool=ctx.memory_pool)
ternary_doc = {"summary": "y=mx+c",
"description": "find y from y = mx + c"}
func_name = "y=mx+c"
pc.register_scalar_function(ternary_function,
func_name,
ternary_doc,
{
"array1": pa.int64(),
"array2": pa.int64(),
"array3": pa.int64(),
},
pa.int64())
return ternary_function, func_name
@pytest.fixture(scope="session")
def varargs_func_fixture():
"""
Register a varargs scalar function with at least two arguments.
"""
def varargs_function(ctx, first, *values):
acc = first
for val in values:
acc = pc.call_function("add", [acc, val],
memory_pool=ctx.memory_pool)
return acc
func_name = "z=ax+by+c"
varargs_doc = {"summary": "z=ax+by+c",
"description": "find z from z = ax + by + c"
}
pc.register_scalar_function(varargs_function,
func_name,
varargs_doc,
{
"array1": pa.int64(),
"array2": pa.int64(),
},
pa.int64())
return varargs_function, func_name
@pytest.fixture(scope="session")
def nullary_func_fixture():
"""
Register a nullary scalar function.
"""
def nullary_func(context):
return pa.array([42] * context.batch_length, type=pa.int64(),
memory_pool=context.memory_pool)
func_doc = {
"summary": "random function",
"description": "generates a random value"
}
func_name = "test_nullary_func"
pc.register_scalar_function(nullary_func,
func_name,
func_doc,
{},
pa.int64())
return nullary_func, func_name
@pytest.fixture(scope="session")
def wrong_output_type_func_fixture():
"""
Register a scalar function which returns something that is neither
a Arrow scalar or array.
"""
def wrong_output_type(ctx):
return 42
func_name = "test_wrong_output_type"
in_types = {}
out_type = pa.int64()
doc = {
"summary": "return wrong output type",
"description": ""
}
pc.register_scalar_function(wrong_output_type, func_name, doc,
in_types, out_type)
return wrong_output_type, func_name
@pytest.fixture(scope="session")
def wrong_output_datatype_func_fixture():
"""
Register a scalar function whose actual output DataType doesn't
match the declared output DataType.
"""
def wrong_output_datatype(ctx, array):
return pc.call_function("add", [array, 1])
func_name = "test_wrong_output_datatype"
in_types = {"array": pa.int64()}
# The actual output DataType will be int64.
out_type = pa.int16()
doc = {
"summary": "return wrong output datatype",
"description": ""
}
pc.register_scalar_function(wrong_output_datatype, func_name, doc,
in_types, out_type)
return wrong_output_datatype, func_name
@pytest.fixture(scope="session")
def wrong_signature_func_fixture():
"""
Register a scalar function with the wrong signature.
"""
# Missing the context argument
def wrong_signature():
return pa.scalar(1, type=pa.int64())
func_name = "test_wrong_signature"
in_types = {}
out_type = pa.int64()
doc = {
"summary": "UDF with wrong signature",
"description": ""
}
pc.register_scalar_function(wrong_signature, func_name, doc,
in_types, out_type)
return wrong_signature, func_name
@pytest.fixture(scope="session")
def raising_func_fixture():
"""
Register a scalar function which raises a custom exception.
"""
def raising_func(ctx):
raise MyError("error raised by scalar UDF")
func_name = "test_raise"
doc = {
"summary": "raising function",
"description": ""
}
pc.register_scalar_function(raising_func, func_name, doc,
{}, pa.int64())
return raising_func, func_name
@pytest.fixture(scope="session")
def unary_vector_func_fixture():
"""
Register a vector function
"""
def pct_rank(ctx, x):
# copy here to get around pandas 1.0 issue
return pa.array(x.to_pandas().copy().rank(pct=True))
func_name = "y=pct_rank(x)"
doc = empty_udf_doc
pc.register_vector_function(pct_rank, func_name, doc, {
'x': pa.float64()}, pa.float64())
return pct_rank, func_name
@pytest.fixture(scope="session")
def struct_vector_func_fixture():
"""
Register a vector function that returns a struct array
"""
def pivot(ctx, k, v, c):
df = pa.RecordBatch.from_arrays([k, v, c], names=['k', 'v', 'c']).to_pandas()
df_pivot = df.pivot(columns='c', values='v', index='k').reset_index()
return pa.RecordBatch.from_pandas(df_pivot).to_struct_array()
func_name = "y=pivot(x)"
doc = empty_udf_doc
pc.register_vector_function(
pivot, func_name, doc,
{'k': pa.int64(), 'v': pa.float64(), 'c': pa.utf8()},
pa.struct([('k', pa.int64()), ('v1', pa.float64()), ('v2', pa.float64())])
)
return pivot, func_name
def check_scalar_function(func_fixture,
inputs, *,
run_in_dataset=True,
batch_length=None):
function, name = func_fixture
if batch_length is None:
all_scalar = True
for arg in inputs:
if isinstance(arg, pa.Array):
all_scalar = False
batch_length = len(arg)
if all_scalar:
batch_length = 1
func = pc.get_function(name)
assert func.name == name
result = pc.call_function(name, inputs, length=batch_length)
expected_output = function(mock_udf_context(batch_length), *inputs)
