peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/pipeline.py
""" | |
The :mod:`sklearn.pipeline` module implements utilities to build a composite | |
estimator, as a chain of transforms and estimators. | |
""" | |
# Author: Edouard Duchesnay | |
# Gael Varoquaux | |
# Virgile Fritsch | |
# Alexandre Gramfort | |
# Lars Buitinck | |
# License: BSD | |
from collections import defaultdict | |
from itertools import islice | |
import numpy as np | |
from scipy import sparse | |
from .base import TransformerMixin, _fit_context, clone | |
from .exceptions import NotFittedError | |
from .preprocessing import FunctionTransformer | |
from .utils import Bunch, _print_elapsed_time | |
from .utils._estimator_html_repr import _VisualBlock | |
from .utils._metadata_requests import METHODS | |
from .utils._param_validation import HasMethods, Hidden | |
from .utils._set_output import ( | |
_get_container_adapter, | |
_safe_set_output, | |
) | |
from .utils._tags import _safe_tags | |
from .utils.metadata_routing import ( | |
MetadataRouter, | |
MethodMapping, | |
_raise_for_params, | |
_raise_for_unsupported_routing, | |
_routing_enabled, | |
_RoutingNotSupportedMixin, | |
process_routing, | |
) | |
from .utils.metaestimators import _BaseComposition, available_if | |
from .utils.parallel import Parallel, delayed | |
from .utils.validation import check_is_fitted, check_memory | |
__all__ = ["Pipeline", "FeatureUnion", "make_pipeline", "make_union"] | |
def _final_estimator_has(attr): | |
"""Check that final_estimator has `attr`. | |
Used together with `available_if` in `Pipeline`.""" | |
def check(self): | |
# raise original `AttributeError` if `attr` does not exist | |
getattr(self._final_estimator, attr) | |
return True | |
return check | |
class Pipeline(_BaseComposition): | |
""" | |
A sequence of data transformers with an optional final predictor. | |
`Pipeline` allows you to sequentially apply a list of transformers to | |
preprocess the data and, if desired, conclude the sequence with a final | |
:term:`predictor` for predictive modeling. | |
Intermediate steps of the pipeline must be 'transforms', that is, they | |
must implement `fit` and `transform` methods. | |
The final :term:`estimator` only needs to implement `fit`. | |
The transformers in the pipeline can be cached using ``memory`` argument. | |
The purpose of the pipeline is to assemble several steps that can be | |
cross-validated together while setting different parameters. For this, it | |
enables setting parameters of the various steps using their names and the | |
parameter name separated by a `'__'`, as in the example below. A step's | |
estimator may be replaced entirely by setting the parameter with its name | |
to another estimator, or a transformer removed by setting it to | |
`'passthrough'` or `None`. | |
For an example use case of `Pipeline` combined with | |
:class:`~sklearn.model_selection.GridSearchCV`, refer to | |
:ref:`sphx_glr_auto_examples_compose_plot_compare_reduction.py`. The | |
example :ref:`sphx_glr_auto_examples_compose_plot_digits_pipe.py` shows how | |
to grid search on a pipeline using `'__'` as a separator in the parameter names. | |
Read more in the :ref:`User Guide <pipeline>`. | |
.. versionadded:: 0.5 | |
Parameters | |
---------- | |
steps : list of tuples | |
List of (name of step, estimator) tuples that are to be chained in | |
sequential order. To be compatible with the scikit-learn API, all steps | |
must define `fit`. All non-last steps must also define `transform`. See | |
:ref:`Combining Estimators <combining_estimators>` for more details. | |
memory : str or object with the joblib.Memory interface, default=None | |
Used to cache the fitted transformers of the pipeline. The last step | |
will never be cached, even if it is a transformer. By default, no | |
caching is performed. If a string is given, it is the path to the | |
caching directory. Enabling caching triggers a clone of the transformers | |
before fitting. Therefore, the transformer instance given to the | |
pipeline cannot be inspected directly. Use the attribute ``named_steps`` | |
or ``steps`` to inspect estimators within the pipeline. Caching the | |
