peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/tests
/test_udf.py
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
import pytest | |
import numpy as np | |
import pyarrow as pa | |
from pyarrow import compute as pc | |
# UDFs are all tested with a dataset scan | |
pytestmark = pytest.mark.dataset | |
# For convenience, most of the test here doesn't care about udf func docs | |
empty_udf_doc = {"summary": "", "description": ""} | |
try: | |
import pyarrow.dataset as ds | |
except ImportError: | |
ds = None | |
def mock_udf_context(batch_length=10): | |
from pyarrow._compute import _get_udf_context | |
return _get_udf_context(pa.default_memory_pool(), batch_length) | |
class MyError(RuntimeError): | |
pass | |
def sum_agg_func_fixture(): | |
""" | |
Register a unary aggregate function (mean) | |
""" | |
def func(ctx, x, *args): | |
return pa.scalar(np.nansum(x)) | |
func_name = "sum_udf" | |
func_doc = empty_udf_doc | |
pc.register_aggregate_function(func, | |
func_name, | |
func_doc, | |
{ | |
"x": pa.float64(), | |
}, | |
pa.float64() | |
) | |
return func, func_name | |
def exception_agg_func_fixture(): | |
def func(ctx, x): | |
raise RuntimeError("Oops") | |
return pa.scalar(len(x)) | |
func_name = "y=exception_len(x)" | |
func_doc = empty_udf_doc | |
pc.register_aggregate_function(func, | |
func_name, | |
func_doc, | |
{ | |
"x": pa.int64(), | |
}, | |
pa.int64() | |
) | |
return func, func_name | |
def wrong_output_dtype_agg_func_fixture(scope="session"): | |
def func(ctx, x): | |
return pa.scalar(len(x), pa.int32()) | |
func_name = "y=wrong_output_dtype(x)" | |
func_doc = empty_udf_doc | |
pc.register_aggregate_function(func, | |
func_name, | |
func_doc, | |
{ | |
"x": pa.int64(), | |
}, | |
pa.int64() | |
) | |
return func, func_name | |
def wrong_output_type_agg_func_fixture(scope="session"): | |
def func(ctx, x): | |
return len(x) | |
func_name = "y=wrong_output_type(x)" | |
func_doc = empty_udf_doc | |
pc.register_aggregate_function(func, | |
func_name, | |
func_doc, | |
{ | |
"x": pa.int64(), | |
}, | |
pa.int64() | |
) | |
return func, func_name | |
def binary_func_fixture(): | |
""" | |
Register a binary scalar function. | |
""" | |
def binary_function(ctx, m, x): | |
return pc.call_function("multiply", [m, x], | |
memory_pool=ctx.memory_pool) | |
func_name = "y=mx" | |
binary_doc = {"summary": "y=mx", | |
"description": "find y from y = mx"} | |
pc.register_scalar_function(binary_function, | |
func_name, | |
binary_doc, | |
{"m": pa.int64(), | |
"x": pa.int64(), | |
}, | |
pa.int64()) | |
return binary_function, func_name | |
def ternary_func_fixture(): | |
""" | |
Register a ternary scalar function. | |
""" | |
def ternary_function(ctx, m, x, c): | |
mx = pc.call_function("multiply", [m, x], | |
memory_pool=ctx.memory_pool) | |
return pc.call_function("add", [mx, c], | |
memory_pool=ctx.memory_pool) | |
ternary_doc = {"summary": "y=mx+c", | |
"description": "find y from y = mx + c"} | |
func_name = "y=mx+c" | |
pc.register_scalar_function(ternary_function, | |
func_name, | |
ternary_doc, | |
{ | |
"array1": pa.int64(), | |
"array2": pa.int64(), | |
"array3": pa.int64(), | |
}, | |
pa.int64()) | |
return ternary_function, func_name | |
def varargs_func_fixture(): | |
""" | |
Register a varargs scalar function with at least two arguments. | |
""" | |
