peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/_slsqp_py.py
""" | |
This module implements the Sequential Least Squares Programming optimization | |
algorithm (SLSQP), originally developed by Dieter Kraft. | |
See http://www.netlib.org/toms/733 | |
Functions | |
--------- | |
.. autosummary:: | |
:toctree: generated/ | |
approx_jacobian | |
fmin_slsqp | |
""" | |
__all__ = ['approx_jacobian', 'fmin_slsqp'] | |
import numpy as np | |
from scipy.optimize._slsqp import slsqp | |
from numpy import (zeros, array, linalg, append, concatenate, finfo, | |
sqrt, vstack, isfinite, atleast_1d) | |
from ._optimize import (OptimizeResult, _check_unknown_options, | |
_prepare_scalar_function, _clip_x_for_func, | |
_check_clip_x) | |
from ._numdiff import approx_derivative | |
from ._constraints import old_bound_to_new, _arr_to_scalar | |
from scipy._lib._array_api import atleast_nd, array_namespace | |
# deprecated imports to be removed in SciPy 1.13.0 | |
from numpy import exp, inf # noqa: F401 | |
__docformat__ = "restructuredtext en" | |
_epsilon = sqrt(finfo(float).eps) | |
def approx_jacobian(x, func, epsilon, *args): | |
""" | |
Approximate the Jacobian matrix of a callable function. | |
Parameters | |
---------- | |
x : array_like | |
The state vector at which to compute the Jacobian matrix. | |
func : callable f(x,*args) | |
The vector-valued function. | |
epsilon : float | |
The perturbation used to determine the partial derivatives. | |
args : sequence | |
Additional arguments passed to func. | |
Returns | |
------- | |
An array of dimensions ``(lenf, lenx)`` where ``lenf`` is the length | |
of the outputs of `func`, and ``lenx`` is the number of elements in | |
`x`. | |
Notes | |
----- | |
The approximation is done using forward differences. | |
""" | |
# approx_derivative returns (m, n) == (lenf, lenx) | |
jac = approx_derivative(func, x, method='2-point', abs_step=epsilon, | |
args=args) | |
# if func returns a scalar jac.shape will be (lenx,). Make sure | |
# it's at least a 2D array. | |
return np.atleast_2d(jac) | |
def fmin_slsqp(func, x0, eqcons=(), f_eqcons=None, ieqcons=(), f_ieqcons=None, | |
bounds=(), fprime=None, fprime_eqcons=None, | |
fprime_ieqcons=None, args=(), iter=100, acc=1.0E-6, | |
iprint=1, disp=None, full_output=0, epsilon=_epsilon, | |
callback=None): | |
""" | |
Minimize a function using Sequential Least Squares Programming | |
Python interface function for the SLSQP Optimization subroutine | |
originally implemented by Dieter Kraft. | |
Parameters | |
---------- | |
func : callable f(x,*args) | |
Objective function. Must return a scalar. | |
x0 : 1-D ndarray of float | |
Initial guess for the independent variable(s). | |
eqcons : list, optional | |
A list of functions of length n such that | |
eqcons[j](x,*args) == 0.0 in a successfully optimized | |
problem. | |
f_eqcons : callable f(x,*args), optional | |
Returns a 1-D array in which each element must equal 0.0 in a | |
successfully optimized problem. If f_eqcons is specified, | |
eqcons is ignored. | |
ieqcons : list, optional | |
A list of functions of length n such that | |
ieqcons[j](x,*args) >= 0.0 in a successfully optimized | |
problem. | |
f_ieqcons : callable f(x,*args), optional | |
Returns a 1-D ndarray in which each element must be greater or | |
equal to 0.0 in a successfully optimized problem. If | |
f_ieqcons is specified, ieqcons is ignored. | |
bounds : list, optional | |
