peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/numpy
/random
/_generator.pyi
from collections.abc import Callable | |
from typing import Any, Union, overload, TypeVar, Literal | |
from numpy import ( | |
bool_, | |
dtype, | |
float32, | |
float64, | |
int8, | |
int16, | |
int32, | |
int64, | |
int_, | |
ndarray, | |
uint, | |
uint8, | |
uint16, | |
uint32, | |
uint64, | |
) | |
from numpy.random import BitGenerator, SeedSequence | |
from numpy._typing import ( | |
ArrayLike, | |
_ArrayLikeFloat_co, | |
_ArrayLikeInt_co, | |
_DoubleCodes, | |
_DTypeLikeBool, | |
_DTypeLikeInt, | |
_DTypeLikeUInt, | |
_Float32Codes, | |
_Float64Codes, | |
_FloatLike_co, | |
_Int8Codes, | |
_Int16Codes, | |
_Int32Codes, | |
_Int64Codes, | |
_IntCodes, | |
_ShapeLike, | |
_SingleCodes, | |
_SupportsDType, | |
_UInt8Codes, | |
_UInt16Codes, | |
_UInt32Codes, | |
_UInt64Codes, | |
_UIntCodes, | |
) | |
_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any]) | |
_DTypeLikeFloat32 = Union[ | |
dtype[float32], | |
_SupportsDType[dtype[float32]], | |
type[float32], | |
_Float32Codes, | |
_SingleCodes, | |
] | |
_DTypeLikeFloat64 = Union[ | |
dtype[float64], | |
_SupportsDType[dtype[float64]], | |
type[float], | |
type[float64], | |
_Float64Codes, | |
_DoubleCodes, | |
] | |
class Generator: | |
def __init__(self, bit_generator: BitGenerator) -> None: ... | |
def __repr__(self) -> str: ... | |
def __str__(self) -> str: ... | |
def __getstate__(self) -> dict[str, Any]: ... | |
def __setstate__(self, state: dict[str, Any]) -> None: ... | |
def __reduce__(self) -> tuple[Callable[[str], Generator], tuple[str], dict[str, Any]]: ... | |
def bit_generator(self) -> BitGenerator: ... | |
def spawn(self, n_children: int) -> list[Generator]: ... | |
def bytes(self, length: int) -> bytes: ... | |
def standard_normal( # type: ignore[misc] | |
self, | |
size: None = ..., | |
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ..., | |
out: None = ..., | |
) -> float: ... | |
def standard_normal( # type: ignore[misc] | |
self, | |
size: _ShapeLike = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_normal( # type: ignore[misc] | |
self, | |
*, | |
out: ndarray[Any, dtype[float64]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_normal( # type: ignore[misc] | |
self, | |
size: _ShapeLike = ..., | |
dtype: _DTypeLikeFloat32 = ..., | |
out: None | ndarray[Any, dtype[float32]] = ..., | |
) -> ndarray[Any, dtype[float32]]: ... | |
def standard_normal( # type: ignore[misc] | |
self, | |
size: _ShapeLike = ..., | |
dtype: _DTypeLikeFloat64 = ..., | |
out: None | ndarray[Any, dtype[float64]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def permutation(self, x: int, axis: int = ...) -> ndarray[Any, dtype[int64]]: ... | |
def permutation(self, x: ArrayLike, axis: int = ...) -> ndarray[Any, Any]: ... | |
def standard_exponential( # type: ignore[misc] | |
self, | |
size: None = ..., | |
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ..., | |
method: Literal["zig", "inv"] = ..., | |
out: None = ..., | |
) -> float: ... | |
def standard_exponential( | |
self, | |
size: _ShapeLike = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_exponential( | |
self, | |
*, | |
out: ndarray[Any, dtype[float64]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_exponential( | |
self, | |
size: _ShapeLike = ..., | |
*, | |
method: Literal["zig", "inv"] = ..., | |
out: None | ndarray[Any, dtype[float64]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_exponential( | |
self, | |
size: _ShapeLike = ..., | |
dtype: _DTypeLikeFloat32 = ..., | |
method: Literal["zig", "inv"] = ..., | |
out: None | ndarray[Any, dtype[float32]] = ..., | |
) -> ndarray[Any, dtype[float32]]: ... | |
def standard_exponential( | |
self, | |
size: _ShapeLike = ..., | |
dtype: _DTypeLikeFloat64 = ..., | |
method: Literal["zig", "inv"] = ..., | |
out: None | ndarray[Any, dtype[float64]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def random( # type: ignore[misc] | |
self, | |
size: None = ..., | |
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ..., | |
out: None = ..., | |
) -> float: ... | |
def random( | |
self, | |
*, | |
out: ndarray[Any, dtype[float64]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def random( | |