def varargs_function(ctx, first, *values): | |
acc = first | |
for val in values: | |
acc = pc.call_function("add", [acc, val], | |
memory_pool=ctx.memory_pool) | |
return acc | |
func_name = "z=ax+by+c" | |
varargs_doc = {"summary": "z=ax+by+c", | |
"description": "find z from z = ax + by + c" | |
} | |
pc.register_scalar_function(varargs_function, | |
func_name, | |
varargs_doc, | |
{ | |
"array1": pa.int64(), | |
"array2": pa.int64(), | |
}, | |
pa.int64()) | |
return varargs_function, func_name | |
def nullary_func_fixture(): | |
""" | |
Register a nullary scalar function. | |
""" | |
def nullary_func(context): | |
return pa.array([42] * context.batch_length, type=pa.int64(), | |
memory_pool=context.memory_pool) | |
func_doc = { | |
"summary": "random function", | |
"description": "generates a random value" | |
} | |
func_name = "test_nullary_func" | |
pc.register_scalar_function(nullary_func, | |
func_name, | |
func_doc, | |
{}, | |
pa.int64()) | |
return nullary_func, func_name | |
def wrong_output_type_func_fixture(): | |
""" | |
Register a scalar function which returns something that is neither | |
a Arrow scalar or array. | |
""" | |
def wrong_output_type(ctx): | |
return 42 | |
func_name = "test_wrong_output_type" | |
in_types = {} | |
out_type = pa.int64() | |
doc = { | |
"summary": "return wrong output type", | |
"description": "" | |
} | |
pc.register_scalar_function(wrong_output_type, func_name, doc, | |
in_types, out_type) | |
return wrong_output_type, func_name | |
def wrong_output_datatype_func_fixture(): | |
""" | |
Register a scalar function whose actual output DataType doesn't | |
match the declared output DataType. | |
""" | |
def wrong_output_datatype(ctx, array): | |
return pc.call_function("add", [array, 1]) | |
func_name = "test_wrong_output_datatype" | |
in_types = {"array": pa.int64()} | |
# The actual output DataType will be int64. | |
out_type = pa.int16() | |
doc = { | |
"summary": "return wrong output datatype", | |
"description": "" | |
} | |
pc.register_scalar_function(wrong_output_datatype, func_name, doc, | |
in_types, out_type) | |
return wrong_output_datatype, func_name | |
def wrong_signature_func_fixture(): | |
""" | |
Register a scalar function with the wrong signature. | |
""" | |
# Missing the context argument | |
def wrong_signature(): | |
return pa.scalar(1, type=pa.int64()) | |
func_name = "test_wrong_signature" | |
in_types = {} | |
out_type = pa.int64() | |
doc = { | |
"summary": "UDF with wrong signature", | |
"description": "" | |
} | |
pc.register_scalar_function(wrong_signature, func_name, doc, | |
in_types, out_type) | |
return wrong_signature, func_name | |
def raising_func_fixture(): | |
""" | |
Register a scalar function which raises a custom exception. | |
""" | |
def raising_func(ctx): | |
raise MyError("error raised by scalar UDF") | |
func_name = "test_raise" | |
doc = { | |
"summary": "raising function", | |
"description": "" | |
} | |
pc.register_scalar_function(raising_func, func_name, doc, | |
{}, pa.int64()) | |
return raising_func, func_name | |
def unary_vector_func_fixture(): | |
""" | |
Register a vector function | |
""" | |
def pct_rank(ctx, x): | |
# copy here to get around pandas 1.0 issue | |
return pa.array(x.to_pandas().copy().rank(pct=True)) | |
func_name = "y=pct_rank(x)" | |
doc = empty_udf_doc | |
