peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/ensemble
/_weight_boosting.py
"""Weight Boosting. | |
This module contains weight boosting estimators for both classification and | |
regression. | |
The module structure is the following: | |
- The `BaseWeightBoosting` base class implements a common ``fit`` method | |
for all the estimators in the module. Regression and classification | |
only differ from each other in the loss function that is optimized. | |
- :class:`~sklearn.ensemble.AdaBoostClassifier` implements adaptive boosting | |
(AdaBoost-SAMME) for classification problems. | |
- :class:`~sklearn.ensemble.AdaBoostRegressor` implements adaptive boosting | |
(AdaBoost.R2) for regression problems. | |
""" | |
# Authors: Noel Dawe <[email protected]> | |
# Gilles Louppe <[email protected]> | |
# Hamzeh Alsalhi <[email protected]> | |
# Arnaud Joly <[email protected]> | |
# | |
# License: BSD 3 clause | |
import warnings | |
from abc import ABCMeta, abstractmethod | |
from numbers import Integral, Real | |
import numpy as np | |
from scipy.special import xlogy | |
from ..base import ( | |
ClassifierMixin, | |
RegressorMixin, | |
_fit_context, | |
is_classifier, | |
is_regressor, | |
) | |
from ..metrics import accuracy_score, r2_score | |
from ..tree import DecisionTreeClassifier, DecisionTreeRegressor | |
from ..utils import _safe_indexing, check_random_state | |
from ..utils._param_validation import HasMethods, Interval, StrOptions | |
from ..utils.extmath import softmax, stable_cumsum | |
from ..utils.metadata_routing import ( | |
_raise_for_unsupported_routing, | |
_RoutingNotSupportedMixin, | |
) | |
from ..utils.validation import ( | |
_check_sample_weight, | |
_num_samples, | |
check_is_fitted, | |
has_fit_parameter, | |
) | |
from ._base import BaseEnsemble | |
__all__ = [ | |
"AdaBoostClassifier", | |
"AdaBoostRegressor", | |
] | |
class BaseWeightBoosting(BaseEnsemble, metaclass=ABCMeta): | |
"""Base class for AdaBoost estimators. | |
Warning: This class should not be used directly. Use derived classes | |
instead. | |
""" | |
_parameter_constraints: dict = { | |
"estimator": [HasMethods(["fit", "predict"]), None], | |
"n_estimators": [Interval(Integral, 1, None, closed="left")], | |
"learning_rate": [Interval(Real, 0, None, closed="neither")], | |
"random_state": ["random_state"], | |
} | |
def __init__( | |
self, | |
estimator=None, | |
*, | |
n_estimators=50, | |
estimator_params=tuple(), | |
learning_rate=1.0, | |
random_state=None, | |
): | |
super().__init__( | |
estimator=estimator, | |
n_estimators=n_estimators, | |
estimator_params=estimator_params, | |
) | |
self.learning_rate = learning_rate | |
self.random_state = random_state | |
def _check_X(self, X): | |
# Only called to validate X in non-fit methods, therefore reset=False | |
return self._validate_data( | |
X, | |
accept_sparse=["csr", "csc"], | |
ensure_2d=True, | |
allow_nd=True, | |
dtype=None, | |
reset=False, | |
) | |
def fit(self, X, y, sample_weight=None): | |
"""Build a boosted classifier/regressor from the training set (X, y). | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The training input samples. Sparse matrix can be CSC, CSR, COO, | |
DOK, or LIL. COO, DOK, and LIL are converted to CSR. | |
y : array-like of shape (n_samples,) | |
The target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. If None, the sample weights are initialized to | |
1 / n_samples. | |
Returns | |
------- | |
self : object | |
Fitted estimator. | |
""" | |
_raise_for_unsupported_routing(self, "fit", sample_weight=sample_weight) | |
X, y = self._validate_data( | |
X, | |
y, | |
accept_sparse=["csr", "csc"], | |
ensure_2d=True, | |
allow_nd=True, | |
dtype=None, | |
y_numeric=is_regressor(self), | |
) | |
sample_weight = _check_sample_weight( | |
sample_weight, X, np.float64, copy=True, only_non_negative=True | |
) | |
sample_weight /= sample_weight.sum() | |
# Check parameters | |
self._validate_estimator() | |
# Clear any previous fit results | |
self.estimators_ = [] | |
self.estimator_weights_ = np.zeros(self.n_estimators, dtype=np.float64) | |
self.estimator_errors_ = np.ones(self.n_estimators, dtype=np.float64) | |
# Initialization of the random number instance that will be used to | |
# generate a seed at each iteration | |
random_state = check_random_state(self.random_state) | |
epsilon = np.finfo(sample_weight.dtype).eps | |
zero_weight_mask = sample_weight == 0.0 | |
for iboost in range(self.n_estimators): | |
# avoid extremely small sample weight, for details see issue #20320 | |
sample_weight = np.clip(sample_weight, a_min=epsilon, a_max=None) | |
# do not clip sample weights that were exactly zero originally | |
sample_weight[zero_weight_mask] = 0.0 | |
# Boosting step | |
sample_weight, estimator_weight, estimator_error = self._boost( | |
iboost, X, y, sample_weight, random_state | |
) | |
