peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/datasets
/config.py
import importlib | |
import importlib.metadata | |
import logging | |
import os | |
import platform | |
from pathlib import Path | |
from typing import Optional | |
from packaging import version | |
logger = logging.getLogger(__name__.split(".", 1)[0]) # to avoid circular import from .utils.logging | |
# Datasets | |
S3_DATASETS_BUCKET_PREFIX = "https://s3.amazonaws.com/datasets.huggingface.co/datasets/datasets" | |
CLOUDFRONT_DATASETS_DISTRIB_PREFIX = "https://cdn-datasets.huggingface.co/datasets/datasets" | |
REPO_DATASETS_URL = "https://raw.githubusercontent.com/huggingface/datasets/{revision}/datasets/{path}/{name}" | |
# Metrics | |
S3_METRICS_BUCKET_PREFIX = "https://s3.amazonaws.com/datasets.huggingface.co/datasets/metrics" | |
CLOUDFRONT_METRICS_DISTRIB_PREFIX = "https://cdn-datasets.huggingface.co/datasets/metric" | |
REPO_METRICS_URL = "https://raw.githubusercontent.com/huggingface/datasets/{revision}/metrics/{path}/{name}" | |
# Hub | |
HF_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co") | |
HUB_DATASETS_URL = HF_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" | |
HUB_DATASETS_HFFS_URL = "hf://datasets/{repo_id}@{revision}/{path}" | |
HUB_DEFAULT_VERSION = "main" | |
PY_VERSION = version.parse(platform.python_version()) | |
# General environment variables accepted values for booleans | |
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"} | |
ENV_VARS_FALSE_VALUES = {"0", "OFF", "NO", "FALSE"} | |
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"}) | |
ENV_VARS_FALSE_AND_AUTO_VALUES = ENV_VARS_FALSE_VALUES.union({"AUTO"}) | |
# Imports | |
DILL_VERSION = version.parse(importlib.metadata.version("dill")) | |
FSSPEC_VERSION = version.parse(importlib.metadata.version("fsspec")) | |
PANDAS_VERSION = version.parse(importlib.metadata.version("pandas")) | |
PYARROW_VERSION = version.parse(importlib.metadata.version("pyarrow")) | |
HF_HUB_VERSION = version.parse(importlib.metadata.version("huggingface_hub")) | |
USE_TF = os.environ.get("USE_TF", "AUTO").upper() | |
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper() | |
USE_JAX = os.environ.get("USE_JAX", "AUTO").upper() | |
TORCH_VERSION = "N/A" | |
TORCH_AVAILABLE = False | |
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES: | |
TORCH_AVAILABLE = importlib.util.find_spec("torch") is not None | |
if TORCH_AVAILABLE: | |
try: | |
TORCH_VERSION = version.parse(importlib.metadata.version("torch")) | |
logger.info(f"PyTorch version {TORCH_VERSION} available.") | |
except importlib.metadata.PackageNotFoundError: | |
pass | |
else: | |
logger.info("Disabling PyTorch because USE_TF is set") | |
POLARS_VERSION = "N/A" | |
POLARS_AVAILABLE = importlib.util.find_spec("polars") is not None | |
if POLARS_AVAILABLE: | |
try: | |
POLARS_VERSION = version.parse(importlib.metadata.version("polars")) | |
logger.info(f"Polars version {POLARS_VERSION} available.") | |
except importlib.metadata.PackageNotFoundError: | |
pass | |
TF_VERSION = "N/A" | |
TF_AVAILABLE = False | |
if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES: | |
TF_AVAILABLE = importlib.util.find_spec("tensorflow") is not None | |
if TF_AVAILABLE: | |
# For the metadata, we have to look for both tensorflow and tensorflow-cpu | |
for package in [ | |
"tensorflow", | |
"tensorflow-cpu", | |
"tensorflow-gpu", | |
"tf-nightly", | |
"tf-nightly-cpu", | |
"tf-nightly-gpu", | |
"intel-tensorflow", | |
"tensorflow-rocm", | |
"tensorflow-macos", | |
]: | |
try: | |
TF_VERSION = version.parse(importlib.metadata.version(package)) | |