pc.register_vector_function(pct_rank, func_name, doc, { | |
'x': pa.float64()}, pa.float64()) | |
return pct_rank, func_name | |
def struct_vector_func_fixture(): | |
""" | |
Register a vector function that returns a struct array | |
""" | |
def pivot(ctx, k, v, c): | |
df = pa.RecordBatch.from_arrays([k, v, c], names=['k', 'v', 'c']).to_pandas() | |
df_pivot = df.pivot(columns='c', values='v', index='k').reset_index() | |
return pa.RecordBatch.from_pandas(df_pivot).to_struct_array() | |
func_name = "y=pivot(x)" | |
doc = empty_udf_doc | |
pc.register_vector_function( | |
pivot, func_name, doc, | |
{'k': pa.int64(), 'v': pa.float64(), 'c': pa.utf8()}, | |
pa.struct([('k', pa.int64()), ('v1', pa.float64()), ('v2', pa.float64())]) | |
) | |
return pivot, func_name | |
def check_scalar_function(func_fixture, | |
inputs, *, | |
run_in_dataset=True, | |
batch_length=None): | |
function, name = func_fixture | |
if batch_length is None: | |
all_scalar = True | |
for arg in inputs: | |
if isinstance(arg, pa.Array): | |
all_scalar = False | |
batch_length = len(arg) | |
if all_scalar: | |
batch_length = 1 | |
func = pc.get_function(name) | |
assert func.name == name | |
result = pc.call_function(name, inputs, length=batch_length) | |
expected_output = function(mock_udf_context(batch_length), *inputs) | |
assert result == expected_output | |
# At the moment there is an issue when handling nullary functions. | |
# See: ARROW-15286 and ARROW-16290. | |
if run_in_dataset: | |
field_names = [f'field{index}' for index, in_arr in inputs] | |
table = pa.Table.from_arrays(inputs, field_names) | |
dataset = ds.dataset(table) | |
func_args = [ds.field(field_name) for field_name in field_names] | |
result_table = dataset.to_table( | |
columns={'result': ds.field('')._call(name, func_args)}) | |
assert result_table.column(0).chunks[0] == expected_output | |
def test_udf_array_unary(unary_func_fixture): | |
check_scalar_function(unary_func_fixture, | |
[ | |
pa.array([10, 20], pa.int64()) | |
] | |
) | |
def test_udf_array_binary(binary_func_fixture): | |
check_scalar_function(binary_func_fixture, | |
[ | |
pa.array([10, 20], pa.int64()), | |
pa.array([2, 4], pa.int64()) | |
] | |
) | |
def test_udf_array_ternary(ternary_func_fixture): | |
check_scalar_function(ternary_func_fixture, | |
[ | |
pa.array([10, 20], pa.int64()), | |
pa.array([2, 4], pa.int64()), | |
pa.array([5, 10], pa.int64()) | |
] | |
) | |
def test_udf_array_varargs(varargs_func_fixture): | |
check_scalar_function(varargs_func_fixture, | |
[ | |
pa.array([2, 3], pa.int64()), | |
pa.array([10, 20], pa.int64()), | |
pa.array([3, 7], pa.int64()), | |
pa.array([20, 30], pa.int64()), | |
pa.array([5, 10], pa.int64()) | |
] | |
) | |
def test_registration_errors(): | |
# validate function name | |
doc = { | |
"summary": "test udf input", | |
"description": "parameters are validated" | |
} | |
in_types = {"scalar": pa.int64()} | |
out_type = pa.int64() | |
def test_reg_function(context): | |
return pa.array([10]) | |
with pytest.raises(TypeError): | |
pc.register_scalar_function(test_reg_function, | |
None, doc, in_types, | |
out_type) | |
# validate function | |
with pytest.raises(TypeError, match="func must be a callable"): | |
pc.register_scalar_function(None, "test_none_function", doc, in_types, | |
out_type) | |