# Early termination | |
if sample_weight is None: | |
break | |
self.estimator_weights_[iboost] = estimator_weight | |
self.estimator_errors_[iboost] = estimator_error | |
# Stop if error is zero | |
if estimator_error == 0: | |
break | |
sample_weight_sum = np.sum(sample_weight) | |
if not np.isfinite(sample_weight_sum): | |
warnings.warn( | |
( | |
"Sample weights have reached infinite values," | |
f" at iteration {iboost}, causing overflow. " | |
"Iterations stopped. Try lowering the learning rate." | |
), | |
stacklevel=2, | |
) | |
break | |
# Stop if the sum of sample weights has become non-positive | |
if sample_weight_sum <= 0: | |
break | |
if iboost < self.n_estimators - 1: | |
# Normalize | |
sample_weight /= sample_weight_sum | |
return self | |
def _boost(self, iboost, X, y, sample_weight, random_state): | |
"""Implement a single boost. | |
Warning: This method needs to be overridden by subclasses. | |
Parameters | |
---------- | |
iboost : int | |
The index of the current boost iteration. | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The training input samples. Sparse matrix can be CSC, CSR, COO, | |
DOK, or LIL. COO, DOK, and LIL are converted to CSR. | |
y : array-like of shape (n_samples,) | |
The target values (class labels). | |
sample_weight : array-like of shape (n_samples,) | |
The current sample weights. | |
random_state : RandomState | |
The current random number generator | |
Returns | |
------- | |
sample_weight : array-like of shape (n_samples,) or None | |
The reweighted sample weights. | |
If None then boosting has terminated early. | |
estimator_weight : float | |
The weight for the current boost. | |
If None then boosting has terminated early. | |
error : float | |
The classification error for the current boost. | |
If None then boosting has terminated early. | |
""" | |
pass | |
def staged_score(self, X, y, sample_weight=None): | |
"""Return staged scores for X, y. | |
This generator method yields the ensemble score after each iteration of | |
boosting and therefore allows monitoring, such as to determine the | |
score on a test set after each boost. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The training input samples. Sparse matrix can be CSC, CSR, COO, | |
DOK, or LIL. COO, DOK, and LIL are converted to CSR. | |
y : array-like of shape (n_samples,) | |
Labels for X. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. | |
Yields | |
------ | |
z : float | |
""" | |
X = self._check_X(X) | |
for y_pred in self.staged_predict(X): | |
if is_classifier(self): | |
yield accuracy_score(y, y_pred, sample_weight=sample_weight) | |
else: | |
yield r2_score(y, y_pred, sample_weight=sample_weight) | |
def feature_importances_(self): | |
"""The impurity-based feature importances. | |
The higher, the more important the feature. | |
The importance of a feature is computed as the (normalized) | |
total reduction of the criterion brought by that feature. It is also | |
known as the Gini importance. | |
Warning: impurity-based feature importances can be misleading for | |
high cardinality features (many unique values). See | |
:func:`sklearn.inspection.permutation_importance` as an alternative. | |
Returns | |
------- | |
feature_importances_ : ndarray of shape (n_features,) | |
The feature importances. | |
""" | |
if self.estimators_ is None or len(self.estimators_) == 0: | |
raise ValueError( | |
"Estimator not fitted, call `fit` before `feature_importances_`." | |
) | |
try: | |
norm = self.estimator_weights_.sum() | |
return ( | |
sum( | |
weight * clf.feature_importances_ | |
for weight, clf in zip(self.estimator_weights_, self.estimators_) | |
) | |
/ norm | |
) | |
except AttributeError as e: | |
raise AttributeError( | |
"Unable to compute feature importances " | |
"since estimator does not have a " | |
"feature_importances_ attribute" | |
) from e | |
def _samme_proba(estimator, n_classes, X): | |
"""Calculate algorithm 4, step 2, equation c) of Zhu et al [1]. | |
References | |
---------- | |
.. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. | |
""" | |
proba = estimator.predict_proba(X) | |
# Displace zero probabilities so the log is defined. | |
# Also fix negative elements which may occur with | |
# negative sample weights. | |
np.clip(proba, np.finfo(proba.dtype).eps, None, out=proba) | |
log_proba = np.log(proba) | |
return (n_classes - 1) * ( | |
log_proba - (1.0 / n_classes) * log_proba.sum(axis=1)[:, np.newaxis] | |
) | |
class AdaBoostClassifier( | |
_RoutingNotSupportedMixin, ClassifierMixin, BaseWeightBoosting | |
): | |
"""An AdaBoost classifier. | |
An AdaBoost [1]_ classifier is a meta-estimator that begins by fitting a | |
classifier on the original dataset and then fits additional copies of the | |
classifier on the same dataset but where the weights of incorrectly | |
classified instances are adjusted such that subsequent classifiers focus | |