except importlib.metadata.PackageNotFoundError: | |
continue | |
else: | |
break | |
else: | |
TF_AVAILABLE = False | |
if TF_AVAILABLE: | |
if TF_VERSION.major < 2: | |
logger.info(f"TensorFlow found but with version {TF_VERSION}. `datasets` requires version 2 minimum.") | |
TF_AVAILABLE = False | |
else: | |
logger.info(f"TensorFlow version {TF_VERSION} available.") | |
else: | |
logger.info("Disabling Tensorflow because USE_TORCH is set") | |
JAX_VERSION = "N/A" | |
JAX_AVAILABLE = False | |
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES: | |
JAX_AVAILABLE = importlib.util.find_spec("jax") is not None and importlib.util.find_spec("jaxlib") is not None | |
if JAX_AVAILABLE: | |
try: | |
JAX_VERSION = version.parse(importlib.metadata.version("jax")) | |
logger.info(f"JAX version {JAX_VERSION} available.") | |
except importlib.metadata.PackageNotFoundError: | |
pass | |
else: | |
logger.info("Disabling JAX because USE_JAX is set to False") | |
USE_BEAM = os.environ.get("USE_BEAM", "AUTO").upper() | |
BEAM_VERSION = "N/A" | |
BEAM_AVAILABLE = False | |
if USE_BEAM in ENV_VARS_TRUE_AND_AUTO_VALUES: | |
try: | |
BEAM_VERSION = version.parse(importlib.metadata.version("apache_beam")) | |
BEAM_AVAILABLE = True | |
logger.info(f"Apache Beam version {BEAM_VERSION} available.") | |
except importlib.metadata.PackageNotFoundError: | |
pass | |
else: | |
logger.info("Disabling Apache Beam because USE_BEAM is set to False") | |
# Optional tools for data loading | |
SQLALCHEMY_AVAILABLE = importlib.util.find_spec("sqlalchemy") is not None | |
# Optional tools for feature decoding | |
PIL_AVAILABLE = importlib.util.find_spec("PIL") is not None | |
IS_OPUS_SUPPORTED = importlib.util.find_spec("soundfile") is not None and version.parse( | |
importlib.import_module("soundfile").__libsndfile_version__ | |
) >= version.parse("1.0.31") | |
IS_MP3_SUPPORTED = importlib.util.find_spec("soundfile") is not None and version.parse( | |
importlib.import_module("soundfile").__libsndfile_version__ | |
) >= version.parse("1.1.0") | |
# Optional compression tools | |
RARFILE_AVAILABLE = importlib.util.find_spec("rarfile") is not None | |
ZSTANDARD_AVAILABLE = importlib.util.find_spec("zstandard") is not None | |
LZ4_AVAILABLE = importlib.util.find_spec("lz4") is not None | |
PY7ZR_AVAILABLE = importlib.util.find_spec("py7zr") is not None | |
# Cache location | |
DEFAULT_XDG_CACHE_HOME = "~/.cache" | |
XDG_CACHE_HOME = os.getenv("XDG_CACHE_HOME", DEFAULT_XDG_CACHE_HOME) | |
DEFAULT_HF_CACHE_HOME = os.path.join(XDG_CACHE_HOME, "huggingface") | |
HF_CACHE_HOME = os.path.expanduser(os.getenv("HF_HOME", DEFAULT_HF_CACHE_HOME)) | |
DEFAULT_HF_DATASETS_CACHE = os.path.join(HF_CACHE_HOME, "datasets") | |
HF_DATASETS_CACHE = Path(os.getenv("HF_DATASETS_CACHE", DEFAULT_HF_DATASETS_CACHE)) | |
DEFAULT_HF_METRICS_CACHE = os.path.join(HF_CACHE_HOME, "metrics") | |
HF_METRICS_CACHE = Path(os.getenv("HF_METRICS_CACHE", DEFAULT_HF_METRICS_CACHE)) | |
DEFAULT_HF_MODULES_CACHE = os.path.join(HF_CACHE_HOME, "modules") | |
HF_MODULES_CACHE = Path(os.getenv("HF_MODULES_CACHE", DEFAULT_HF_MODULES_CACHE)) | |
DOWNLOADED_DATASETS_DIR = "downloads" | |
DEFAULT_DOWNLOADED_DATASETS_PATH = os.path.join(HF_DATASETS_CACHE, DOWNLOADED_DATASETS_DIR) | |
DOWNLOADED_DATASETS_PATH = Path(os.getenv("HF_DATASETS_DOWNLOADED_DATASETS_PATH", DEFAULT_DOWNLOADED_DATASETS_PATH)) | |
EXTRACTED_DATASETS_DIR = "extracted" | |
DEFAULT_EXTRACTED_DATASETS_PATH = os.path.join(DEFAULT_DOWNLOADED_DATASETS_PATH, EXTRACTED_DATASETS_DIR) | |
EXTRACTED_DATASETS_PATH = Path(os.getenv("HF_DATASETS_EXTRACTED_DATASETS_PATH", DEFAULT_EXTRACTED_DATASETS_PATH)) | |