# validate output type | |
expected_expr = "DataType expected, got <class 'NoneType'>" | |
with pytest.raises(TypeError, match=expected_expr): | |
pc.register_scalar_function(test_reg_function, | |
"test_output_function", doc, in_types, | |
None) | |
# validate input type | |
expected_expr = "in_types must be a dictionary of DataType" | |
with pytest.raises(TypeError, match=expected_expr): | |
pc.register_scalar_function(test_reg_function, | |
"test_input_function", doc, None, | |
out_type) | |
# register an already registered function | |
# first registration | |
pc.register_scalar_function(test_reg_function, | |
"test_reg_function", doc, {}, | |
out_type) | |
# second registration | |
expected_expr = "Already have a function registered with name:" \ | |
+ " test_reg_function" | |
with pytest.raises(KeyError, match=expected_expr): | |
pc.register_scalar_function(test_reg_function, | |
"test_reg_function", doc, {}, | |
out_type) | |
def test_varargs_function_validation(varargs_func_fixture): | |
_, func_name = varargs_func_fixture | |
error_msg = r"VarArgs function 'z=ax\+by\+c' needs at least 2 arguments" | |
with pytest.raises(ValueError, match=error_msg): | |
pc.call_function(func_name, [42]) | |
def test_function_doc_validation(): | |
# validate arity | |
in_types = {"scalar": pa.int64()} | |
out_type = pa.int64() | |
# doc with no summary | |
func_doc = { | |
"description": "desc" | |
} | |
def add_const(ctx, scalar): | |
return pc.call_function("add", [scalar, 1]) | |
with pytest.raises(ValueError, | |
match="Function doc must contain a summary"): | |
pc.register_scalar_function(add_const, "test_no_summary", | |
func_doc, in_types, | |
out_type) | |
# doc with no description | |
func_doc = { | |
"summary": "test summary" | |
} | |
with pytest.raises(ValueError, | |
match="Function doc must contain a description"): | |
pc.register_scalar_function(add_const, "test_no_desc", | |
func_doc, in_types, | |
out_type) | |
def test_nullary_function(nullary_func_fixture): | |
# XXX the Python compute layer API doesn't let us override batch_length, | |
# so only test with the default value of 1. | |
check_scalar_function(nullary_func_fixture, [], run_in_dataset=False, | |
batch_length=1) | |
def test_wrong_output_type(wrong_output_type_func_fixture): | |
_, func_name = wrong_output_type_func_fixture | |
with pytest.raises(TypeError, | |
match="Unexpected output type: int"): | |
pc.call_function(func_name, [], length=1) | |
def test_wrong_output_datatype(wrong_output_datatype_func_fixture): | |
_, func_name = wrong_output_datatype_func_fixture | |
expected_expr = ("Expected output datatype int16, " | |
"but function returned datatype int64") | |
with pytest.raises(TypeError, match=expected_expr): | |
pc.call_function(func_name, [pa.array([20, 30])]) | |
def test_wrong_signature(wrong_signature_func_fixture): | |
_, func_name = wrong_signature_func_fixture | |
expected_expr = (r"wrong_signature\(\) takes 0 positional arguments " | |
"but 1 was given") | |
with pytest.raises(TypeError, match=expected_expr): | |
pc.call_function(func_name, [], length=1) | |
def test_wrong_datatype_declaration(): | |
def identity(ctx, val): | |
return val | |
func_name = "test_wrong_datatype_declaration" | |
in_types = {"array": pa.int64()} | |
out_type = {} | |
doc = { | |
"summary": "test output value", | |
"description": "test output" | |
} | |
