|
|
|
|
|
|
|
|
|
"""Clebsch-Gordon Coefficients.""" |
|
|
|
from sympy.concrete.summations import Sum |
|
from sympy.core.add import Add |
|
from sympy.core.expr import Expr |
|
from sympy.core.function import expand |
|
from sympy.core.mul import Mul |
|
from sympy.core.power import Pow |
|
from sympy.core.relational import Eq |
|
from sympy.core.singleton import S |
|
from sympy.core.symbol import (Wild, symbols) |
|
from sympy.core.sympify import sympify |
|
from sympy.functions.elementary.miscellaneous import sqrt |
|
from sympy.functions.elementary.piecewise import Piecewise |
|
from sympy.printing.pretty.stringpict import prettyForm, stringPict |
|
|
|
from sympy.functions.special.tensor_functions import KroneckerDelta |
|
from sympy.physics.wigner import clebsch_gordan, wigner_3j, wigner_6j, wigner_9j |
|
from sympy.printing.precedence import PRECEDENCE |
|
|
|
__all__ = [ |
|
'CG', |
|
'Wigner3j', |
|
'Wigner6j', |
|
'Wigner9j', |
|
'cg_simp' |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
class Wigner3j(Expr): |
|
"""Class for the Wigner-3j symbols. |
|
|
|
Explanation |
|
=========== |
|
|
|
Wigner 3j-symbols are coefficients determined by the coupling of |
|
two angular momenta. When created, they are expressed as symbolic |
|
quantities that, for numerical parameters, can be evaluated using the |
|
``.doit()`` method [1]_. |
|
|
|
Parameters |
|
========== |
|
|
|
j1, m1, j2, m2, j3, m3 : Number, Symbol |
|
Terms determining the angular momentum of coupled angular momentum |
|
systems. |
|
|
|
Examples |
|
======== |
|
|
|
Declare a Wigner-3j coefficient and calculate its value |
|
|
|
>>> from sympy.physics.quantum.cg import Wigner3j |
|
>>> w3j = Wigner3j(6,0,4,0,2,0) |
|
>>> w3j |
|
Wigner3j(6, 0, 4, 0, 2, 0) |
|
>>> w3j.doit() |
|
sqrt(715)/143 |
|
|
|
See Also |
|
======== |
|
|
|
CG: Clebsch-Gordan coefficients |
|
|
|
References |
|
========== |
|
|
|
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. |
|
""" |
|
|
|
is_commutative = True |
|
|
|
def __new__(cls, j1, m1, j2, m2, j3, m3): |
|
args = map(sympify, (j1, m1, j2, m2, j3, m3)) |
|
return Expr.__new__(cls, *args) |
|
|
|
@property |
|
def j1(self): |
|
return self.args[0] |
|
|
|
@property |
|
def m1(self): |
|
return self.args[1] |
|
|
|
@property |
|
def j2(self): |
|
return self.args[2] |
|
|
|
@property |
|
def m2(self): |
|
return self.args[3] |
|
|
|
@property |
|
def j3(self): |
|
return self.args[4] |
|
|
|
@property |
|
def m3(self): |
|
return self.args[5] |
|
|
|
@property |
|
def is_symbolic(self): |
|
return not all(arg.is_number for arg in self.args) |
|
|
|
|
|
def _pretty(self, printer, *args): |
|
m = ((printer._print(self.j1), printer._print(self.m1)), |
|
(printer._print(self.j2), printer._print(self.m2)), |
|
(printer._print(self.j3), printer._print(self.m3))) |
|
hsep = 2 |
|
vsep = 1 |
|
maxw = [-1]*3 |
|
for j in range(3): |
|
maxw[j] = max([ m[j][i].width() for i in range(2) ]) |
|
D = None |
|
for i in range(2): |
|
D_row = None |
|
for j in range(3): |
|
s = m[j][i] |
|
wdelta = maxw[j] - s.width() |
|
wleft = wdelta //2 |
|
wright = wdelta - wleft |
|
|
|
s = prettyForm(*s.right(' '*wright)) |
|
s = prettyForm(*s.left(' '*wleft)) |
|
|
|
if D_row is None: |
|
D_row = s |
|
continue |
|
D_row = prettyForm(*D_row.right(' '*hsep)) |
|
D_row = prettyForm(*D_row.right(s)) |
|
if D is None: |
|
D = D_row |
|
continue |
|
for _ in range(vsep): |
