peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/manifold
/tests
/test_mds.py
from unittest.mock import Mock | |
import numpy as np | |
import pytest | |
from numpy.testing import assert_allclose, assert_array_almost_equal | |
from sklearn.manifold import _mds as mds | |
from sklearn.metrics import euclidean_distances | |
def test_smacof(): | |
# test metric smacof using the data of "Modern Multidimensional Scaling", | |
# Borg & Groenen, p 154 | |
sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) | |
Z = np.array([[-0.266, -0.539], [0.451, 0.252], [0.016, -0.238], [-0.200, 0.524]]) | |
X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) | |
X_true = np.array( | |
[[-1.415, -2.471], [1.633, 1.107], [0.249, -0.067], [-0.468, 1.431]] | |
) | |
assert_array_almost_equal(X, X_true, decimal=3) | |
def test_smacof_error(): | |
# Not symmetric similarity matrix: | |
sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) | |
with pytest.raises(ValueError): | |
mds.smacof(sim) | |
# Not squared similarity matrix: | |
sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) | |
with pytest.raises(ValueError): | |
mds.smacof(sim) | |
# init not None and not correct format: | |
sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) | |
Z = np.array([[-0.266, -0.539], [0.016, -0.238], [-0.200, 0.524]]) | |
with pytest.raises(ValueError): | |
mds.smacof(sim, init=Z, n_init=1) | |
def test_MDS(): | |
sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) | |
mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") | |
mds_clf.fit(sim) | |
def test_normed_stress(k): | |
"""Test that non-metric MDS normalized stress is scale-invariant.""" | |
sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) | |
X1, stress1 = mds.smacof(sim, metric=False, max_iter=5, random_state=0) | |
X2, stress2 = mds.smacof(k * sim, metric=False, max_iter=5, random_state=0) | |
assert_allclose(stress1, stress2, rtol=1e-5) | |
assert_allclose(X1, X2, rtol=1e-5) | |
def test_normalize_metric_warning(): | |
""" | |
Test that a UserWarning is emitted when using normalized stress with | |
metric-MDS. | |
""" | |
msg = "Normalized stress is not supported" | |
sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) | |
with pytest.raises(ValueError, match=msg): | |
mds.smacof(sim, metric=True, normalized_stress=True) | |
def test_normalized_stress_auto(metric, monkeypatch): | |
rng = np.random.RandomState(0) | |
X = rng.randn(4, 3) | |
dist = euclidean_distances(X) | |
mock = Mock(side_effect=mds._smacof_single) | |
monkeypatch.setattr("sklearn.manifold._mds._smacof_single", mock) | |
est = mds.MDS(metric=metric, normalized_stress="auto", random_state=rng) | |
est.fit_transform(X) | |
assert mock.call_args[1]["normalized_stress"] != metric | |
mds.smacof(dist, metric=metric, normalized_stress="auto", random_state=rng) | |
assert mock.call_args[1]["normalized_stress"] != metric | |