A list of tuples specifying the lower and upper bound | |
for each independent variable [(xl0, xu0),(xl1, xu1),...] | |
Infinite values will be interpreted as large floating values. | |
fprime : callable `f(x,*args)`, optional | |
A function that evaluates the partial derivatives of func. | |
fprime_eqcons : callable `f(x,*args)`, optional | |
A function of the form `f(x, *args)` that returns the m by n | |
array of equality constraint normals. If not provided, | |
the normals will be approximated. The array returned by | |
fprime_eqcons should be sized as ( len(eqcons), len(x0) ). | |
fprime_ieqcons : callable `f(x,*args)`, optional | |
A function of the form `f(x, *args)` that returns the m by n | |
array of inequality constraint normals. If not provided, | |
the normals will be approximated. The array returned by | |
fprime_ieqcons should be sized as ( len(ieqcons), len(x0) ). | |
args : sequence, optional | |
Additional arguments passed to func and fprime. | |
iter : int, optional | |
The maximum number of iterations. | |
acc : float, optional | |
Requested accuracy. | |
iprint : int, optional | |
The verbosity of fmin_slsqp : | |
* iprint <= 0 : Silent operation | |
* iprint == 1 : Print summary upon completion (default) | |
* iprint >= 2 : Print status of each iterate and summary | |
disp : int, optional | |
Overrides the iprint interface (preferred). | |
full_output : bool, optional | |
If False, return only the minimizer of func (default). | |
Otherwise, output final objective function and summary | |
information. | |
epsilon : float, optional | |
The step size for finite-difference derivative estimates. | |
callback : callable, optional | |
Called after each iteration, as ``callback(x)``, where ``x`` is the | |
current parameter vector. | |
Returns | |
------- | |
out : ndarray of float | |
The final minimizer of func. | |
fx : ndarray of float, if full_output is true | |
The final value of the objective function. | |
its : int, if full_output is true | |
The number of iterations. | |
imode : int, if full_output is true | |
The exit mode from the optimizer (see below). | |
smode : string, if full_output is true | |
Message describing the exit mode from the optimizer. | |
See also | |
-------- | |
minimize: Interface to minimization algorithms for multivariate | |
functions. See the 'SLSQP' `method` in particular. | |
Notes | |
----- | |
Exit modes are defined as follows :: | |
-1 : Gradient evaluation required (g & a) | |
0 : Optimization terminated successfully | |
1 : Function evaluation required (f & c) | |
2 : More equality constraints than independent variables | |
3 : More than 3*n iterations in LSQ subproblem | |
4 : Inequality constraints incompatible | |
5 : Singular matrix E in LSQ subproblem | |
6 : Singular matrix C in LSQ subproblem | |
7 : Rank-deficient equality constraint subproblem HFTI | |
8 : Positive directional derivative for linesearch | |
9 : Iteration limit reached | |
Examples | |
-------- | |
Examples are given :ref:`in the tutorial <tutorial-sqlsp>`. | |
""" | |
if disp is not None: | |
iprint = disp | |
opts = {'maxiter': iter, | |
'ftol': acc, | |
'iprint': iprint, | |
'disp': iprint != 0, | |
'eps': epsilon, | |
'callback': callback} | |
# Build the constraints as a tuple of dictionaries | |
cons = () | |
# 1. constraints of the 1st kind (eqcons, ieqcons); no Jacobian; take | |
# the same extra arguments as the objective function. | |
cons += tuple({'type': 'eq', 'fun': c, 'args': args} for c in eqcons) | |