assert result == expected_output
# At the moment there is an issue when handling nullary functions.
# See: ARROW-15286 and ARROW-16290.
if run_in_dataset:
field_names = [f'field{index}' for index, in_arr in inputs]
table = pa.Table.from_arrays(inputs, field_names)
dataset = ds.dataset(table)
func_args = [ds.field(field_name) for field_name in field_names]
result_table = dataset.to_table(
columns={'result': ds.field('')._call(name, func_args)})
assert result_table.column(0).chunks[0] == expected_output
def test_udf_array_unary(unary_func_fixture):
check_scalar_function(unary_func_fixture,
[
pa.array([10, 20], pa.int64())
]
)
def test_udf_array_binary(binary_func_fixture):
check_scalar_function(binary_func_fixture,
[
pa.array([10, 20], pa.int64()),
pa.array([2, 4], pa.int64())
]
)
def test_udf_array_ternary(ternary_func_fixture):
check_scalar_function(ternary_func_fixture,
[
pa.array([10, 20], pa.int64()),
pa.array([2, 4], pa.int64()),
pa.array([5, 10], pa.int64())
]
)
def test_udf_array_varargs(varargs_func_fixture):
check_scalar_function(varargs_func_fixture,
[
pa.array([2, 3], pa.int64()),
pa.array([10, 20], pa.int64()),
pa.array([3, 7], pa.int64()),
pa.array([20, 30], pa.int64()),
pa.array([5, 10], pa.int64())
]
)
def test_registration_errors():
# validate function name
doc = {
"summary": "test udf input",
"description": "parameters are validated"
}
in_types = {"scalar": pa.int64()}
out_type = pa.int64()
def test_reg_function(context):
return pa.array([10])
with pytest.raises(TypeError):
pc.register_scalar_function(test_reg_function,
None, doc, in_types,
out_type)
# validate function
with pytest.raises(TypeError, match="func must be a callable"):
pc.register_scalar_function(None, "test_none_function", doc, in_types,
out_type)
# validate output type
expected_expr = "DataType expected, got <class 'NoneType'>"
with pytest.raises(TypeError, match=expected_expr):
pc.register_scalar_function(test_reg_function,
"test_output_function", doc, in_types,
None)
# validate input type
expected_expr = "in_types must be a dictionary of DataType"
with pytest.raises(TypeError, match=expected_expr):
pc.register_scalar_function(test_reg_function,
"test_input_function", doc, None,
out_type)
# register an already registered function
# first registration
pc.register_scalar_function(test_reg_function,
"test_reg_function", doc, {},
out_type)
# second registration
expected_expr = "Already have a function registered with name:" \
+ " test_reg_function"
with pytest.raises(KeyError, match=expected_expr):
pc.register_scalar_function(test_reg_function,
"test_reg_function", doc, {},
out_type)
def test_varargs_function_validation(varargs_func_fixture):
_, func_name = varargs_func_fixture
error_msg = r"VarArgs function 'z=ax\+by\+c' needs at least 2 arguments"
with pytest.raises(ValueError, match=error_msg):
pc.call_function(func_name, [42])
def test_function_doc_validation():
# validate arity
in_types = {"scalar": pa.int64()}
out_type = pa.int64()
# doc with no summary
func_doc = {
"description": "desc"
}
def add_const(ctx, scalar):
return pc.call_function("add", [scalar, 1])
with pytest.raises(ValueError,
match="Function doc must contain a summary"):
pc.register_scalar_function(add_const, "test_no_summary",
func_doc, in_types,
out_type)
# doc with no description
func_doc = {
"summary": "test summary"
}
with pytest.raises(ValueError,
match="Function doc must contain a description"):
pc.register_scalar_function(add_const, "test_no_desc",
func_doc, in_types,
out_type)
def test_nullary_function(nullary_func_fixture):