more on difficult cases. | |
This class implements the algorithm based on [2]_. | |
Read more in the :ref:`User Guide <adaboost>`. | |
.. versionadded:: 0.14 | |
Parameters | |
---------- | |
estimator : object, default=None | |
The base estimator from which the boosted ensemble is built. | |
Support for sample weighting is required, as well as proper | |
``classes_`` and ``n_classes_`` attributes. If ``None``, then | |
the base estimator is :class:`~sklearn.tree.DecisionTreeClassifier` | |
initialized with `max_depth=1`. | |
.. versionadded:: 1.2 | |
`base_estimator` was renamed to `estimator`. | |
n_estimators : int, default=50 | |
The maximum number of estimators at which boosting is terminated. | |
In case of perfect fit, the learning procedure is stopped early. | |
Values must be in the range `[1, inf)`. | |
learning_rate : float, default=1.0 | |
Weight applied to each classifier at each boosting iteration. A higher | |
learning rate increases the contribution of each classifier. There is | |
a trade-off between the `learning_rate` and `n_estimators` parameters. | |
Values must be in the range `(0.0, inf)`. | |
algorithm : {'SAMME', 'SAMME.R'}, default='SAMME.R' | |
If 'SAMME.R' then use the SAMME.R real boosting algorithm. | |
``estimator`` must support calculation of class probabilities. | |
If 'SAMME' then use the SAMME discrete boosting algorithm. | |
The SAMME.R algorithm typically converges faster than SAMME, | |
achieving a lower test error with fewer boosting iterations. | |
.. deprecated:: 1.4 | |
`"SAMME.R"` is deprecated and will be removed in version 1.6. | |
'"SAMME"' will become the default. | |
random_state : int, RandomState instance or None, default=None | |
Controls the random seed given at each `estimator` at each | |
boosting iteration. | |
Thus, it is only used when `estimator` exposes a `random_state`. | |
Pass an int for reproducible output across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
Attributes | |
---------- | |
estimator_ : estimator | |
The base estimator from which the ensemble is grown. | |
.. versionadded:: 1.2 | |
`base_estimator_` was renamed to `estimator_`. | |
estimators_ : list of classifiers | |
The collection of fitted sub-estimators. | |
classes_ : ndarray of shape (n_classes,) | |
The classes labels. | |
n_classes_ : int | |
The number of classes. | |
estimator_weights_ : ndarray of floats | |
Weights for each estimator in the boosted ensemble. | |
estimator_errors_ : ndarray of floats | |
Classification error for each estimator in the boosted | |
ensemble. | |
feature_importances_ : ndarray of shape (n_features,) | |
The impurity-based feature importances if supported by the | |
``estimator`` (when based on decision trees). | |
Warning: impurity-based feature importances can be misleading for | |
high cardinality features (many unique values). See | |
:func:`sklearn.inspection.permutation_importance` as an alternative. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
AdaBoostRegressor : An AdaBoost regressor that begins by fitting a | |
regressor on the original dataset and then fits additional copies of | |
the regressor on the same dataset but where the weights of instances | |
are adjusted according to the error of the current prediction. | |
GradientBoostingClassifier : GB builds an additive model in a forward | |
stage-wise fashion. Regression trees are fit on the negative gradient | |
of the binomial or multinomial deviance loss function. Binary | |
classification is a special case where only a single regression tree is | |
induced. | |
sklearn.tree.DecisionTreeClassifier : A non-parametric supervised learning | |
method used for classification. | |
Creates a model that predicts the value of a target variable by | |
learning simple decision rules inferred from the data features. | |
References | |
---------- | |
.. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of | |
on-Line Learning and an Application to Boosting", 1995. | |
.. [2] :doi:`J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class adaboost." | |
Statistics and its Interface 2.3 (2009): 349-360. | |
<10.4310/SII.2009.v2.n3.a8>` | |
Examples | |
-------- | |
>>> from sklearn.ensemble import AdaBoostClassifier | |
>>> from sklearn.datasets import make_classification | |
>>> X, y = make_classification(n_samples=1000, n_features=4, | |
... n_informative=2, n_redundant=0, | |
... random_state=0, shuffle=False) | |
>>> clf = AdaBoostClassifier(n_estimators=100, algorithm="SAMME", random_state=0) | |
>>> clf.fit(X, y) | |
AdaBoostClassifier(algorithm='SAMME', n_estimators=100, random_state=0) | |
>>> clf.predict([[0, 0, 0, 0]]) | |
array([1]) | |
>>> clf.score(X, y) | |
0.96... | |
""" | |
# TODO(1.6): Modify _parameter_constraints for "algorithm" to only check | |
# for "SAMME" | |
_parameter_constraints: dict = { | |