|
D = prettyForm(*D.below(' ')) |
|
D = prettyForm(*D.below(D_row)) |
|
D = prettyForm(*D.parens()) |
|
return D |
|
|
|
def _latex(self, printer, *args): |
|
label = map(printer._print, (self.j1, self.j2, self.j3, |
|
self.m1, self.m2, self.m3)) |
|
return r'\left(\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right)' % \ |
|
tuple(label) |
|
|
|
def doit(self, **hints): |
|
if self.is_symbolic: |
|
raise ValueError("Coefficients must be numerical") |
|
return wigner_3j(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3) |
|
|
|
|
|
class CG(Wigner3j): |
|
r"""Class for Clebsch-Gordan coefficient. |
|
|
|
Explanation |
|
=========== |
|
|
|
Clebsch-Gordan coefficients describe the angular momentum coupling between |
|
two systems. The coefficients give the expansion of a coupled total angular |
|
momentum state and an uncoupled tensor product state. The Clebsch-Gordan |
|
coefficients are defined as [1]_: |
|
|
|
.. math :: |
|
C^{j_3,m_3}_{j_1,m_1,j_2,m_2} = \left\langle j_1,m_1;j_2,m_2 | j_3,m_3\right\rangle |
|
|
|
Parameters |
|
========== |
|
|
|
j1, m1, j2, m2 : Number, Symbol |
|
Angular momenta of states 1 and 2. |
|
|
|
j3, m3: Number, Symbol |
|
Total angular momentum of the coupled system. |
|
|
|
Examples |
|
======== |
|
|
|
Define a Clebsch-Gordan coefficient and evaluate its value |
|
|
|
>>> from sympy.physics.quantum.cg import CG |
|
>>> from sympy import S |
|
>>> cg = CG(S(3)/2, S(3)/2, S(1)/2, -S(1)/2, 1, 1) |
|
>>> cg |
|
CG(3/2, 3/2, 1/2, -1/2, 1, 1) |
|
>>> cg.doit() |
|
sqrt(3)/2 |
|
>>> CG(j1=S(1)/2, m1=-S(1)/2, j2=S(1)/2, m2=+S(1)/2, j3=1, m3=0).doit() |
|
sqrt(2)/2 |
|
|
|
|
|
Compare [2]_. |
|
|
|
See Also |
|
======== |
|
|
|
Wigner3j: Wigner-3j symbols |
|
|
|
References |
|
========== |
|
|
|
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. |
|
.. [2] `Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions |
|
<https://pdg.lbl.gov/2020/reviews/rpp2020-rev-clebsch-gordan-coefs.pdf>`_ |
|
in P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. |
|
2020, 083C01 (2020). |
|
""" |
|
precedence = PRECEDENCE["Pow"] - 1 |
|
|
|
def doit(self, **hints): |
|
if self.is_symbolic: |
|
raise ValueError("Coefficients must be numerical") |
|
return clebsch_gordan(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3) |
|
|
|
def _pretty(self, printer, *args): |
|
bot = printer._print_seq( |
|
(self.j1, self.m1, self.j2, self.m2), delimiter=',') |
|
top = printer._print_seq((self.j3, self.m3), delimiter=',') |
|
|
|
pad = max(top.width(), bot.width()) |
|
bot = prettyForm(*bot.left(' ')) |
|
top = prettyForm(*top.left(' ')) |
|
|
|
if not pad == bot.width(): |
|
bot = prettyForm(*bot.right(' '*(pad - bot.width()))) |
|
if not pad == top.width(): |
|
top = prettyForm(*top.right(' '*(pad - top.width()))) |
|
s = stringPict('C' + ' '*pad) |
|
s = prettyForm(*s.below(bot)) |
|
s = prettyForm(*s.above(top)) |
|
return s |
|
|
|
def _latex(self, printer, *args): |
|
label = map(printer._print, (self.j3, self.m3, self.j1, |
|
self.m1, self.j2, self.m2)) |
|
return r'C^{%s,%s}_{%s,%s,%s,%s}' % tuple(label) |
|
|
|
|
|
class Wigner6j(Expr): |
|
"""Class for the Wigner-6j symbols |
|
|
|
See Also |
|
======== |
|
|
|
Wigner3j: Wigner-3j symbols |
|
|
|
""" |
|
def __new__(cls, j1, j2, j12, j3, j, j23): |
|
args = map(sympify, (j1, j2, j12, j3, j, j23)) |
|
return Expr.__new__(cls, *args) |
|
|
|
@property |
|
def j1(self): |