transformers is advantageous when fitting is time consuming. | |
verbose : bool, default=False | |
If True, the time elapsed while fitting each step will be printed as it | |
is completed. | |
Attributes | |
---------- | |
named_steps : :class:`~sklearn.utils.Bunch` | |
Dictionary-like object, with the following attributes. | |
Read-only attribute to access any step parameter by user given name. | |
Keys are step names and values are steps parameters. | |
classes_ : ndarray of shape (n_classes,) | |
The classes labels. Only exist if the last step of the pipeline is a | |
classifier. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. Only defined if the | |
underlying first estimator in `steps` exposes such an attribute | |
when fit. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Only defined if the | |
underlying estimator exposes such an attribute when fit. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
make_pipeline : Convenience function for simplified pipeline construction. | |
Examples | |
-------- | |
>>> from sklearn.svm import SVC | |
>>> from sklearn.preprocessing import StandardScaler | |
>>> from sklearn.datasets import make_classification | |
>>> from sklearn.model_selection import train_test_split | |
>>> from sklearn.pipeline import Pipeline | |
>>> X, y = make_classification(random_state=0) | |
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, | |
... random_state=0) | |
>>> pipe = Pipeline([('scaler', StandardScaler()), ('svc', SVC())]) | |
>>> # The pipeline can be used as any other estimator | |
>>> # and avoids leaking the test set into the train set | |
>>> pipe.fit(X_train, y_train).score(X_test, y_test) | |
0.88 | |
>>> # An estimator's parameter can be set using '__' syntax | |
>>> pipe.set_params(svc__C=10).fit(X_train, y_train).score(X_test, y_test) | |
0.76 | |
""" | |
# BaseEstimator interface | |
_required_parameters = ["steps"] | |
_parameter_constraints: dict = { | |
"steps": [list, Hidden(tuple)], | |
"memory": [None, str, HasMethods(["cache"])], | |
"verbose": ["boolean"], | |
} | |
def __init__(self, steps, *, memory=None, verbose=False): | |
self.steps = steps | |
self.memory = memory | |
self.verbose = verbose | |
def set_output(self, *, transform=None): | |
"""Set the output container when `"transform"` and `"fit_transform"` are called. | |
Calling `set_output` will set the output of all estimators in `steps`. | |
Parameters | |
---------- | |
transform : {"default", "pandas"}, default=None | |
Configure output of `transform` and `fit_transform`. | |
- `"default"`: Default output format of a transformer | |
- `"pandas"`: DataFrame output | |
- `"polars"`: Polars output | |
- `None`: Transform configuration is unchanged | |
.. versionadded:: 1.4 | |
`"polars"` option was added. | |
Returns | |
------- | |
self : estimator instance | |
Estimator instance. | |
""" | |
for _, _, step in self._iter(): | |
_safe_set_output(step, transform=transform) | |
return self | |
def get_params(self, deep=True): | |
"""Get parameters for this estimator. | |
Returns the parameters given in the constructor as well as the | |
estimators contained within the `steps` of the `Pipeline`. | |
Parameters | |
---------- | |
deep : bool, default=True | |
If True, will return the parameters for this estimator and | |
contained subobjects that are estimators. | |
Returns | |
------- | |
params : mapping of string to any | |
Parameter names mapped to their values. | |
""" | |
return self._get_params("steps", deep=deep) | |
def set_params(self, **kwargs): | |
"""Set the parameters of this estimator. | |
Valid parameter keys can be listed with ``get_params()``. Note that | |
you can directly set the parameters of the estimators contained in | |
`steps`. | |
Parameters | |
---------- | |
**kwargs : dict | |
Parameters of this estimator or parameters of estimators contained | |
in `steps`. Parameters of the steps may be set using its name and | |
the parameter name separated by a '__'. | |
Returns | |
------- | |
self : object | |
Pipeline class instance. | |
""" | |
self._set_params("steps", **kwargs) | |
return self | |
def _validate_steps(self): | |
names, estimators = zip(*self.steps) | |