self, | |
size: _ShapeLike = ..., | |
*, | |
out: None | ndarray[Any, dtype[float64]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def random( | |
self, | |
size: _ShapeLike = ..., | |
dtype: _DTypeLikeFloat32 = ..., | |
out: None | ndarray[Any, dtype[float32]] = ..., | |
) -> ndarray[Any, dtype[float32]]: ... | |
def random( | |
self, | |
size: _ShapeLike = ..., | |
dtype: _DTypeLikeFloat64 = ..., | |
out: None | ndarray[Any, dtype[float64]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def beta( | |
self, | |
a: _FloatLike_co, | |
b: _FloatLike_co, | |
size: None = ..., | |
) -> float: ... # type: ignore[misc] | |
def beta( | |
self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def exponential(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
def exponential( | |
self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: int, | |
high: None | int = ..., | |
) -> int: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: int, | |
high: None | int = ..., | |
size: None = ..., | |
dtype: _DTypeLikeBool = ..., | |
endpoint: bool = ..., | |
) -> bool: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: int, | |
high: None | int = ..., | |
size: None = ..., | |
dtype: _DTypeLikeInt | _DTypeLikeUInt = ..., | |
endpoint: bool = ..., | |
) -> int: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: None | _ArrayLikeInt_co = ..., | |
size: None | _ShapeLike = ..., | |
) -> ndarray[Any, dtype[int64]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: None | _ArrayLikeInt_co = ..., | |
size: None | _ShapeLike = ..., | |
dtype: _DTypeLikeBool = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[bool_]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: None | _ArrayLikeInt_co = ..., | |
size: None | _ShapeLike = ..., | |
dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[int8]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: None | _ArrayLikeInt_co = ..., | |
size: None | _ShapeLike = ..., | |
dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[int16]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: None | _ArrayLikeInt_co = ..., | |
size: None | _ShapeLike = ..., | |
dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[int32]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: None | _ArrayLikeInt_co = ..., | |
size: None | _ShapeLike = ..., | |
dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[int64]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: None | _ArrayLikeInt_co = ..., | |
size: None | _ShapeLike = ..., | |
dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[uint8]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: None | _ArrayLikeInt_co = ..., | |
size: None | _ShapeLike = ..., | |
dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[uint16]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: None | _ArrayLikeInt_co = ..., | |
size: None | _ShapeLike = ..., | |
dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[uint32]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: None | _ArrayLikeInt_co = ..., | |
size: None | _ShapeLike = ..., | |
dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[uint64]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: None | _ArrayLikeInt_co = ..., | |
size: None | _ShapeLike = ..., | |
dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[int_]]: ... | |
def integers( # type: ignore[misc] | |
self, | |
low: _ArrayLikeInt_co, | |
high: None | _ArrayLikeInt_co = ..., | |
size: None | _ShapeLike = ..., | |
dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ..., | |
endpoint: bool = ..., | |
) -> ndarray[Any, dtype[uint]]: ... | |
# TODO: Use a TypeVar _T here to get away from Any output? Should be int->ndarray[Any,dtype[int64]], ArrayLike[_T] -> _T | ndarray[Any,Any] | |
def choice( | |
self, | |
a: int, | |
size: None = ..., | |
replace: bool = ..., | |
p: None | _ArrayLikeFloat_co = ..., | |
axis: int = ..., | |
shuffle: bool = ..., | |
) -> int: ... | |
def choice( | |
self, | |
a: int, | |
size: _ShapeLike = ..., | |
replace: bool = ..., | |
p: None | _ArrayLikeFloat_co = ..., | |
axis: int = ..., | |
shuffle: bool = ..., | |
) -> ndarray[Any, dtype[int64]]: ... | |
def choice( | |
self, | |
a: ArrayLike, | |
size: None = ..., | |