# XXX the Python compute layer API doesn't let us override batch_length,
# so only test with the default value of 1.
check_scalar_function(nullary_func_fixture, [], run_in_dataset=False,
batch_length=1)
def test_wrong_output_type(wrong_output_type_func_fixture):
_, func_name = wrong_output_type_func_fixture
with pytest.raises(TypeError,
match="Unexpected output type: int"):
pc.call_function(func_name, [], length=1)
def test_wrong_output_datatype(wrong_output_datatype_func_fixture):
_, func_name = wrong_output_datatype_func_fixture
expected_expr = ("Expected output datatype int16, "
"but function returned datatype int64")
with pytest.raises(TypeError, match=expected_expr):
pc.call_function(func_name, [pa.array([20, 30])])
def test_wrong_signature(wrong_signature_func_fixture):
_, func_name = wrong_signature_func_fixture
expected_expr = (r"wrong_signature\(\) takes 0 positional arguments "
"but 1 was given")
with pytest.raises(TypeError, match=expected_expr):
pc.call_function(func_name, [], length=1)
def test_wrong_datatype_declaration():
def identity(ctx, val):
return val
func_name = "test_wrong_datatype_declaration"
in_types = {"array": pa.int64()}
out_type = {}
doc = {
"summary": "test output value",
"description": "test output"
}
with pytest.raises(TypeError,
match="DataType expected, got <class 'dict'>"):
pc.register_scalar_function(identity, func_name,
doc, in_types, out_type)
def test_wrong_input_type_declaration():
def identity(ctx, val):
return val
func_name = "test_wrong_input_type_declaration"
in_types = {"array": None}
out_type = pa.int64()
doc = {
"summary": "test invalid input type",
"description": "invalid input function"
}
with pytest.raises(TypeError,
match="DataType expected, got <class 'NoneType'>"):
pc.register_scalar_function(identity, func_name, doc,
in_types, out_type)
def test_scalar_udf_context(unary_func_fixture):
# Check the memory_pool argument is properly propagated
proxy_pool = pa.proxy_memory_pool(pa.default_memory_pool())
_, func_name = unary_func_fixture
res = pc.call_function(func_name,
[pa.array([1] * 1000, type=pa.int64())],
memory_pool=proxy_pool)
assert res == pa.array([2] * 1000, type=pa.int64())
assert proxy_pool.bytes_allocated() == 1000 * 8
# Destroying Python array should destroy underlying C++ memory
res = None
assert proxy_pool.bytes_allocated() == 0
def test_raising_func(raising_func_fixture):
_, func_name = raising_func_fixture
with pytest.raises(MyError, match="error raised by scalar UDF"):
pc.call_function(func_name, [], length=1)
def test_scalar_input(unary_func_fixture):
function, func_name = unary_func_fixture
res = pc.call_function(func_name, [pa.scalar(10)])
assert res == pa.scalar(11)
def test_input_lifetime(unary_func_fixture):
function, func_name = unary_func_fixture
proxy_pool = pa.proxy_memory_pool(pa.default_memory_pool())
assert proxy_pool.bytes_allocated() == 0
v = pa.array([1] * 1000, type=pa.int64(), memory_pool=proxy_pool)
assert proxy_pool.bytes_allocated() == 1000 * 8
pc.call_function(func_name, [v])
assert proxy_pool.bytes_allocated() == 1000 * 8
# Calling a UDF should not have kept `v` alive longer than required
v = None
assert proxy_pool.bytes_allocated() == 0
def _record_batch_from_iters(schema, *iters):
arrays = [pa.array(list(v), type=schema[i].type)
for i, v in enumerate(iters)]
return pa.RecordBatch.from_arrays(arrays=arrays, schema=schema)
def _record_batch_for_range(schema, n):
return _record_batch_from_iters(schema,
range(n, n + 10),