# validate names | |
self._validate_names(names) | |
# validate estimators | |
transformers = estimators[:-1] | |
estimator = estimators[-1] | |
for t in transformers: | |
if t is None or t == "passthrough": | |
continue | |
if not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr( | |
t, "transform" | |
): | |
raise TypeError( | |
"All intermediate steps should be " | |
"transformers and implement fit and transform " | |
"or be the string 'passthrough' " | |
"'%s' (type %s) doesn't" % (t, type(t)) | |
) | |
# We allow last estimator to be None as an identity transformation | |
if ( | |
estimator is not None | |
and estimator != "passthrough" | |
and not hasattr(estimator, "fit") | |
): | |
raise TypeError( | |
"Last step of Pipeline should implement fit " | |
"or be the string 'passthrough'. " | |
"'%s' (type %s) doesn't" % (estimator, type(estimator)) | |
) | |
def _iter(self, with_final=True, filter_passthrough=True): | |
""" | |
Generate (idx, (name, trans)) tuples from self.steps | |
When filter_passthrough is True, 'passthrough' and None transformers | |
are filtered out. | |
""" | |
stop = len(self.steps) | |
if not with_final: | |
stop -= 1 | |
for idx, (name, trans) in enumerate(islice(self.steps, 0, stop)): | |
if not filter_passthrough: | |
yield idx, name, trans | |
elif trans is not None and trans != "passthrough": | |
yield idx, name, trans | |
def __len__(self): | |
""" | |
Returns the length of the Pipeline | |
""" | |
return len(self.steps) | |
def __getitem__(self, ind): | |
"""Returns a sub-pipeline or a single estimator in the pipeline | |
Indexing with an integer will return an estimator; using a slice | |
returns another Pipeline instance which copies a slice of this | |
Pipeline. This copy is shallow: modifying (or fitting) estimators in | |
the sub-pipeline will affect the larger pipeline and vice-versa. | |
However, replacing a value in `step` will not affect a copy. | |
""" | |
if isinstance(ind, slice): | |
if ind.step not in (1, None): | |
raise ValueError("Pipeline slicing only supports a step of 1") | |
return self.__class__( | |
self.steps[ind], memory=self.memory, verbose=self.verbose | |
) | |
try: | |
name, est = self.steps[ind] | |
except TypeError: | |
# Not an int, try get step by name | |
return self.named_steps[ind] | |
return est | |
def _estimator_type(self): | |
return self.steps[-1][1]._estimator_type | |
def named_steps(self): | |
"""Access the steps by name. | |
Read-only attribute to access any step by given name. | |
Keys are steps names and values are the steps objects.""" | |
# Use Bunch object to improve autocomplete | |
return Bunch(**dict(self.steps)) | |
def _final_estimator(self): | |
try: | |
estimator = self.steps[-1][1] | |
return "passthrough" if estimator is None else estimator | |
except (ValueError, AttributeError, TypeError): | |
# This condition happens when a call to a method is first calling | |
# `_available_if` and `fit` did not validate `steps` yet. We | |
# return `None` and an `InvalidParameterError` will be raised | |
# right after. | |
return None | |
def _log_message(self, step_idx): | |
if not self.verbose: | |
return None | |
name, _ = self.steps[step_idx] | |
return "(step %d of %d) Processing %s" % (step_idx + 1, len(self.steps), name) | |
def _check_method_params(self, method, props, **kwargs): | |
if _routing_enabled(): | |
routed_params = process_routing(self, method, **props, **kwargs) | |
return routed_params | |
else: | |
fit_params_steps = Bunch( | |
**{ | |
name: Bunch(**{method: {} for method in METHODS}) | |
for name, step in self.steps | |
if step is not None | |
} | |
) | |
for pname, pval in props.items(): | |
if "__" not in pname: | |
raise ValueError( | |
"Pipeline.fit does not accept the {} parameter. " | |
"You can pass parameters to specific steps of your " | |
"pipeline using the stepname__parameter format, e.g. " | |
"`Pipeline.fit(X, y, logisticregression__sample_weight" | |
"=sample_weight)`.".format(pname) | |
) | |
step, param = pname.split("__", 1) | |
fit_params_steps[step]["fit"][param] = pval | |