replace: bool = ..., | |
p: None | _ArrayLikeFloat_co = ..., | |
axis: int = ..., | |
shuffle: bool = ..., | |
) -> Any: ... | |
def choice( | |
self, | |
a: ArrayLike, | |
size: _ShapeLike = ..., | |
replace: bool = ..., | |
p: None | _ArrayLikeFloat_co = ..., | |
axis: int = ..., | |
shuffle: bool = ..., | |
) -> ndarray[Any, Any]: ... | |
def uniform( | |
self, | |
low: _FloatLike_co = ..., | |
high: _FloatLike_co = ..., | |
size: None = ..., | |
) -> float: ... # type: ignore[misc] | |
def uniform( | |
self, | |
low: _ArrayLikeFloat_co = ..., | |
high: _ArrayLikeFloat_co = ..., | |
size: None | _ShapeLike = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def normal( | |
self, | |
loc: _FloatLike_co = ..., | |
scale: _FloatLike_co = ..., | |
size: None = ..., | |
) -> float: ... # type: ignore[misc] | |
def normal( | |
self, | |
loc: _ArrayLikeFloat_co = ..., | |
scale: _ArrayLikeFloat_co = ..., | |
size: None | _ShapeLike = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_gamma( # type: ignore[misc] | |
self, | |
shape: _FloatLike_co, | |
size: None = ..., | |
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ..., | |
out: None = ..., | |
) -> float: ... | |
def standard_gamma( | |
self, | |
shape: _ArrayLikeFloat_co, | |
size: None | _ShapeLike = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_gamma( | |
self, | |
shape: _ArrayLikeFloat_co, | |
*, | |
out: ndarray[Any, dtype[float64]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_gamma( | |
self, | |
shape: _ArrayLikeFloat_co, | |
size: None | _ShapeLike = ..., | |
dtype: _DTypeLikeFloat32 = ..., | |
out: None | ndarray[Any, dtype[float32]] = ..., | |
) -> ndarray[Any, dtype[float32]]: ... | |
def standard_gamma( | |
self, | |
shape: _ArrayLikeFloat_co, | |
size: None | _ShapeLike = ..., | |
dtype: _DTypeLikeFloat64 = ..., | |
out: None | ndarray[Any, dtype[float64]] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def gamma(self, shape: _FloatLike_co, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
def gamma( | |
self, | |
shape: _ArrayLikeFloat_co, | |
scale: _ArrayLikeFloat_co = ..., | |
size: None | _ShapeLike = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def f(self, dfnum: _FloatLike_co, dfden: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] | |
def f( | |
self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def noncentral_f(self, dfnum: _FloatLike_co, dfden: _FloatLike_co, nonc: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] | |
def noncentral_f( | |
self, | |
dfnum: _ArrayLikeFloat_co, | |
dfden: _ArrayLikeFloat_co, | |
nonc: _ArrayLikeFloat_co, | |
size: None | _ShapeLike = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def chisquare(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] | |
def chisquare( | |
self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def noncentral_chisquare(self, df: _FloatLike_co, nonc: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] | |
def noncentral_chisquare( | |
self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_t(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] | |
def standard_t( | |
self, df: _ArrayLikeFloat_co, size: None = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_t( | |
self, df: _ArrayLikeFloat_co, size: _ShapeLike = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def vonmises(self, mu: _FloatLike_co, kappa: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] | |
def vonmises( | |
self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def pareto(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] | |
def pareto( | |
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def weibull(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] | |
def weibull( | |
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def power(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] | |
def power( | |
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc] | |
def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ... | |
def laplace( | |
self, | |
loc: _FloatLike_co = ..., | |
scale: _FloatLike_co = ..., | |
size: None = ..., | |
) -> float: ... # type: ignore[misc] | |
def laplace( | |
self, | |
loc: _ArrayLikeFloat_co = ..., | |
scale: _ArrayLikeFloat_co = ..., | |