cons += tuple({'type': 'ineq', 'fun': c, 'args': args} for c in ieqcons) | |
# 2. constraints of the 2nd kind (f_eqcons, f_ieqcons) and their Jacobian | |
# (fprime_eqcons, fprime_ieqcons); also take the same extra arguments | |
# as the objective function. | |
if f_eqcons: | |
cons += ({'type': 'eq', 'fun': f_eqcons, 'jac': fprime_eqcons, | |
'args': args}, ) | |
if f_ieqcons: | |
cons += ({'type': 'ineq', 'fun': f_ieqcons, 'jac': fprime_ieqcons, | |
'args': args}, ) | |
res = _minimize_slsqp(func, x0, args, jac=fprime, bounds=bounds, | |
constraints=cons, **opts) | |
if full_output: | |
return res['x'], res['fun'], res['nit'], res['status'], res['message'] | |
else: | |
return res['x'] | |
def _minimize_slsqp(func, x0, args=(), jac=None, bounds=None, | |
constraints=(), | |
maxiter=100, ftol=1.0E-6, iprint=1, disp=False, | |
eps=_epsilon, callback=None, finite_diff_rel_step=None, | |
**unknown_options): | |
""" | |
Minimize a scalar function of one or more variables using Sequential | |
Least Squares Programming (SLSQP). | |
Options | |
------- | |
ftol : float | |
Precision goal for the value of f in the stopping criterion. | |
eps : float | |
Step size used for numerical approximation of the Jacobian. | |
disp : bool | |
Set to True to print convergence messages. If False, | |
`verbosity` is ignored and set to 0. | |
maxiter : int | |
Maximum number of iterations. | |
finite_diff_rel_step : None or array_like, optional | |
If `jac in ['2-point', '3-point', 'cs']` the relative step size to | |
use for numerical approximation of `jac`. The absolute step | |
size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``, | |
possibly adjusted to fit into the bounds. For ``method='3-point'`` | |
the sign of `h` is ignored. If None (default) then step is selected | |
automatically. | |
""" | |
_check_unknown_options(unknown_options) | |
iter = maxiter - 1 | |
acc = ftol | |
epsilon = eps | |
if not disp: | |
iprint = 0 | |
# Transform x0 into an array. | |
xp = array_namespace(x0) | |
x0 = atleast_nd(x0, ndim=1, xp=xp) | |
dtype = xp.float64 | |
if xp.isdtype(x0.dtype, "real floating"): | |
dtype = x0.dtype | |
x = xp.reshape(xp.astype(x0, dtype), -1) | |
# SLSQP is sent 'old-style' bounds, 'new-style' bounds are required by | |
# ScalarFunction | |
if bounds is None or len(bounds) == 0: | |
new_bounds = (-np.inf, np.inf) | |
else: | |
new_bounds = old_bound_to_new(bounds) | |
# clip the initial guess to bounds, otherwise ScalarFunction doesn't work | |
x = np.clip(x, new_bounds[0], new_bounds[1]) | |
# Constraints are triaged per type into a dictionary of tuples | |
if isinstance(constraints, dict): | |
constraints = (constraints, ) | |
cons = {'eq': (), 'ineq': ()} | |
for ic, con in enumerate(constraints): | |
# check type | |
try: | |
ctype = con['type'].lower() | |
except KeyError as e: | |
raise KeyError('Constraint %d has no type defined.' % ic) from e | |
except TypeError as e: | |
raise TypeError('Constraints must be defined using a ' | |
'dictionary.') from e | |
except AttributeError as e: | |
raise TypeError("Constraint's type must be a string.") from e | |
else: | |
if ctype not in ['eq', 'ineq']: | |
raise ValueError("Unknown constraint type '%s'." % con['type']) | |
# check function | |
if 'fun' not in con: | |
raise ValueError('Constraint %d has no function defined.' % ic) | |
# check Jacobian | |
cjac = con.get('jac') | |