with pytest.raises(TypeError, | |
match="DataType expected, got <class 'dict'>"): | |
pc.register_scalar_function(identity, func_name, | |
doc, in_types, out_type) | |
def test_wrong_input_type_declaration(): | |
def identity(ctx, val): | |
return val | |
func_name = "test_wrong_input_type_declaration" | |
in_types = {"array": None} | |
out_type = pa.int64() | |
doc = { | |
"summary": "test invalid input type", | |
"description": "invalid input function" | |
} | |
with pytest.raises(TypeError, | |
match="DataType expected, got <class 'NoneType'>"): | |
pc.register_scalar_function(identity, func_name, doc, | |
in_types, out_type) | |
def test_scalar_udf_context(unary_func_fixture): | |
# Check the memory_pool argument is properly propagated | |
proxy_pool = pa.proxy_memory_pool(pa.default_memory_pool()) | |
_, func_name = unary_func_fixture | |
res = pc.call_function(func_name, | |
[pa.array([1] * 1000, type=pa.int64())], | |
memory_pool=proxy_pool) | |
assert res == pa.array([2] * 1000, type=pa.int64()) | |
assert proxy_pool.bytes_allocated() == 1000 * 8 | |
# Destroying Python array should destroy underlying C++ memory | |
res = None | |
assert proxy_pool.bytes_allocated() == 0 | |
def test_raising_func(raising_func_fixture): | |
_, func_name = raising_func_fixture | |
with pytest.raises(MyError, match="error raised by scalar UDF"): | |
pc.call_function(func_name, [], length=1) | |
def test_scalar_input(unary_func_fixture): | |
function, func_name = unary_func_fixture | |
res = pc.call_function(func_name, [pa.scalar(10)]) | |
assert res == pa.scalar(11) | |
def test_input_lifetime(unary_func_fixture): | |
function, func_name = unary_func_fixture | |
proxy_pool = pa.proxy_memory_pool(pa.default_memory_pool()) | |
assert proxy_pool.bytes_allocated() == 0 | |
v = pa.array([1] * 1000, type=pa.int64(), memory_pool=proxy_pool) | |
assert proxy_pool.bytes_allocated() == 1000 * 8 | |
pc.call_function(func_name, [v]) | |
assert proxy_pool.bytes_allocated() == 1000 * 8 | |
# Calling a UDF should not have kept `v` alive longer than required | |
v = None | |
assert proxy_pool.bytes_allocated() == 0 | |
def _record_batch_from_iters(schema, *iters): | |
arrays = [pa.array(list(v), type=schema[i].type) | |
for i, v in enumerate(iters)] | |
return pa.RecordBatch.from_arrays(arrays=arrays, schema=schema) | |
def _record_batch_for_range(schema, n): | |
return _record_batch_from_iters(schema, | |
range(n, n + 10), | |
range(n + 1, n + 11)) | |
def make_udt_func(schema, batch_gen): | |
def udf_func(ctx): | |
class UDT: | |
def __init__(self): | |
self.caller = None | |
def __call__(self, ctx): | |
try: | |
if self.caller is None: | |
self.caller, ctx = batch_gen(ctx).send, None | |
batch = self.caller(ctx) | |
except StopIteration: | |
arrays = [pa.array([], type=field.type) | |
for field in schema] | |
batch = pa.RecordBatch.from_arrays( | |
arrays=arrays, schema=schema) | |
return batch.to_struct_array() | |
return UDT() | |
return udf_func | |
def datasource1_direct(): | |
"""A short dataset""" | |
schema = datasource1_schema() | |
class Generator: | |
def __init__(self): | |
self.n = 3 | |
def __call__(self, ctx): | |
if self.n == 0: | |
batch = _record_batch_from_iters(schema, [], []) | |
else: | |
self.n -= 1 | |
batch = _record_batch_for_range(schema, self.n) | |
return batch.to_struct_array() | |