size: None | _ShapeLike = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def gumbel( | |
self, | |
loc: _FloatLike_co = ..., | |
scale: _FloatLike_co = ..., | |
size: None = ..., | |
) -> float: ... # type: ignore[misc] | |
def gumbel( | |
self, | |
loc: _ArrayLikeFloat_co = ..., | |
scale: _ArrayLikeFloat_co = ..., | |
size: None | _ShapeLike = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def logistic( | |
self, | |
loc: _FloatLike_co = ..., | |
scale: _FloatLike_co = ..., | |
size: None = ..., | |
) -> float: ... # type: ignore[misc] | |
def logistic( | |
self, | |
loc: _ArrayLikeFloat_co = ..., | |
scale: _ArrayLikeFloat_co = ..., | |
size: None | _ShapeLike = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def lognormal( | |
self, | |
mean: _FloatLike_co = ..., | |
sigma: _FloatLike_co = ..., | |
size: None = ..., | |
) -> float: ... # type: ignore[misc] | |
def lognormal( | |
self, | |
mean: _ArrayLikeFloat_co = ..., | |
sigma: _ArrayLikeFloat_co = ..., | |
size: None | _ShapeLike = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def rayleigh(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
def rayleigh( | |
self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def wald(self, mean: _FloatLike_co, scale: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] | |
def wald( | |
self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def triangular( | |
self, | |
left: _FloatLike_co, | |
mode: _FloatLike_co, | |
right: _FloatLike_co, | |
size: None = ..., | |
) -> float: ... # type: ignore[misc] | |
def triangular( | |
self, | |
left: _ArrayLikeFloat_co, | |
mode: _ArrayLikeFloat_co, | |
right: _ArrayLikeFloat_co, | |
size: None | _ShapeLike = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def binomial(self, n: int, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc] | |
def binomial( | |
self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[int64]]: ... | |
def negative_binomial(self, n: _FloatLike_co, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc] | |
def negative_binomial( | |
self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[int64]]: ... | |
def poisson(self, lam: _FloatLike_co = ..., size: None = ...) -> int: ... # type: ignore[misc] | |
def poisson( | |
self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[int64]]: ... | |
def zipf(self, a: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc] | |
def zipf( | |
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[int64]]: ... | |
def geometric(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc] | |
def geometric( | |
self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[int64]]: ... | |
def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ... # type: ignore[misc] | |
def hypergeometric( | |
self, | |
ngood: _ArrayLikeInt_co, | |
nbad: _ArrayLikeInt_co, | |
nsample: _ArrayLikeInt_co, | |
size: None | _ShapeLike = ..., | |
) -> ndarray[Any, dtype[int64]]: ... | |
def logseries(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc] | |
def logseries( | |
self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[int64]]: ... | |
def multivariate_normal( | |
self, | |
mean: _ArrayLikeFloat_co, | |
cov: _ArrayLikeFloat_co, | |
size: None | _ShapeLike = ..., | |
check_valid: Literal["warn", "raise", "ignore"] = ..., | |
tol: float = ..., | |
*, | |
method: Literal["svd", "eigh", "cholesky"] = ..., | |
) -> ndarray[Any, dtype[float64]]: ... | |
def multinomial( | |
self, n: _ArrayLikeInt_co, | |
pvals: _ArrayLikeFloat_co, | |
size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[int64]]: ... | |
def multivariate_hypergeometric( | |
self, | |
colors: _ArrayLikeInt_co, | |
nsample: int, | |
size: None | _ShapeLike = ..., | |
method: Literal["marginals", "count"] = ..., | |
) -> ndarray[Any, dtype[int64]]: ... | |
def dirichlet( | |
self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
) -> ndarray[Any, dtype[float64]]: ... | |
def permuted( | |
self, x: ArrayLike, *, axis: None | int = ..., out: None | ndarray[Any, Any] = ... | |
) -> ndarray[Any, Any]: ... | |
def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ... | |
def default_rng( | |
seed: None | _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator = ... | |
) -> Generator: ... | |