**BaseWeightBoosting._parameter_constraints, | |
"algorithm": [ | |
StrOptions({"SAMME", "SAMME.R"}), | |
], | |
} | |
# TODO(1.6): Change default "algorithm" value to "SAMME" | |
def __init__( | |
self, | |
estimator=None, | |
*, | |
n_estimators=50, | |
learning_rate=1.0, | |
algorithm="SAMME.R", | |
random_state=None, | |
): | |
super().__init__( | |
estimator=estimator, | |
n_estimators=n_estimators, | |
learning_rate=learning_rate, | |
random_state=random_state, | |
) | |
self.algorithm = algorithm | |
def _validate_estimator(self): | |
"""Check the estimator and set the estimator_ attribute.""" | |
super()._validate_estimator(default=DecisionTreeClassifier(max_depth=1)) | |
# TODO(1.6): Remove, as "SAMME.R" value for "algorithm" param will be | |
# removed in 1.6 | |
# SAMME-R requires predict_proba-enabled base estimators | |
if self.algorithm != "SAMME": | |
warnings.warn( | |
( | |
"The SAMME.R algorithm (the default) is deprecated and will be" | |
" removed in 1.6. Use the SAMME algorithm to circumvent this" | |
" warning." | |
), | |
FutureWarning, | |
) | |
if not hasattr(self.estimator_, "predict_proba"): | |
raise TypeError( | |
"AdaBoostClassifier with algorithm='SAMME.R' requires " | |
"that the weak learner supports the calculation of class " | |
"probabilities with a predict_proba method.\n" | |
"Please change the base estimator or set " | |
"algorithm='SAMME' instead." | |
) | |
if not has_fit_parameter(self.estimator_, "sample_weight"): | |
raise ValueError( | |
f"{self.estimator.__class__.__name__} doesn't support sample_weight." | |
) | |
# TODO(1.6): Redefine the scope of the `_boost` and `_boost_discrete` | |
# functions to be the same since SAMME will be the default value for the | |
# "algorithm" parameter in version 1.6. Thus, a distinguishing function is | |
# no longer needed. (Or adjust code here, if another algorithm, shall be | |
# used instead of SAMME.R.) | |
def _boost(self, iboost, X, y, sample_weight, random_state): | |
"""Implement a single boost. | |
Perform a single boost according to the real multi-class SAMME.R | |
algorithm or to the discrete SAMME algorithm and return the updated | |
sample weights. | |
Parameters | |
---------- | |
iboost : int | |
The index of the current boost iteration. | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The training input samples. | |
y : array-like of shape (n_samples,) | |
The target values (class labels). | |
sample_weight : array-like of shape (n_samples,) | |
The current sample weights. | |
random_state : RandomState instance | |
The RandomState instance used if the base estimator accepts a | |
`random_state` attribute. | |
Returns | |
------- | |
sample_weight : array-like of shape (n_samples,) or None | |
The reweighted sample weights. | |
If None then boosting has terminated early. | |
estimator_weight : float | |
The weight for the current boost. | |
If None then boosting has terminated early. | |
estimator_error : float | |
The classification error for the current boost. | |
If None then boosting has terminated early. | |
""" | |
if self.algorithm == "SAMME.R": | |
return self._boost_real(iboost, X, y, sample_weight, random_state) | |
else: # elif self.algorithm == "SAMME": | |
return self._boost_discrete(iboost, X, y, sample_weight, random_state) | |
# TODO(1.6): Remove function. The `_boost_real` function won't be used any | |
# longer, because the SAMME.R algorithm will be deprecated in 1.6. | |
def _boost_real(self, iboost, X, y, sample_weight, random_state): | |
"""Implement a single boost using the SAMME.R real algorithm.""" | |
estimator = self._make_estimator(random_state=random_state) | |
estimator.fit(X, y, sample_weight=sample_weight) | |
y_predict_proba = estimator.predict_proba(X) | |
if iboost == 0: | |
self.classes_ = getattr(estimator, "classes_", None) | |
self.n_classes_ = len(self.classes_) | |
y_predict = self.classes_.take(np.argmax(y_predict_proba, axis=1), axis=0) | |
# Instances incorrectly classified | |
incorrect = y_predict != y | |
# Error fraction | |
estimator_error = np.mean(np.average(incorrect, weights=sample_weight, axis=0)) | |
# Stop if classification is perfect | |
if estimator_error <= 0: | |
return sample_weight, 1.0, 0.0 | |
# Construct y coding as described in Zhu et al [2]: | |
# | |
# y_k = 1 if c == k else -1 / (K - 1) | |
# | |
# where K == n_classes_ and c, k in [0, K) are indices along the second | |
# axis of the y coding with c being the index corresponding to the true | |
# class label. | |
n_classes = self.n_classes_ | |
classes = self.classes_ | |
y_codes = np.array([-1.0 / (n_classes - 1), 1.0]) | |
y_coding = y_codes.take(classes == y[:, np.newaxis]) | |
# Displace zero probabilities so the log is defined. | |
# Also fix negative elements which may occur with | |
# negative sample weights. | |
proba = y_predict_proba # alias for readability | |