if cjac is None: | |
# approximate Jacobian function. The factory function is needed | |
# to keep a reference to `fun`, see gh-4240. | |
def cjac_factory(fun): | |
def cjac(x, *args): | |
x = _check_clip_x(x, new_bounds) | |
if jac in ['2-point', '3-point', 'cs']: | |
return approx_derivative(fun, x, method=jac, args=args, | |
rel_step=finite_diff_rel_step, | |
bounds=new_bounds) | |
else: | |
return approx_derivative(fun, x, method='2-point', | |
abs_step=epsilon, args=args, | |
bounds=new_bounds) | |
return cjac | |
cjac = cjac_factory(con['fun']) | |
# update constraints' dictionary | |
cons[ctype] += ({'fun': con['fun'], | |
'jac': cjac, | |
'args': con.get('args', ())}, ) | |
exit_modes = {-1: "Gradient evaluation required (g & a)", | |
0: "Optimization terminated successfully", | |
1: "Function evaluation required (f & c)", | |
2: "More equality constraints than independent variables", | |
3: "More than 3*n iterations in LSQ subproblem", | |
4: "Inequality constraints incompatible", | |
5: "Singular matrix E in LSQ subproblem", | |
6: "Singular matrix C in LSQ subproblem", | |
7: "Rank-deficient equality constraint subproblem HFTI", | |
8: "Positive directional derivative for linesearch", | |
9: "Iteration limit reached"} | |
# Set the parameters that SLSQP will need | |
# meq, mieq: number of equality and inequality constraints | |
meq = sum(map(len, [atleast_1d(c['fun'](x, *c['args'])) | |
for c in cons['eq']])) | |
mieq = sum(map(len, [atleast_1d(c['fun'](x, *c['args'])) | |
for c in cons['ineq']])) | |
# m = The total number of constraints | |
m = meq + mieq | |
# la = The number of constraints, or 1 if there are no constraints | |
la = array([1, m]).max() | |
# n = The number of independent variables | |
n = len(x) | |
# Define the workspaces for SLSQP | |
n1 = n + 1 | |
mineq = m - meq + n1 + n1 | |
len_w = (3*n1+m)*(n1+1)+(n1-meq+1)*(mineq+2) + 2*mineq+(n1+mineq)*(n1-meq) \ | |
+ 2*meq + n1 + ((n+1)*n)//2 + 2*m + 3*n + 3*n1 + 1 | |
len_jw = mineq | |
w = zeros(len_w) | |
jw = zeros(len_jw) | |
# Decompose bounds into xl and xu | |
if bounds is None or len(bounds) == 0: | |
xl = np.empty(n, dtype=float) | |
xu = np.empty(n, dtype=float) | |
xl.fill(np.nan) | |
xu.fill(np.nan) | |
else: | |
bnds = array([(_arr_to_scalar(l), _arr_to_scalar(u)) | |
for (l, u) in bounds], float) | |
if bnds.shape[0] != n: | |
raise IndexError('SLSQP Error: the length of bounds is not ' | |
'compatible with that of x0.') | |
with np.errstate(invalid='ignore'): | |
bnderr = bnds[:, 0] > bnds[:, 1] | |
if bnderr.any(): | |
raise ValueError('SLSQP Error: lb > ub in bounds %s.' % | |
', '.join(str(b) for b in bnderr)) | |
xl, xu = bnds[:, 0], bnds[:, 1] | |
# Mark infinite bounds with nans; the Fortran code understands this | |
infbnd = ~isfinite(bnds) | |
xl[infbnd[:, 0]] = np.nan | |
xu[infbnd[:, 1]] = np.nan | |
# ScalarFunction provides function and gradient evaluation | |
sf = _prepare_scalar_function(func, x, jac=jac, args=args, epsilon=eps, | |
finite_diff_rel_step=finite_diff_rel_step, | |
bounds=new_bounds) | |
# gh11403 SLSQP sometimes exceeds bounds by 1 or 2 ULP, make sure this | |
# doesn't get sent to the func/grad evaluator. | |
wrapped_fun = _clip_x_for_func(sf.fun, new_bounds) | |
wrapped_grad = _clip_x_for_func(sf.grad, new_bounds) | |
# Initialize the iteration counter and the mode value | |
mode = array(0, int) | |
acc = array(acc, float) | |
majiter = array(iter, int) | |