return lambda ctx: Generator() | |
def datasource1_generator(): | |
schema = datasource1_schema() | |
def batch_gen(ctx): | |
for n in range(3, 0, -1): | |
# ctx = | |
yield _record_batch_for_range(schema, n - 1) | |
return make_udt_func(schema, batch_gen) | |
def datasource1_exception(): | |
schema = datasource1_schema() | |
def batch_gen(ctx): | |
for n in range(3, 0, -1): | |
# ctx = | |
yield _record_batch_for_range(schema, n - 1) | |
raise RuntimeError("datasource1_exception") | |
return make_udt_func(schema, batch_gen) | |
def datasource1_schema(): | |
return pa.schema([('', pa.int32()), ('', pa.int32())]) | |
def datasource1_args(func, func_name): | |
func_doc = {"summary": f"{func_name} UDT", | |
"description": "test {func_name} UDT"} | |
in_types = {} | |
out_type = pa.struct([("", pa.int32()), ("", pa.int32())]) | |
return func, func_name, func_doc, in_types, out_type | |
def _test_datasource1_udt(func_maker): | |
schema = datasource1_schema() | |
func = func_maker() | |
func_name = func_maker.__name__ | |
func_args = datasource1_args(func, func_name) | |
pc.register_tabular_function(*func_args) | |
n = 3 | |
for item in pc.call_tabular_function(func_name): | |
n -= 1 | |
assert item == _record_batch_for_range(schema, n) | |
def test_udt_datasource1_direct(): | |
_test_datasource1_udt(datasource1_direct) | |
def test_udt_datasource1_generator(): | |
_test_datasource1_udt(datasource1_generator) | |
def test_udt_datasource1_exception(): | |
with pytest.raises(RuntimeError, match='datasource1_exception'): | |
_test_datasource1_udt(datasource1_exception) | |
def test_scalar_agg_basic(unary_agg_func_fixture): | |
arr = pa.array([10.0, 20.0, 30.0, 40.0, 50.0], pa.float64()) | |
result = pc.call_function("mean_udf", [arr]) | |
expected = pa.scalar(30.0) | |
assert result == expected | |
def test_scalar_agg_empty(unary_agg_func_fixture): | |
empty = pa.array([], pa.float64()) | |
with pytest.raises(pa.ArrowInvalid, match='empty inputs'): | |
pc.call_function("mean_udf", [empty]) | |
def test_scalar_agg_wrong_output_dtype(wrong_output_dtype_agg_func_fixture): | |
arr = pa.array([10, 20, 30, 40, 50], pa.int64()) | |
with pytest.raises(pa.ArrowTypeError, match="output datatype"): | |
pc.call_function("y=wrong_output_dtype(x)", [arr]) | |
def test_scalar_agg_wrong_output_type(wrong_output_type_agg_func_fixture): | |
arr = pa.array([10, 20, 30, 40, 50], pa.int64()) | |
with pytest.raises(pa.ArrowTypeError, match="output type"): | |
pc.call_function("y=wrong_output_type(x)", [arr]) | |
def test_scalar_agg_varargs(varargs_agg_func_fixture): | |
arr1 = pa.array([10, 20, 30, 40, 50], pa.int64()) | |
arr2 = pa.array([1.0, 2.0, 3.0, 4.0, 5.0], pa.float64()) | |
result = pc.call_function( | |
"sum_mean", [arr1, arr2] | |
) | |
expected = pa.scalar(33.0) | |
assert result == expected | |
def test_scalar_agg_exception(exception_agg_func_fixture): | |
arr = pa.array([10, 20, 30, 40, 50, 60], pa.int64()) | |
with pytest.raises(RuntimeError, match='Oops'): | |
pc.call_function("y=exception_len(x)", [arr]) | |
def test_hash_agg_basic(unary_agg_func_fixture): | |
arr1 = pa.array([10.0, 20.0, 30.0, 40.0, 50.0], pa.float64()) | |
arr2 = pa.array([4, 2, 1, 2, 1], pa.int32()) | |
arr3 = pa.array([60.0, 70.0, 80.0, 90.0, 100.0], pa.float64()) | |
arr4 = pa.array([5, 1, 1, 4, 1], pa.int32()) | |