np.clip(proba, np.finfo(proba.dtype).eps, None, out=proba) | |
# Boost weight using multi-class AdaBoost SAMME.R alg | |
estimator_weight = ( | |
-1.0 | |
* self.learning_rate | |
* ((n_classes - 1.0) / n_classes) | |
* xlogy(y_coding, y_predict_proba).sum(axis=1) | |
) | |
# Only boost the weights if it will fit again | |
if not iboost == self.n_estimators - 1: | |
# Only boost positive weights | |
sample_weight *= np.exp( | |
estimator_weight * ((sample_weight > 0) | (estimator_weight < 0)) | |
) | |
return sample_weight, 1.0, estimator_error | |
def _boost_discrete(self, iboost, X, y, sample_weight, random_state): | |
"""Implement a single boost using the SAMME discrete algorithm.""" | |
estimator = self._make_estimator(random_state=random_state) | |
estimator.fit(X, y, sample_weight=sample_weight) | |
y_predict = estimator.predict(X) | |
if iboost == 0: | |
self.classes_ = getattr(estimator, "classes_", None) | |
self.n_classes_ = len(self.classes_) | |
# Instances incorrectly classified | |
incorrect = y_predict != y | |
# Error fraction | |
estimator_error = np.mean(np.average(incorrect, weights=sample_weight, axis=0)) | |
# Stop if classification is perfect | |
if estimator_error <= 0: | |
return sample_weight, 1.0, 0.0 | |
n_classes = self.n_classes_ | |
# Stop if the error is at least as bad as random guessing | |
if estimator_error >= 1.0 - (1.0 / n_classes): | |
self.estimators_.pop(-1) | |
if len(self.estimators_) == 0: | |
raise ValueError( | |
"BaseClassifier in AdaBoostClassifier " | |
"ensemble is worse than random, ensemble " | |
"can not be fit." | |
) | |
return None, None, None | |
# Boost weight using multi-class AdaBoost SAMME alg | |
estimator_weight = self.learning_rate * ( | |
np.log((1.0 - estimator_error) / estimator_error) + np.log(n_classes - 1.0) | |
) | |
# Only boost the weights if it will fit again | |
if not iboost == self.n_estimators - 1: | |
# Only boost positive weights | |
sample_weight = np.exp( | |
np.log(sample_weight) | |
+ estimator_weight * incorrect * (sample_weight > 0) | |
) | |
return sample_weight, estimator_weight, estimator_error | |
def predict(self, X): | |
"""Predict classes for X. | |
The predicted class of an input sample is computed as the weighted mean | |
prediction of the classifiers in the ensemble. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The training input samples. Sparse matrix can be CSC, CSR, COO, | |
DOK, or LIL. COO, DOK, and LIL are converted to CSR. | |
Returns | |
------- | |
y : ndarray of shape (n_samples,) | |
The predicted classes. | |
""" | |
pred = self.decision_function(X) | |
if self.n_classes_ == 2: | |
return self.classes_.take(pred > 0, axis=0) | |
return self.classes_.take(np.argmax(pred, axis=1), axis=0) | |
def staged_predict(self, X): | |
"""Return staged predictions for X. | |
The predicted class of an input sample is computed as the weighted mean | |
prediction of the classifiers in the ensemble. | |
This generator method yields the ensemble prediction after each | |
iteration of boosting and therefore allows monitoring, such as to | |
determine the prediction on a test set after each boost. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
The input samples. Sparse matrix can be CSC, CSR, COO, | |
DOK, or LIL. COO, DOK, and LIL are converted to CSR. | |
Yields | |
------ | |
y : generator of ndarray of shape (n_samples,) | |
The predicted classes. | |
""" | |
X = self._check_X(X) | |
n_classes = self.n_classes_ | |
classes = self.classes_ | |
if n_classes == 2: | |
for pred in self.staged_decision_function(X): | |
yield np.array(classes.take(pred > 0, axis=0)) | |
else: | |
for pred in self.staged_decision_function(X): | |
yield np.array(classes.take(np.argmax(pred, axis=1), axis=0)) | |
def decision_function(self, X): | |
"""Compute the decision function of ``X``. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The training input samples. Sparse matrix can be CSC, CSR, COO, | |
DOK, or LIL. COO, DOK, and LIL are converted to CSR. | |
Returns | |
------- | |
score : ndarray of shape of (n_samples, k) | |
The decision function of the input samples. The order of | |
outputs is the same as that of the :term:`classes_` attribute. | |
Binary classification is a special cases with ``k == 1``, | |
otherwise ``k==n_classes``. For binary classification, | |
values closer to -1 or 1 mean more like the first or second | |
class in ``classes_``, respectively. | |
""" | |
check_is_fitted(self) | |
X = self._check_X(X) | |
n_classes = self.n_classes_ | |
classes = self.classes_[:, np.newaxis] | |
# TODO(1.6): Remove, because "algorithm" param will be deprecated in 1.6 | |
if self.algorithm == "SAMME.R": | |
# The weights are all 1. for SAMME.R | |
pred = sum( | |
_samme_proba(estimator, n_classes, X) for estimator in self.estimators_ | |
) | |
else: # self.algorithm == "SAMME" | |
pred = sum( | |