|
return self.args[0] |
|
|
|
@property |
|
def j2(self): |
|
return self.args[1] |
|
|
|
@property |
|
def j12(self): |
|
return self.args[2] |
|
|
|
@property |
|
def j3(self): |
|
return self.args[3] |
|
|
|
@property |
|
def j(self): |
|
return self.args[4] |
|
|
|
@property |
|
def j23(self): |
|
return self.args[5] |
|
|
|
@property |
|
def is_symbolic(self): |
|
return not all(arg.is_number for arg in self.args) |
|
|
|
|
|
def _pretty(self, printer, *args): |
|
m = ((printer._print(self.j1), printer._print(self.j3)), |
|
(printer._print(self.j2), printer._print(self.j)), |
|
(printer._print(self.j12), printer._print(self.j23))) |
|
hsep = 2 |
|
vsep = 1 |
|
maxw = [-1]*3 |
|
for j in range(3): |
|
maxw[j] = max([ m[j][i].width() for i in range(2) ]) |
|
D = None |
|
for i in range(2): |
|
D_row = None |
|
for j in range(3): |
|
s = m[j][i] |
|
wdelta = maxw[j] - s.width() |
|
wleft = wdelta //2 |
|
wright = wdelta - wleft |
|
|
|
s = prettyForm(*s.right(' '*wright)) |
|
s = prettyForm(*s.left(' '*wleft)) |
|
|
|
if D_row is None: |
|
D_row = s |
|
continue |
|
D_row = prettyForm(*D_row.right(' '*hsep)) |
|
D_row = prettyForm(*D_row.right(s)) |
|
if D is None: |
|
D = D_row |
|
continue |
|
for _ in range(vsep): |
|
D = prettyForm(*D.below(' ')) |
|
D = prettyForm(*D.below(D_row)) |
|
D = prettyForm(*D.parens(left='{', right='}')) |
|
return D |
|
|
|
def _latex(self, printer, *args): |
|
label = map(printer._print, (self.j1, self.j2, self.j12, |
|
self.j3, self.j, self.j23)) |
|
return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \ |
|
tuple(label) |
|
|
|
def doit(self, **hints): |
|
if self.is_symbolic: |
|
raise ValueError("Coefficients must be numerical") |
|
return wigner_6j(self.j1, self.j2, self.j12, self.j3, self.j, self.j23) |
|
|
|
|
|
class Wigner9j(Expr): |
|
"""Class for the Wigner-9j symbols |
|
|
|
See Also |
|
======== |
|
|
|
Wigner3j: Wigner-3j symbols |
|
|
|
""" |
|
def __new__(cls, j1, j2, j12, j3, j4, j34, j13, j24, j): |
|
args = map(sympify, (j1, j2, j12, j3, j4, j34, j13, j24, j)) |
|
return Expr.__new__(cls, *args) |
|
|
|
@property |
|
def j1(self): |
|
return self.args[0] |
|
|
|
@property |
|
def j2(self): |
|
return self.args[1] |
|
|
|
@property |
|
def j12(self): |
|
return self.args[2] |
|
|
|
@property |
|
def j3(self): |
|
return self.args[3] |
|
|
|
@property |
|
def j4(self): |
|
return self.args[4] |
|
|
|
@property |
|
def j34(self): |
|
return self.args[5] |
|
|
|
@property |
|
def j13(self): |
|
return self.args[6] |
|
|
|
@property |
|
def j24(self): |
|
return self.args[7] |
|
|
|
@property |
|
def j(self): |
|
return self.args[8] |
|
|
|
@property |
|
def is_symbolic(self): |
|
return not all(arg.is_number for arg in self.args) |
|
|
|
|
|
def _pretty(self, printer, *args): |
|
m = ( |
|
(printer._print( |
|
self.j1), printer._print(self.j3), printer._print(self.j13)), |
|
(printer._print( |
|
self.j2), printer._print(self.j4), printer._print(self.j24)), |
|
(printer._print(self.j12), printer._print(self.j34), printer._print(self.j))) |
|
hsep = 2 |
|
vsep = 1 |
|
maxw = [-1]*3 |
|
for j in range(3): |
|
maxw[j] = max([ m[j][i].width() for i in range(3) ]) |
|
D = None |
|
for i in range(3): |
|
D_row = None |
|
for j in range(3): |
|
s = m[j][i] |
|
wdelta = maxw[j] - s.width() |
|
wleft = wdelta //2 |
|
wright = wdelta - wleft |
|
|
|
s = prettyForm(*s.right(' '*wright)) |
|