table1 = pa.table([arr2, arr1], names=["id", "value"]) | |
table2 = pa.table([arr4, arr3], names=["id", "value"]) | |
table = pa.concat_tables([table1, table2]) | |
result = table.group_by("id").aggregate([("value", "mean_udf")]) | |
expected = table.group_by("id").aggregate( | |
[("value", "mean")]).rename_columns(['id', 'value_mean_udf']) | |
assert result.sort_by('id') == expected.sort_by('id') | |
def test_hash_agg_empty(unary_agg_func_fixture): | |
arr1 = pa.array([], pa.float64()) | |
arr2 = pa.array([], pa.int32()) | |
table = pa.table([arr2, arr1], names=["id", "value"]) | |
result = table.group_by("id").aggregate([("value", "mean_udf")]) | |
expected = pa.table([pa.array([], pa.int32()), pa.array( | |
[], pa.float64())], names=['id', 'value_mean_udf']) | |
assert result == expected | |
def test_hash_agg_wrong_output_dtype(wrong_output_dtype_agg_func_fixture): | |
arr1 = pa.array([10, 20, 30, 40, 50], pa.int64()) | |
arr2 = pa.array([4, 2, 1, 2, 1], pa.int32()) | |
table = pa.table([arr2, arr1], names=["id", "value"]) | |
with pytest.raises(pa.ArrowTypeError, match="output datatype"): | |
table.group_by("id").aggregate([("value", "y=wrong_output_dtype(x)")]) | |
def test_hash_agg_wrong_output_type(wrong_output_type_agg_func_fixture): | |
arr1 = pa.array([10, 20, 30, 40, 50], pa.int64()) | |
arr2 = pa.array([4, 2, 1, 2, 1], pa.int32()) | |
table = pa.table([arr2, arr1], names=["id", "value"]) | |
with pytest.raises(pa.ArrowTypeError, match="output type"): | |
table.group_by("id").aggregate([("value", "y=wrong_output_type(x)")]) | |
def test_hash_agg_exception(exception_agg_func_fixture): | |
arr1 = pa.array([10, 20, 30, 40, 50], pa.int64()) | |
arr2 = pa.array([4, 2, 1, 2, 1], pa.int32()) | |
table = pa.table([arr2, arr1], names=["id", "value"]) | |
with pytest.raises(RuntimeError, match='Oops'): | |
table.group_by("id").aggregate([("value", "y=exception_len(x)")]) | |
def test_hash_agg_random(sum_agg_func_fixture): | |
"""Test hash aggregate udf with randomly sampled data""" | |
value_num = 1000000 | |
group_num = 1000 | |
arr1 = pa.array(np.repeat(1, value_num), pa.float64()) | |
arr2 = pa.array(np.random.choice(group_num, value_num), pa.int32()) | |
table = pa.table([arr2, arr1], names=['id', 'value']) | |
result = table.group_by("id").aggregate([("value", "sum_udf")]) | |
expected = table.group_by("id").aggregate( | |
[("value", "sum")]).rename_columns(['id', 'value_sum_udf']) | |
assert result.sort_by('id') == expected.sort_by('id') | |
def test_vector_basic(unary_vector_func_fixture): | |
arr = pa.array([10.0, 20.0, 30.0, 40.0, 50.0], pa.float64()) | |
result = pc.call_function("y=pct_rank(x)", [arr]) | |
expected = unary_vector_func_fixture[0](None, arr) | |
assert result == expected | |
def test_vector_empty(unary_vector_func_fixture): | |
arr = pa.array([1], pa.float64()) | |
result = pc.call_function("y=pct_rank(x)", [arr]) | |
expected = unary_vector_func_fixture[0](None, arr) | |
assert result == expected | |
def test_vector_struct(struct_vector_func_fixture): | |
k = pa.array( | |
[1, 1, 2, 2], pa.int64() | |
) | |
v = pa.array( | |
[1.0, 2.0, 3.0, 4.0], pa.float64() | |
) | |
c = pa.array( | |
['v1', 'v2', 'v1', 'v2'] | |
) | |
result = pc.call_function("y=pivot(x)", [k, v, c]) | |
expected = struct_vector_func_fixture[0](None, k, v, c) | |
assert result == expected | |