np.where( | |
(estimator.predict(X) == classes).T, | |
w, | |
-1 / (n_classes - 1) * w, | |
) | |
for estimator, w in zip(self.estimators_, self.estimator_weights_) | |
) | |
pred /= self.estimator_weights_.sum() | |
if n_classes == 2: | |
pred[:, 0] *= -1 | |
return pred.sum(axis=1) | |
return pred | |
def staged_decision_function(self, X): | |
"""Compute decision function of ``X`` for each boosting iteration. | |
This method allows monitoring (i.e. determine error on testing set) | |
after each boosting iteration. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The training input samples. Sparse matrix can be CSC, CSR, COO, | |
DOK, or LIL. COO, DOK, and LIL are converted to CSR. | |
Yields | |
------ | |
score : generator of ndarray of shape (n_samples, k) | |
The decision function of the input samples. The order of | |
outputs is the same of that of the :term:`classes_` attribute. | |
Binary classification is a special cases with ``k == 1``, | |
otherwise ``k==n_classes``. For binary classification, | |
values closer to -1 or 1 mean more like the first or second | |
class in ``classes_``, respectively. | |
""" | |
check_is_fitted(self) | |
X = self._check_X(X) | |
n_classes = self.n_classes_ | |
classes = self.classes_[:, np.newaxis] | |
pred = None | |
norm = 0.0 | |
for weight, estimator in zip(self.estimator_weights_, self.estimators_): | |
norm += weight | |
# TODO(1.6): Remove, because "algorithm" param will be deprecated in | |
# 1.6 | |
if self.algorithm == "SAMME.R": | |
# The weights are all 1. for SAMME.R | |
current_pred = _samme_proba(estimator, n_classes, X) | |
else: # elif self.algorithm == "SAMME": | |
current_pred = np.where( | |
(estimator.predict(X) == classes).T, | |
weight, | |
-1 / (n_classes - 1) * weight, | |
) | |
if pred is None: | |
pred = current_pred | |
else: | |
pred += current_pred | |
if n_classes == 2: | |
tmp_pred = np.copy(pred) | |
tmp_pred[:, 0] *= -1 | |
yield (tmp_pred / norm).sum(axis=1) | |
else: | |
yield pred / norm | |
def _compute_proba_from_decision(decision, n_classes): | |
"""Compute probabilities from the decision function. | |
This is based eq. (15) of [1] where: | |
p(y=c|X) = exp((1 / K-1) f_c(X)) / sum_k(exp((1 / K-1) f_k(X))) | |
= softmax((1 / K-1) * f(X)) | |
References | |
---------- | |
.. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", | |
2009. | |
""" | |
if n_classes == 2: | |
decision = np.vstack([-decision, decision]).T / 2 | |
else: | |
decision /= n_classes - 1 | |
return softmax(decision, copy=False) | |
def predict_proba(self, X): | |
"""Predict class probabilities for X. | |
The predicted class probabilities of an input sample is computed as | |
the weighted mean predicted class probabilities of the classifiers | |
in the ensemble. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The training input samples. Sparse matrix can be CSC, CSR, COO, | |
DOK, or LIL. COO, DOK, and LIL are converted to CSR. | |
Returns | |
------- | |
p : ndarray of shape (n_samples, n_classes) | |
The class probabilities of the input samples. The order of | |
outputs is the same of that of the :term:`classes_` attribute. | |
""" | |
check_is_fitted(self) | |
n_classes = self.n_classes_ | |
if n_classes == 1: | |
return np.ones((_num_samples(X), 1)) | |
decision = self.decision_function(X) | |
return self._compute_proba_from_decision(decision, n_classes) | |
def staged_predict_proba(self, X): | |
"""Predict class probabilities for X. | |
The predicted class probabilities of an input sample is computed as | |
the weighted mean predicted class probabilities of the classifiers | |
in the ensemble. | |
This generator method yields the ensemble predicted class probabilities | |
after each iteration of boosting and therefore allows monitoring, such | |
as to determine the predicted class probabilities on a test set after | |
each boost. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The training input samples. Sparse matrix can be CSC, CSR, COO, | |
DOK, or LIL. COO, DOK, and LIL are converted to CSR. | |
Yields | |
------ | |
p : generator of ndarray of shape (n_samples,) | |
The class probabilities of the input samples. The order of | |
outputs is the same of that of the :term:`classes_` attribute. | |
""" | |
n_classes = self.n_classes_ | |
for decision in self.staged_decision_function(X): | |
yield self._compute_proba_from_decision(decision, n_classes) | |
def predict_log_proba(self, X): | |
"""Predict class log-probabilities for X. | |
The predicted class log-probabilities of an input sample is computed as | |
the weighted mean predicted class log-probabilities of the classifiers | |
in the ensemble. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The training input samples. Sparse matrix can be CSC, CSR, COO, | |
DOK, or LIL. COO, DOK, and LIL are converted to CSR. | |
Returns | |
------- | |