s = prettyForm(*s.left(' '*wleft)) |
|
|
|
if D_row is None: |
|
D_row = s |
|
continue |
|
D_row = prettyForm(*D_row.right(' '*hsep)) |
|
D_row = prettyForm(*D_row.right(s)) |
|
if D is None: |
|
D = D_row |
|
continue |
|
for _ in range(vsep): |
|
D = prettyForm(*D.below(' ')) |
|
D = prettyForm(*D.below(D_row)) |
|
D = prettyForm(*D.parens(left='{', right='}')) |
|
return D |
|
|
|
def _latex(self, printer, *args): |
|
label = map(printer._print, (self.j1, self.j2, self.j12, self.j3, |
|
self.j4, self.j34, self.j13, self.j24, self.j)) |
|
return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \ |
|
tuple(label) |
|
|
|
def doit(self, **hints): |
|
if self.is_symbolic: |
|
raise ValueError("Coefficients must be numerical") |
|
return wigner_9j(self.j1, self.j2, self.j12, self.j3, self.j4, self.j34, self.j13, self.j24, self.j) |
|
|
|
|
|
def cg_simp(e): |
|
"""Simplify and combine CG coefficients. |
|
|
|
Explanation |
|
=========== |
|
|
|
This function uses various symmetry and properties of sums and |
|
products of Clebsch-Gordan coefficients to simplify statements |
|
involving these terms [1]_. |
|
|
|
Examples |
|
======== |
|
|
|
Simplify the sum over CG(a,alpha,0,0,a,alpha) for all alpha to |
|
2*a+1 |
|
|
|
>>> from sympy.physics.quantum.cg import CG, cg_simp |
|
>>> a = CG(1,1,0,0,1,1) |
|
>>> b = CG(1,0,0,0,1,0) |
|
>>> c = CG(1,-1,0,0,1,-1) |
|
>>> cg_simp(a+b+c) |
|
3 |
|
|
|
See Also |
|
======== |
|
|
|
CG: Clebsh-Gordan coefficients |
|
|
|
References |
|
========== |
|
|
|
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. |
|
""" |
|
if isinstance(e, Add): |
|
return _cg_simp_add(e) |
|
elif isinstance(e, Sum): |
|
return _cg_simp_sum(e) |
|
elif isinstance(e, Mul): |
|
return Mul(*[cg_simp(arg) for arg in e.args]) |
|
elif isinstance(e, Pow): |
|
return Pow(cg_simp(e.base), e.exp) |
|
else: |
|
return e |
|
|
|
|
|
def _cg_simp_add(e): |
|
|
|
"""Takes a sum of terms involving Clebsch-Gordan coefficients and |
|
simplifies the terms. |
|
|
|
Explanation |
|
=========== |
|
|
|
First, we create two lists, cg_part, which is all the terms involving CG |
|
coefficients, and other_part, which is all other terms. The cg_part list |
|
is then passed to the simplification methods, which return the new cg_part |
|
and any additional terms that are added to other_part |
|
""" |
|
cg_part = [] |
|
other_part = [] |
|
|
|
e = expand(e) |
|
for arg in e.args: |
|
if arg.has(CG): |
|
if isinstance(arg, Sum): |
|
other_part.append(_cg_simp_sum(arg)) |
|
elif isinstance(arg, Mul): |
|
terms = 1 |
|
for term in arg.args: |
|
if isinstance(term, Sum): |
|
terms *= _cg_simp_sum(term) |
|
else: |
|
terms *= term |
|
if terms.has(CG): |
|
cg_part.append(terms) |
|
else: |
|
other_part.append(terms) |
|
else: |
|
cg_part.append(arg) |
|
else: |
|
other_part.append(arg) |
|
|
|
cg_part, other = _check_varsh_871_1(cg_part) |
|
other_part.append(other) |
|
cg_part, other = _check_varsh_871_2(cg_part) |
|
other_part.append(other) |
|
cg_part, other = _check_varsh_872_9(cg_part) |
|
other_part.append(other) |
|
return Add(*cg_part) + Add(*other_part) |
|
|
|
|
|
def _check_varsh_871_1(term_list): |
|
|
|
a, alpha, b, lt = map(Wild, ('a', 'alpha', 'b', 'lt')) |
|
expr = lt*CG(a, alpha, b, 0, a, alpha) |
|
simp = (2*a + 1)*KroneckerDelta(b, 0) |
|
sign = lt/abs(lt) |
|
build_expr = 2*a + 1 |
|
index_expr = a + alpha |
|