majiter_prev = 0 | |
# Initialize internal SLSQP state variables | |
alpha = array(0, float) | |
f0 = array(0, float) | |
gs = array(0, float) | |
h1 = array(0, float) | |
h2 = array(0, float) | |
h3 = array(0, float) | |
h4 = array(0, float) | |
t = array(0, float) | |
t0 = array(0, float) | |
tol = array(0, float) | |
iexact = array(0, int) | |
incons = array(0, int) | |
ireset = array(0, int) | |
itermx = array(0, int) | |
line = array(0, int) | |
n1 = array(0, int) | |
n2 = array(0, int) | |
n3 = array(0, int) | |
# Print the header if iprint >= 2 | |
if iprint >= 2: | |
print("%5s %5s %16s %16s" % ("NIT", "FC", "OBJFUN", "GNORM")) | |
# mode is zero on entry, so call objective, constraints and gradients | |
# there should be no func evaluations here because it's cached from | |
# ScalarFunction | |
fx = wrapped_fun(x) | |
g = append(wrapped_grad(x), 0.0) | |
c = _eval_constraint(x, cons) | |
a = _eval_con_normals(x, cons, la, n, m, meq, mieq) | |
while 1: | |
# Call SLSQP | |
slsqp(m, meq, x, xl, xu, fx, c, g, a, acc, majiter, mode, w, jw, | |
alpha, f0, gs, h1, h2, h3, h4, t, t0, tol, | |
iexact, incons, ireset, itermx, line, | |
n1, n2, n3) | |
if mode == 1: # objective and constraint evaluation required | |
fx = wrapped_fun(x) | |
c = _eval_constraint(x, cons) | |
if mode == -1: # gradient evaluation required | |
g = append(wrapped_grad(x), 0.0) | |
a = _eval_con_normals(x, cons, la, n, m, meq, mieq) | |
if majiter > majiter_prev: | |
# call callback if major iteration has incremented | |
if callback is not None: | |
callback(np.copy(x)) | |
# Print the status of the current iterate if iprint > 2 | |
if iprint >= 2: | |
print("%5i %5i % 16.6E % 16.6E" % (majiter, sf.nfev, | |
fx, linalg.norm(g))) | |
# If exit mode is not -1 or 1, slsqp has completed | |
if abs(mode) != 1: | |
break | |
majiter_prev = int(majiter) | |
# Optimization loop complete. Print status if requested | |
if iprint >= 1: | |
print(exit_modes[int(mode)] + " (Exit mode " + str(mode) + ')') | |
print(" Current function value:", fx) | |
print(" Iterations:", majiter) | |
print(" Function evaluations:", sf.nfev) | |
print(" Gradient evaluations:", sf.ngev) | |
return OptimizeResult(x=x, fun=fx, jac=g[:-1], nit=int(majiter), | |
nfev=sf.nfev, njev=sf.ngev, status=int(mode), | |
message=exit_modes[int(mode)], success=(mode == 0)) | |
def _eval_constraint(x, cons): | |
# Compute constraints | |
if cons['eq']: | |
c_eq = concatenate([atleast_1d(con['fun'](x, *con['args'])) | |
for con in cons['eq']]) | |
else: | |
c_eq = zeros(0) | |
if cons['ineq']: | |
c_ieq = concatenate([atleast_1d(con['fun'](x, *con['args'])) | |
for con in cons['ineq']]) | |
else: | |
c_ieq = zeros(0) | |
# Now combine c_eq and c_ieq into a single matrix | |
c = concatenate((c_eq, c_ieq)) | |
return c | |
def _eval_con_normals(x, cons, la, n, m, meq, mieq): | |
# Compute the normals of the constraints | |
if cons['eq']: | |
a_eq = vstack([con['jac'](x, *con['args']) | |
for con in cons['eq']]) | |
else: # no equality constraint | |
a_eq = zeros((meq, n)) | |
if cons['ineq']: | |
a_ieq = vstack([con['jac'](x, *con['args']) | |
for con in cons['ineq']]) | |
else: # no inequality constraint | |
a_ieq = zeros((mieq, n)) | |
# Now combine a_eq and a_ieq into a single a matrix | |
if m == 0: # no constraints | |
a = zeros((la, n)) | |
else: | |
a = vstack((a_eq, a_ieq)) | |
a = concatenate((a, zeros([la, 1])), 1) | |
return a | |