p : ndarray of shape (n_samples, n_classes) | |
The class probabilities of the input samples. The order of | |
outputs is the same of that of the :term:`classes_` attribute. | |
""" | |
return np.log(self.predict_proba(X)) | |
class AdaBoostRegressor(_RoutingNotSupportedMixin, RegressorMixin, BaseWeightBoosting): | |
"""An AdaBoost regressor. | |
An AdaBoost [1] regressor is a meta-estimator that begins by fitting a | |
regressor on the original dataset and then fits additional copies of the | |
regressor on the same dataset but where the weights of instances are | |
adjusted according to the error of the current prediction. As such, | |
subsequent regressors focus more on difficult cases. | |
This class implements the algorithm known as AdaBoost.R2 [2]. | |
Read more in the :ref:`User Guide <adaboost>`. | |
.. versionadded:: 0.14 | |
Parameters | |
---------- | |
estimator : object, default=None | |
The base estimator from which the boosted ensemble is built. | |
If ``None``, then the base estimator is | |
:class:`~sklearn.tree.DecisionTreeRegressor` initialized with | |
`max_depth=3`. | |
.. versionadded:: 1.2 | |
`base_estimator` was renamed to `estimator`. | |
n_estimators : int, default=50 | |
The maximum number of estimators at which boosting is terminated. | |
In case of perfect fit, the learning procedure is stopped early. | |
Values must be in the range `[1, inf)`. | |
learning_rate : float, default=1.0 | |
Weight applied to each regressor at each boosting iteration. A higher | |
learning rate increases the contribution of each regressor. There is | |
a trade-off between the `learning_rate` and `n_estimators` parameters. | |
Values must be in the range `(0.0, inf)`. | |
loss : {'linear', 'square', 'exponential'}, default='linear' | |
The loss function to use when updating the weights after each | |
boosting iteration. | |
random_state : int, RandomState instance or None, default=None | |
Controls the random seed given at each `estimator` at each | |
boosting iteration. | |
Thus, it is only used when `estimator` exposes a `random_state`. | |
In addition, it controls the bootstrap of the weights used to train the | |
`estimator` at each boosting iteration. | |
Pass an int for reproducible output across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
Attributes | |
---------- | |
estimator_ : estimator | |
The base estimator from which the ensemble is grown. | |
.. versionadded:: 1.2 | |
`base_estimator_` was renamed to `estimator_`. | |
estimators_ : list of regressors | |
The collection of fitted sub-estimators. | |
estimator_weights_ : ndarray of floats | |
Weights for each estimator in the boosted ensemble. | |
estimator_errors_ : ndarray of floats | |
Regression error for each estimator in the boosted ensemble. | |
feature_importances_ : ndarray of shape (n_features,) | |
The impurity-based feature importances if supported by the | |
``estimator`` (when based on decision trees). | |
Warning: impurity-based feature importances can be misleading for | |
high cardinality features (many unique values). See | |
:func:`sklearn.inspection.permutation_importance` as an alternative. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
AdaBoostClassifier : An AdaBoost classifier. | |
GradientBoostingRegressor : Gradient Boosting Classification Tree. | |
sklearn.tree.DecisionTreeRegressor : A decision tree regressor. | |
References | |
---------- | |
.. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of | |
on-Line Learning and an Application to Boosting", 1995. | |
.. [2] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. | |
Examples | |
-------- | |
>>> from sklearn.ensemble import AdaBoostRegressor | |
>>> from sklearn.datasets import make_regression | |
>>> X, y = make_regression(n_features=4, n_informative=2, | |
... random_state=0, shuffle=False) | |
>>> regr = AdaBoostRegressor(random_state=0, n_estimators=100) | |
>>> regr.fit(X, y) | |
AdaBoostRegressor(n_estimators=100, random_state=0) | |
>>> regr.predict([[0, 0, 0, 0]]) | |
array([4.7972...]) | |
>>> regr.score(X, y) | |
0.9771... | |
""" | |
_parameter_constraints: dict = { | |
**BaseWeightBoosting._parameter_constraints, | |
"loss": [StrOptions({"linear", "square", "exponential"})], | |
} | |
def __init__( | |
self, | |
estimator=None, | |
*, | |
n_estimators=50, | |
learning_rate=1.0, | |
loss="linear", | |
random_state=None, | |
): | |
super().__init__( | |
estimator=estimator, | |
n_estimators=n_estimators, | |
learning_rate=learning_rate, | |
random_state=random_state, | |
) | |
self.loss = loss | |
self.random_state = random_state | |
def _validate_estimator(self): | |
"""Check the estimator and set the estimator_ attribute.""" | |
super()._validate_estimator(default=DecisionTreeRegressor(max_depth=3)) | |
def _boost(self, iboost, X, y, sample_weight, random_state): | |
"""Implement a single boost for regression | |