range(n + 1, n + 11))
def make_udt_func(schema, batch_gen):
def udf_func(ctx):
class UDT:
def __init__(self):
self.caller = None
def __call__(self, ctx):
try:
if self.caller is None:
self.caller, ctx = batch_gen(ctx).send, None
batch = self.caller(ctx)
except StopIteration:
arrays = [pa.array([], type=field.type)
for field in schema]
batch = pa.RecordBatch.from_arrays(
arrays=arrays, schema=schema)
return batch.to_struct_array()
return UDT()
return udf_func
def datasource1_direct():
"""A short dataset"""
schema = datasource1_schema()
class Generator:
def __init__(self):
self.n = 3
def __call__(self, ctx):
if self.n == 0:
batch = _record_batch_from_iters(schema, [], [])
else:
self.n -= 1
batch = _record_batch_for_range(schema, self.n)
return batch.to_struct_array()
return lambda ctx: Generator()
def datasource1_generator():
schema = datasource1_schema()
def batch_gen(ctx):
for n in range(3, 0, -1):
# ctx =
yield _record_batch_for_range(schema, n - 1)
return make_udt_func(schema, batch_gen)
def datasource1_exception():
schema = datasource1_schema()
def batch_gen(ctx):
for n in range(3, 0, -1):
# ctx =
yield _record_batch_for_range(schema, n - 1)
raise RuntimeError("datasource1_exception")
return make_udt_func(schema, batch_gen)
def datasource1_schema():
return pa.schema([('', pa.int32()), ('', pa.int32())])
def datasource1_args(func, func_name):
func_doc = {"summary": f"{func_name} UDT",
"description": "test {func_name} UDT"}
in_types = {}
out_type = pa.struct([("", pa.int32()), ("", pa.int32())])
return func, func_name, func_doc, in_types, out_type
def _test_datasource1_udt(func_maker):
schema = datasource1_schema()
func = func_maker()
func_name = func_maker.__name__
func_args = datasource1_args(func, func_name)
pc.register_tabular_function(*func_args)
n = 3
for item in pc.call_tabular_function(func_name):
n -= 1
assert item == _record_batch_for_range(schema, n)
def test_udt_datasource1_direct():
_test_datasource1_udt(datasource1_direct)
def test_udt_datasource1_generator():
_test_datasource1_udt(datasource1_generator)
def test_udt_datasource1_exception():
with pytest.raises(RuntimeError, match='datasource1_exception'):
_test_datasource1_udt(datasource1_exception)
def test_scalar_agg_basic(unary_agg_func_fixture):
arr = pa.array([10.0, 20.0, 30.0, 40.0, 50.0], pa.float64())
result = pc.call_function("mean_udf", [arr])
expected = pa.scalar(30.0)
assert result == expected
def test_scalar_agg_empty(unary_agg_func_fixture):
empty = pa.array([], pa.float64())
with pytest.raises(pa.ArrowInvalid, match='empty inputs'):
pc.call_function("mean_udf", [empty])
def test_scalar_agg_wrong_output_dtype(wrong_output_dtype_agg_func_fixture):
arr = pa.array([10, 20, 30, 40, 50], pa.int64())
with pytest.raises(pa.ArrowTypeError, match="output datatype"):
pc.call_function("y=wrong_output_dtype(x)", [arr])
def test_scalar_agg_wrong_output_type(wrong_output_type_agg_func_fixture):
arr = pa.array([10, 20, 30, 40, 50], pa.int64())
with pytest.raises(pa.ArrowTypeError, match="output type"):
pc.call_function("y=wrong_output_type(x)", [arr])
def test_scalar_agg_varargs(varargs_agg_func_fixture):
arr1 = pa.array([10, 20, 30, 40, 50], pa.int64())
arr2 = pa.array([1.0, 2.0, 3.0, 4.0, 5.0], pa.float64())
result = pc.call_function(
"sum_mean", [arr1, arr2]
)
expected = pa.scalar(33.0)
assert result == expected
def test_scalar_agg_exception(exception_agg_func_fixture):
arr = pa.array([10, 20, 30, 40, 50, 60], pa.int64())
with pytest.raises(RuntimeError, match='Oops'):