return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, lt), (a, b), build_expr, index_expr) |
|
|
|
|
|
def _check_varsh_871_2(term_list): |
|
|
|
a, alpha, c, lt = map(Wild, ('a', 'alpha', 'c', 'lt')) |
|
expr = lt*CG(a, alpha, a, -alpha, c, 0) |
|
simp = sqrt(2*a + 1)*KroneckerDelta(c, 0) |
|
sign = (-1)**(a - alpha)*lt/abs(lt) |
|
build_expr = 2*a + 1 |
|
index_expr = a + alpha |
|
return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, c, lt), (a, c), build_expr, index_expr) |
|
|
|
|
|
def _check_varsh_872_9(term_list): |
|
|
|
a, alpha, alphap, b, beta, betap, c, gamma, lt = map(Wild, ( |
|
'a', 'alpha', 'alphap', 'b', 'beta', 'betap', 'c', 'gamma', 'lt')) |
|
|
|
|
|
|
|
expr = lt*CG(a, alpha, b, beta, c, gamma)**2 |
|
simp = S.One |
|
sign = lt/abs(lt) |
|
x = abs(a - b) |
|
y = abs(alpha + beta) |
|
build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x)) |
|
index_expr = a + b - c |
|
term_list, other1 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr) |
|
|
|
|
|
x = abs(a - b) |
|
y = a + b |
|
build_expr = (y + 1 - x)*(x + y + 1) |
|
index_expr = (c - x)*(x + c) + c + gamma |
|
term_list, other2 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr) |
|
|
|
|
|
|
|
|
|
expr = CG(a, alpha, b, beta, c, gamma)*CG(a, alphap, b, betap, c, gamma) |
|
simp = KroneckerDelta(alpha, alphap)*KroneckerDelta(beta, betap) |
|
sign = S.One |
|
x = abs(a - b) |
|
y = abs(alpha + beta) |
|
build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x)) |
|
index_expr = a + b - c |
|
term_list, other3 = _check_cg_simp(expr, simp, sign, S.One, term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr) |
|
|
|
|
|
x = abs(a - b) |
|
y = a + b |
|
build_expr = (y + 1 - x)*(x + y + 1) |
|
index_expr = (c - x)*(x + c) + c + gamma |
|
term_list, other4 = _check_cg_simp(expr, simp, sign, S.One, term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr) |
|
|
|
return term_list, other1 + other2 + other4 |
|
|
|
|
|
def _check_cg_simp(expr, simp, sign, lt, term_list, variables, dep_variables, build_index_expr, index_expr): |
|
""" Checks for simplifications that can be made, returning a tuple of the |
|
simplified list of terms and any terms generated by simplification. |
|
|
|
Parameters |
|
========== |
|
|
|
expr: expression |
|
The expression with Wild terms that will be matched to the terms in |
|
the sum |
|
|
|
simp: expression |
|
The expression with Wild terms that is substituted in place of the CG |
|
terms in the case of simplification |
|
|
|
sign: expression |
|
The expression with Wild terms denoting the sign that is on expr that |
|
must match |
|
|
|
lt: expression |
|
The expression with Wild terms that gives the leading term of the |
|
matched expr |
|
|
|
term_list: list |
|
A list of all of the terms is the sum to be simplified |
|
|
|
variables: list |
|
A list of all the variables that appears in expr |
|
|
|
dep_variables: list |
|
A list of the variables that must match for all the terms in the sum, |
|
i.e. the dependent variables |
|
|
|
build_index_expr: expression |
|
Expression with Wild terms giving the number of elements in cg_index |
|
|
|
index_expr: expression |
|
Expression with Wild terms giving the index terms have when storing |
|
them to cg_index |
|
|
|
""" |
|
other_part = 0 |
|
i = 0 |
|
while i < len(term_list): |
|
sub_1 = _check_cg(term_list[i], expr, len(variables)) |
|
if sub_1 is None: |
|
i += 1 |
|
continue |
|
if not build_index_expr.subs(sub_1).is_number: |