# without metadata routing, fit_transform and fit_predict | |
# get all the same params and pass it to the last fit. | |
fit_params_steps[step]["fit_transform"][param] = pval | |
fit_params_steps[step]["fit_predict"][param] = pval | |
return fit_params_steps | |
# Estimator interface | |
def _fit(self, X, y=None, routed_params=None): | |
# shallow copy of steps - this should really be steps_ | |
self.steps = list(self.steps) | |
self._validate_steps() | |
# Setup the memory | |
memory = check_memory(self.memory) | |
fit_transform_one_cached = memory.cache(_fit_transform_one) | |
for step_idx, name, transformer in self._iter( | |
with_final=False, filter_passthrough=False | |
): | |
if transformer is None or transformer == "passthrough": | |
with _print_elapsed_time("Pipeline", self._log_message(step_idx)): | |
continue | |
if hasattr(memory, "location") and memory.location is None: | |
# we do not clone when caching is disabled to | |
# preserve backward compatibility | |
cloned_transformer = transformer | |
else: | |
cloned_transformer = clone(transformer) | |
# Fit or load from cache the current transformer | |
X, fitted_transformer = fit_transform_one_cached( | |
cloned_transformer, | |
X, | |
y, | |
None, | |
message_clsname="Pipeline", | |
message=self._log_message(step_idx), | |
params=routed_params[name], | |
) | |
# Replace the transformer of the step with the fitted | |
# transformer. This is necessary when loading the transformer | |
# from the cache. | |
self.steps[step_idx] = (name, fitted_transformer) | |
return X | |
def fit(self, X, y=None, **params): | |
"""Fit the model. | |
Fit all the transformers one after the other and sequentially transform the | |
data. Finally, fit the transformed data using the final estimator. | |
Parameters | |
---------- | |
X : iterable | |
Training data. Must fulfill input requirements of first step of the | |
pipeline. | |
y : iterable, default=None | |
Training targets. Must fulfill label requirements for all steps of | |
the pipeline. | |
**params : dict of str -> object | |
- If `enable_metadata_routing=False` (default): | |
Parameters passed to the ``fit`` method of each step, where | |
each parameter name is prefixed such that parameter ``p`` for step | |
``s`` has key ``s__p``. | |
- If `enable_metadata_routing=True`: | |
Parameters requested and accepted by steps. Each step must have | |
requested certain metadata for these parameters to be forwarded to | |
them. | |
.. versionchanged:: 1.4 | |
Parameters are now passed to the ``transform`` method of the | |
intermediate steps as well, if requested, and if | |
`enable_metadata_routing=True` is set via | |
:func:`~sklearn.set_config`. | |
See :ref:`Metadata Routing User Guide <metadata_routing>` for more | |
details. | |
Returns | |
------- | |
self : object | |
Pipeline with fitted steps. | |
""" | |
routed_params = self._check_method_params(method="fit", props=params) | |
Xt = self._fit(X, y, routed_params) | |
with _print_elapsed_time("Pipeline", self._log_message(len(self.steps) - 1)): | |
if self._final_estimator != "passthrough": | |
last_step_params = routed_params[self.steps[-1][0]] | |
self._final_estimator.fit(Xt, y, **last_step_params["fit"]) | |
return self | |
def _can_fit_transform(self): | |
return ( | |
self._final_estimator == "passthrough" | |
or hasattr(self._final_estimator, "transform") | |
or hasattr(self._final_estimator, "fit_transform") | |
) | |
def fit_transform(self, X, y=None, **params): | |
"""Fit the model and transform with the final estimator. | |
Fit all the transformers one after the other and sequentially transform | |
the data. Only valid if the final estimator either implements | |
`fit_transform` or `fit` and `transform`. | |
Parameters | |
---------- | |
X : iterable | |
Training data. Must fulfill input requirements of first step of the | |
pipeline. | |
y : iterable, default=None | |
Training targets. Must fulfill label requirements for all steps of | |
the pipeline. | |
**params : dict of str -> object | |
- If `enable_metadata_routing=False` (default): | |
Parameters passed to the ``fit`` method of each step, where | |
each parameter name is prefixed such that parameter ``p`` for step | |
``s`` has key ``s__p``. | |