pc.call_function("y=exception_len(x)", [arr])
def test_hash_agg_basic(unary_agg_func_fixture):
arr1 = pa.array([10.0, 20.0, 30.0, 40.0, 50.0], pa.float64())
arr2 = pa.array([4, 2, 1, 2, 1], pa.int32())
arr3 = pa.array([60.0, 70.0, 80.0, 90.0, 100.0], pa.float64())
arr4 = pa.array([5, 1, 1, 4, 1], pa.int32())
table1 = pa.table([arr2, arr1], names=["id", "value"])
table2 = pa.table([arr4, arr3], names=["id", "value"])
table = pa.concat_tables([table1, table2])
result = table.group_by("id").aggregate([("value", "mean_udf")])
expected = table.group_by("id").aggregate(
[("value", "mean")]).rename_columns(['id', 'value_mean_udf'])
assert result.sort_by('id') == expected.sort_by('id')
def test_hash_agg_empty(unary_agg_func_fixture):
arr1 = pa.array([], pa.float64())
arr2 = pa.array([], pa.int32())
table = pa.table([arr2, arr1], names=["id", "value"])
result = table.group_by("id").aggregate([("value", "mean_udf")])
expected = pa.table([pa.array([], pa.int32()), pa.array(
[], pa.float64())], names=['id', 'value_mean_udf'])
assert result == expected
def test_hash_agg_wrong_output_dtype(wrong_output_dtype_agg_func_fixture):
arr1 = pa.array([10, 20, 30, 40, 50], pa.int64())
arr2 = pa.array([4, 2, 1, 2, 1], pa.int32())
table = pa.table([arr2, arr1], names=["id", "value"])
with pytest.raises(pa.ArrowTypeError, match="output datatype"):
table.group_by("id").aggregate([("value", "y=wrong_output_dtype(x)")])
def test_hash_agg_wrong_output_type(wrong_output_type_agg_func_fixture):
arr1 = pa.array([10, 20, 30, 40, 50], pa.int64())
arr2 = pa.array([4, 2, 1, 2, 1], pa.int32())
table = pa.table([arr2, arr1], names=["id", "value"])
with pytest.raises(pa.ArrowTypeError, match="output type"):
table.group_by("id").aggregate([("value", "y=wrong_output_type(x)")])
def test_hash_agg_exception(exception_agg_func_fixture):
arr1 = pa.array([10, 20, 30, 40, 50], pa.int64())
arr2 = pa.array([4, 2, 1, 2, 1], pa.int32())
table = pa.table([arr2, arr1], names=["id", "value"])
with pytest.raises(RuntimeError, match='Oops'):
table.group_by("id").aggregate([("value", "y=exception_len(x)")])
def test_hash_agg_random(sum_agg_func_fixture):
"""Test hash aggregate udf with randomly sampled data"""
value_num = 1000000
group_num = 1000
arr1 = pa.array(np.repeat(1, value_num), pa.float64())
arr2 = pa.array(np.random.choice(group_num, value_num), pa.int32())
table = pa.table([arr2, arr1], names=['id', 'value'])
result = table.group_by("id").aggregate([("value", "sum_udf")])
expected = table.group_by("id").aggregate(
[("value", "sum")]).rename_columns(['id', 'value_sum_udf'])
assert result.sort_by('id') == expected.sort_by('id')
@pytest.mark.pandas
def test_vector_basic(unary_vector_func_fixture):
arr = pa.array([10.0, 20.0, 30.0, 40.0, 50.0], pa.float64())
result = pc.call_function("y=pct_rank(x)", [arr])
expected = unary_vector_func_fixture[0](None, arr)
assert result == expected
@pytest.mark.pandas
def test_vector_empty(unary_vector_func_fixture):
arr = pa.array([1], pa.float64())
result = pc.call_function("y=pct_rank(x)", [arr])
expected = unary_vector_func_fixture[0](None, arr)
assert result == expected
@pytest.mark.pandas
def test_vector_struct(struct_vector_func_fixture):
k = pa.array(
[1, 1, 2, 2], pa.int64()
)
v = pa.array(
[1.0, 2.0, 3.0, 4.0], pa.float64()
)
c = pa.array(
['v1', 'v2', 'v1', 'v2']
)
result = pc.call_function("y=pivot(x)", [k, v, c])
expected = struct_vector_func_fixture[0](None, k, v, c)
assert result == expected