Perform a single boost according to the AdaBoost.R2 algorithm and | |
return the updated sample weights. | |
Parameters | |
---------- | |
iboost : int | |
The index of the current boost iteration. | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The training input samples. | |
y : array-like of shape (n_samples,) | |
The target values (class labels in classification, real numbers in | |
regression). | |
sample_weight : array-like of shape (n_samples,) | |
The current sample weights. | |
random_state : RandomState | |
The RandomState instance used if the base estimator accepts a | |
`random_state` attribute. | |
Controls also the bootstrap of the weights used to train the weak | |
learner. | |
replacement. | |
Returns | |
------- | |
sample_weight : array-like of shape (n_samples,) or None | |
The reweighted sample weights. | |
If None then boosting has terminated early. | |
estimator_weight : float | |
The weight for the current boost. | |
If None then boosting has terminated early. | |
estimator_error : float | |
The regression error for the current boost. | |
If None then boosting has terminated early. | |
""" | |
estimator = self._make_estimator(random_state=random_state) | |
# Weighted sampling of the training set with replacement | |
bootstrap_idx = random_state.choice( | |
np.arange(_num_samples(X)), | |
size=_num_samples(X), | |
replace=True, | |
p=sample_weight, | |
) | |
# Fit on the bootstrapped sample and obtain a prediction | |
# for all samples in the training set | |
X_ = _safe_indexing(X, bootstrap_idx) | |
y_ = _safe_indexing(y, bootstrap_idx) | |
estimator.fit(X_, y_) | |
y_predict = estimator.predict(X) | |
error_vect = np.abs(y_predict - y) | |
sample_mask = sample_weight > 0 | |
masked_sample_weight = sample_weight[sample_mask] | |
masked_error_vector = error_vect[sample_mask] | |
error_max = masked_error_vector.max() | |
if error_max != 0: | |
masked_error_vector /= error_max | |
if self.loss == "square": | |
masked_error_vector **= 2 | |
elif self.loss == "exponential": | |
masked_error_vector = 1.0 - np.exp(-masked_error_vector) | |
# Calculate the average loss | |
estimator_error = (masked_sample_weight * masked_error_vector).sum() | |
if estimator_error <= 0: | |
# Stop if fit is perfect | |
return sample_weight, 1.0, 0.0 | |
elif estimator_error >= 0.5: | |
# Discard current estimator only if it isn't the only one | |
if len(self.estimators_) > 1: | |
self.estimators_.pop(-1) | |
return None, None, None | |
beta = estimator_error / (1.0 - estimator_error) | |
# Boost weight using AdaBoost.R2 alg | |
estimator_weight = self.learning_rate * np.log(1.0 / beta) | |
if not iboost == self.n_estimators - 1: | |
sample_weight[sample_mask] *= np.power( | |
beta, (1.0 - masked_error_vector) * self.learning_rate | |
) | |
return sample_weight, estimator_weight, estimator_error | |
def _get_median_predict(self, X, limit): | |
# Evaluate predictions of all estimators | |
predictions = np.array([est.predict(X) for est in self.estimators_[:limit]]).T | |
# Sort the predictions | |
sorted_idx = np.argsort(predictions, axis=1) | |
# Find index of median prediction for each sample | |
weight_cdf = stable_cumsum(self.estimator_weights_[sorted_idx], axis=1) | |
median_or_above = weight_cdf >= 0.5 * weight_cdf[:, -1][:, np.newaxis] | |
median_idx = median_or_above.argmax(axis=1) | |
median_estimators = sorted_idx[np.arange(_num_samples(X)), median_idx] | |
# Return median predictions | |
return predictions[np.arange(_num_samples(X)), median_estimators] | |
def predict(self, X): | |
"""Predict regression value for X. | |
The predicted regression value of an input sample is computed | |
as the weighted median prediction of the regressors in the ensemble. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The training input samples. Sparse matrix can be CSC, CSR, COO, | |
DOK, or LIL. COO, DOK, and LIL are converted to CSR. | |
Returns | |
------- | |
y : ndarray of shape (n_samples,) | |
The predicted regression values. | |
""" | |
check_is_fitted(self) | |
X = self._check_X(X) | |
return self._get_median_predict(X, len(self.estimators_)) | |
def staged_predict(self, X): | |
"""Return staged predictions for X. | |
The predicted regression value of an input sample is computed | |
as the weighted median prediction of the regressors in the ensemble. | |
This generator method yields the ensemble prediction after each | |
iteration of boosting and therefore allows monitoring, such as to | |
determine the prediction on a test set after each boost. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The training input samples. | |
Yields | |
------ | |
y : generator of ndarray of shape (n_samples,) | |
The predicted regression values. | |
""" | |
check_is_fitted(self) | |
X = self._check_X(X) | |
for i, _ in enumerate(self.estimators_, 1): | |
yield self._get_median_predict(X, limit=i) | |