peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/impute
/tests
/test_common.py
import numpy as np | |
import pytest | |
from sklearn.experimental import enable_iterative_imputer # noqa | |
from sklearn.impute import IterativeImputer, KNNImputer, SimpleImputer | |
from sklearn.utils._testing import ( | |
assert_allclose, | |
assert_allclose_dense_sparse, | |
assert_array_equal, | |
) | |
from sklearn.utils.fixes import CSR_CONTAINERS | |
def imputers(): | |
return [IterativeImputer(tol=0.1), KNNImputer(), SimpleImputer()] | |
def sparse_imputers(): | |
return [SimpleImputer()] | |
# ConvergenceWarning will be raised by the IterativeImputer | |
def test_imputation_missing_value_in_test_array(imputer): | |
# [Non Regression Test for issue #13968] Missing value in test set should | |
# not throw an error and return a finite dataset | |
train = [[1], [2]] | |
test = [[3], [np.nan]] | |
imputer.set_params(add_indicator=True) | |
imputer.fit(train).transform(test) | |
# ConvergenceWarning will be raised by the IterativeImputer | |
def test_imputers_add_indicator(marker, imputer): | |
X = np.array( | |
[ | |
[marker, 1, 5, marker, 1], | |
[2, marker, 1, marker, 2], | |
[6, 3, marker, marker, 3], | |
[1, 2, 9, marker, 4], | |
] | |
) | |
X_true_indicator = np.array( | |
[ | |
[1.0, 0.0, 0.0, 1.0], | |
[0.0, 1.0, 0.0, 1.0], | |
[0.0, 0.0, 1.0, 1.0], | |
[0.0, 0.0, 0.0, 1.0], | |
] | |
) | |
imputer.set_params(missing_values=marker, add_indicator=True) | |
X_trans = imputer.fit_transform(X) | |
assert_allclose(X_trans[:, -4:], X_true_indicator) | |
assert_array_equal(imputer.indicator_.features_, np.array([0, 1, 2, 3])) | |
imputer.set_params(add_indicator=False) | |
X_trans_no_indicator = imputer.fit_transform(X) | |
assert_allclose(X_trans[:, :-4], X_trans_no_indicator) | |
# ConvergenceWarning will be raised by the IterativeImputer | |
def test_imputers_add_indicator_sparse(imputer, marker, csr_container): | |
X = csr_container( | |
[ | |
[marker, 1, 5, marker, 1], | |
[2, marker, 1, marker, 2], | |
[6, 3, marker, marker, 3], | |
[1, 2, 9, marker, 4], | |
] | |
) | |
X_true_indicator = csr_container( | |
[ | |
[1.0, 0.0, 0.0, 1.0], | |
[0.0, 1.0, 0.0, 1.0], | |
[0.0, 0.0, 1.0, 1.0], | |
[0.0, 0.0, 0.0, 1.0], | |
] | |
) | |
imputer.set_params(missing_values=marker, add_indicator=True) | |
X_trans = imputer.fit_transform(X) | |
assert_allclose_dense_sparse(X_trans[:, -4:], X_true_indicator) | |
assert_array_equal(imputer.indicator_.features_, np.array([0, 1, 2, 3])) | |
imputer.set_params(add_indicator=False) | |
X_trans_no_indicator = imputer.fit_transform(X) | |
assert_allclose_dense_sparse(X_trans[:, :-4], X_trans_no_indicator) | |
# ConvergenceWarning will be raised by the IterativeImputer | |
def test_imputers_pandas_na_integer_array_support(imputer, add_indicator): | |
# Test pandas IntegerArray with pd.NA | |
pd = pytest.importorskip("pandas") | |
marker = np.nan | |
imputer = imputer.set_params(add_indicator=add_indicator, missing_values=marker) | |
X = np.array( | |
[ | |
[marker, 1, 5, marker, 1], | |
[2, marker, 1, marker, 2], | |
[6, 3, marker, marker, 3], | |
[1, 2, 9, marker, 4], | |
] | |
) | |
# fit on numpy array | |
X_trans_expected = imputer.fit_transform(X) | |
# Creates dataframe with IntegerArrays with pd.NA | |
X_df = pd.DataFrame(X, dtype="Int16", columns=["a", "b", "c", "d", "e"]) | |
# fit on pandas dataframe with IntegerArrays | |
X_trans = imputer.fit_transform(X_df) | |
assert_allclose(X_trans_expected, X_trans) | |
def test_imputers_feature_names_out_pandas(imputer, add_indicator): | |
"""Check feature names out for imputers.""" | |
pd = pytest.importorskip("pandas") | |
marker = np.nan | |
imputer = imputer.set_params(add_indicator=add_indicator, missing_values=marker) | |
X = np.array( | |
[ | |
[marker, 1, 5, 3, marker, 1], | |
[2, marker, 1, 4, marker, 2], | |
[6, 3, 7, marker, marker, 3], | |
[1, 2, 9, 8, marker, 4], | |
] | |
) | |
X_df = pd.DataFrame(X, columns=["a", "b", "c", "d", "e", "f"]) | |
imputer.fit(X_df) | |
names = imputer.get_feature_names_out() | |
if add_indicator: | |
expected_names = [ | |
"a", | |
"b", | |
"c", | |
"d", | |
"f", | |
"missingindicator_a", | |
"missingindicator_b", | |
"missingindicator_d", | |
"missingindicator_e", | |
] | |
assert_array_equal(expected_names, names) | |
else: | |
expected_names = ["a", "b", "c", "d", "f"] | |
assert_array_equal(expected_names, names) | |
def test_keep_empty_features(imputer, keep_empty_features): | |
"""Check that the imputer keeps features with only missing values.""" | |
X = np.array([[np.nan, 1], [np.nan, 2], [np.nan, 3]]) | |
imputer = imputer.set_params( | |
add_indicator=False, keep_empty_features=keep_empty_features | |
) | |
for method in ["fit_transform", "transform"]: | |
X_imputed = getattr(imputer, method)(X) | |
if keep_empty_features: | |
assert X_imputed.shape == X.shape | |
else: | |
assert X_imputed.shape == (X.shape[0], X.shape[1] - 1) | |
def test_imputation_adds_missing_indicator_if_add_indicator_is_true( | |
imputer, missing_value_test | |
): | |
"""Check that missing indicator always exists when add_indicator=True. | |
Non-regression test for gh-26590. | |
""" | |
X_train = np.array([[0, np.nan], [1, 2]]) | |
# Test data where missing_value_test variable can be set to np.nan or 1. | |
X_test = np.array([[0, missing_value_test], [1, 2]]) | |
imputer.set_params(add_indicator=True) | |
imputer.fit(X_train) | |
X_test_imputed_with_indicator = imputer.transform(X_test) | |
assert X_test_imputed_with_indicator.shape == (2, 3) | |
imputer.set_params(add_indicator=False) | |
imputer.fit(X_train) | |
X_test_imputed_without_indicator = imputer.transform(X_test) | |
assert X_test_imputed_without_indicator.shape == (2, 2) | |
assert_allclose( | |
X_test_imputed_with_indicator[:, :-1], X_test_imputed_without_indicator | |
) | |
if np.isnan(missing_value_test): | |
expected_missing_indicator = [1, 0] | |
else: | |
expected_missing_indicator = [0, 0] | |
assert_allclose(X_test_imputed_with_indicator[:, -1], expected_missing_indicator) | |