|
i += 1 |
|
continue |
|
sub_dep = [(x, sub_1[x]) for x in dep_variables] |
|
cg_index = [None]*build_index_expr.subs(sub_1) |
|
for j in range(i, len(term_list)): |
|
sub_2 = _check_cg(term_list[j], expr.subs(sub_dep), len(variables) - len(dep_variables), sign=(sign.subs(sub_1), sign.subs(sub_dep))) |
|
if sub_2 is None: |
|
continue |
|
if not index_expr.subs(sub_dep).subs(sub_2).is_number: |
|
continue |
|
cg_index[index_expr.subs(sub_dep).subs(sub_2)] = j, expr.subs(lt, 1).subs(sub_dep).subs(sub_2), lt.subs(sub_2), sign.subs(sub_dep).subs(sub_2) |
|
if not any(i is None for i in cg_index): |
|
min_lt = min(*[ abs(term[2]) for term in cg_index ]) |
|
indices = [ term[0] for term in cg_index] |
|
indices.sort() |
|
indices.reverse() |
|
[ term_list.pop(j) for j in indices ] |
|
for term in cg_index: |
|
if abs(term[2]) > min_lt: |
|
term_list.append( (term[2] - min_lt*term[3])*term[1] ) |
|
other_part += min_lt*(sign*simp).subs(sub_1) |
|
else: |
|
i += 1 |
|
return term_list, other_part |
|
|
|
|
|
def _check_cg(cg_term, expr, length, sign=None): |
|
"""Checks whether a term matches the given expression""" |
|
|
|
matches = cg_term.match(expr) |
|
if matches is None: |
|
return |
|
if sign is not None: |
|
if not isinstance(sign, tuple): |
|
raise TypeError('sign must be a tuple') |
|
if not sign[0] == (sign[1]).subs(matches): |
|
return |
|
if len(matches) == length: |
|
return matches |
|
|
|
|
|
def _cg_simp_sum(e): |
|
e = _check_varsh_sum_871_1(e) |
|
e = _check_varsh_sum_871_2(e) |
|
e = _check_varsh_sum_872_4(e) |
|
return e |
|
|
|
|
|
def _check_varsh_sum_871_1(e): |
|
a = Wild('a') |
|
alpha = symbols('alpha') |
|
b = Wild('b') |
|
match = e.match(Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a))) |
|
if match is not None and len(match) == 2: |
|
return ((2*a + 1)*KroneckerDelta(b, 0)).subs(match) |
|
return e |
|
|
|
|
|
def _check_varsh_sum_871_2(e): |
|
a = Wild('a') |
|
alpha = symbols('alpha') |
|
c = Wild('c') |
|
match = e.match( |
|
Sum((-1)**(a - alpha)*CG(a, alpha, a, -alpha, c, 0), (alpha, -a, a))) |
|
if match is not None and len(match) == 2: |
|
return (sqrt(2*a + 1)*KroneckerDelta(c, 0)).subs(match) |
|
return e |
|
|
|
|
|
def _check_varsh_sum_872_4(e): |
|
alpha = symbols('alpha') |
|
beta = symbols('beta') |
|
a = Wild('a') |
|
b = Wild('b') |
|
c = Wild('c') |
|
cp = Wild('cp') |
|
gamma = Wild('gamma') |
|
gammap = Wild('gammap') |
|
cg1 = CG(a, alpha, b, beta, c, gamma) |
|
cg2 = CG(a, alpha, b, beta, cp, gammap) |
|
match1 = e.match(Sum(cg1*cg2, (alpha, -a, a), (beta, -b, b))) |
|
if match1 is not None and len(match1) == 6: |
|
return (KroneckerDelta(c, cp)*KroneckerDelta(gamma, gammap)).subs(match1) |
|
match2 = e.match(Sum(cg1**2, (alpha, -a, a), (beta, -b, b))) |
|
if match2 is not None and len(match2) == 4: |
|
return S.One |
|
return e |
|
|
|
|
|
def _cg_list(term): |
|
if isinstance(term, CG): |
|
return (term,), 1, 1 |
|
cg = [] |
|
coeff = 1 |
|
if not isinstance(term, (Mul, Pow)): |
|
raise NotImplementedError('term must be CG, Add, Mul or Pow') |
|
if isinstance(term, Pow) and term.exp.is_number: |
|
if term.exp.is_number: |
|
[ cg.append(term.base) for _ in range(term.exp) ] |
|
else: |
|
return (term,), 1, 1 |
|
if isinstance(term, Mul): |
|
for arg in term.args: |
|
if isinstance(arg, CG): |
|
cg.append(arg) |
|
else: |
|
coeff *= arg |
|
return cg, coeff, coeff/abs(coeff) |
|
|