# Download count for the website | |
HF_UPDATE_DOWNLOAD_COUNTS = ( | |
os.environ.get("HF_UPDATE_DOWNLOAD_COUNTS", "AUTO").upper() in ENV_VARS_TRUE_AND_AUTO_VALUES | |
) | |
# For downloads and to check remote files metadata | |
HF_DATASETS_MULTITHREADING_MAX_WORKERS = 16 | |
# Remote dataset scripts support | |
__HF_DATASETS_TRUST_REMOTE_CODE = os.environ.get("HF_DATASETS_TRUST_REMOTE_CODE", "1") | |
HF_DATASETS_TRUST_REMOTE_CODE: Optional[bool] = ( | |
True | |
if __HF_DATASETS_TRUST_REMOTE_CODE.upper() in ENV_VARS_TRUE_VALUES | |
else False | |
if __HF_DATASETS_TRUST_REMOTE_CODE.upper() in ENV_VARS_FALSE_VALUES | |
else None | |
) | |
TIME_OUT_REMOTE_CODE = 15 | |
# Dataset viewer API | |
USE_PARQUET_EXPORT = True | |
# Batch size constants. For more info, see: | |
# https://github.com/apache/arrow/blob/master/docs/source/cpp/arrays.rst#size-limitations-and-recommendations) | |
DEFAULT_MAX_BATCH_SIZE = 1000 | |
# Size of the preloaded record batch in `Dataset.__iter__` | |
ARROW_READER_BATCH_SIZE_IN_DATASET_ITER = 10 | |
# Max shard size in bytes (e.g. to shard parquet datasets in push_to_hub or download_and_prepare) | |
MAX_SHARD_SIZE = "500MB" | |
# Parquet configuration | |
PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS = 100 | |
PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS = 100 | |
PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS = 100 | |
# Offline mode | |
HF_DATASETS_OFFLINE = os.environ.get("HF_DATASETS_OFFLINE", "AUTO").upper() in ENV_VARS_TRUE_VALUES | |
# Here, `True` will disable progress bars globally without possibility of enabling it | |
# programmatically. `False` will enable them without possibility of disabling them. | |
# If environment variable is not set (None), then the user is free to enable/disable | |
# them programmatically. | |
# TL;DR: env variable has priority over code | |
__HF_DATASETS_DISABLE_PROGRESS_BARS = os.environ.get("HF_DATASETS_DISABLE_PROGRESS_BARS") | |
HF_DATASETS_DISABLE_PROGRESS_BARS: Optional[bool] = ( | |
__HF_DATASETS_DISABLE_PROGRESS_BARS.upper() in ENV_VARS_TRUE_VALUES | |
if __HF_DATASETS_DISABLE_PROGRESS_BARS is not None | |
else None | |
) | |
# In-memory | |
DEFAULT_IN_MEMORY_MAX_SIZE = 0 # Disabled | |
IN_MEMORY_MAX_SIZE = float(os.environ.get("HF_DATASETS_IN_MEMORY_MAX_SIZE", DEFAULT_IN_MEMORY_MAX_SIZE)) | |
# File names | |
DATASET_ARROW_FILENAME = "dataset.arrow" | |
DATASET_INDICES_FILENAME = "indices.arrow" | |
DATASET_STATE_JSON_FILENAME = "state.json" | |
DATASET_INFO_FILENAME = "dataset_info.json" | |
DATASETDICT_INFOS_FILENAME = "dataset_infos.json" | |
LICENSE_FILENAME = "LICENSE" | |
METRIC_INFO_FILENAME = "metric_info.json" | |
DATASETDICT_JSON_FILENAME = "dataset_dict.json" | |
METADATA_CONFIGS_FIELD = "configs" | |
REPOCARD_FILENAME = "README.md" | |
REPOYAML_FILENAME = ".huggingface.yaml" | |
MODULE_NAME_FOR_DYNAMIC_MODULES = "datasets_modules" | |
MAX_DATASET_CONFIG_ID_READABLE_LENGTH = 255 | |
# Temporary cache directory prefix | |
TEMP_CACHE_DIR_PREFIX = "hf_datasets-" | |
# Streaming | |
STREAMING_READ_MAX_RETRIES = 20 | |
STREAMING_READ_RETRY_INTERVAL = 5 | |
# Datasets without script | |
DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE = 200 | |
GLOBBED_DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE = 10 | |
ARCHIVED_DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE = 200 | |
# Progress bars | |
PBAR_REFRESH_TIME_INTERVAL = 0.05 # 20 progress updates per sec | |
# Maximum number of uploaded files per commit | |
UPLOADS_MAX_NUMBER_PER_COMMIT = 50 | |
# Backward compatibiliy | |
MAX_TABLE_NBYTES_FOR_PICKLING = 4 << 30 | |