- If `enable_metadata_routing=True`: | |
Parameters requested and accepted by steps. Each step must have | |
requested certain metadata for these parameters to be forwarded to | |
them. | |
.. versionchanged:: 1.4 | |
Parameters are now passed to the ``transform`` method of the | |
intermediate steps as well, if requested, and if | |
`enable_metadata_routing=True`. | |
See :ref:`Metadata Routing User Guide <metadata_routing>` for more | |
details. | |
Returns | |
------- | |
Xt : ndarray of shape (n_samples, n_transformed_features) | |
Transformed samples. | |
""" | |
routed_params = self._check_method_params(method="fit_transform", props=params) | |
Xt = self._fit(X, y, routed_params) | |
last_step = self._final_estimator | |
with _print_elapsed_time("Pipeline", self._log_message(len(self.steps) - 1)): | |
if last_step == "passthrough": | |
return Xt | |
last_step_params = routed_params[self.steps[-1][0]] | |
if hasattr(last_step, "fit_transform"): | |
return last_step.fit_transform( | |
Xt, y, **last_step_params["fit_transform"] | |
) | |
else: | |
return last_step.fit(Xt, y, **last_step_params["fit"]).transform( | |
Xt, **last_step_params["transform"] | |
) | |
def predict(self, X, **params): | |
"""Transform the data, and apply `predict` with the final estimator. | |
Call `transform` of each transformer in the pipeline. The transformed | |
data are finally passed to the final estimator that calls `predict` | |
method. Only valid if the final estimator implements `predict`. | |
Parameters | |
---------- | |
X : iterable | |
Data to predict on. Must fulfill input requirements of first step | |
of the pipeline. | |
**params : dict of str -> object | |
- If `enable_metadata_routing=False` (default): | |
Parameters to the ``predict`` called at the end of all | |
transformations in the pipeline. | |
- If `enable_metadata_routing=True`: | |
Parameters requested and accepted by steps. Each step must have | |
requested certain metadata for these parameters to be forwarded to | |
them. | |
.. versionadded:: 0.20 | |
.. versionchanged:: 1.4 | |
Parameters are now passed to the ``transform`` method of the | |
intermediate steps as well, if requested, and if | |
`enable_metadata_routing=True` is set via | |
:func:`~sklearn.set_config`. | |
See :ref:`Metadata Routing User Guide <metadata_routing>` for more | |
details. | |
Note that while this may be used to return uncertainties from some | |
models with ``return_std`` or ``return_cov``, uncertainties that are | |
generated by the transformations in the pipeline are not propagated | |
to the final estimator. | |
Returns | |
------- | |
y_pred : ndarray | |
Result of calling `predict` on the final estimator. | |
""" | |
Xt = X | |
if not _routing_enabled(): | |
for _, name, transform in self._iter(with_final=False): | |
Xt = transform.transform(Xt) | |
return self.steps[-1][1].predict(Xt, **params) | |
# metadata routing enabled | |
routed_params = process_routing(self, "predict", **params) | |
for _, name, transform in self._iter(with_final=False): | |
Xt = transform.transform(Xt, **routed_params[name].transform) | |
return self.steps[-1][1].predict(Xt, **routed_params[self.steps[-1][0]].predict) | |
def fit_predict(self, X, y=None, **params): | |
"""Transform the data, and apply `fit_predict` with the final estimator. | |
Call `fit_transform` of each transformer in the pipeline. The | |
transformed data are finally passed to the final estimator that calls | |
`fit_predict` method. Only valid if the final estimator implements | |
`fit_predict`. | |
Parameters | |
---------- | |
X : iterable | |
Training data. Must fulfill input requirements of first step of | |
the pipeline. | |
y : iterable, default=None | |
Training targets. Must fulfill label requirements for all steps | |
of the pipeline. | |
**params : dict of str -> object | |
- If `enable_metadata_routing=False` (default): | |
Parameters to the ``predict`` called at the end of all | |
transformations in the pipeline. | |
- If `enable_metadata_routing=True`: | |
Parameters requested and accepted by steps. Each step must have | |
requested certain metadata for these parameters to be forwarded to | |
them. | |
.. versionadded:: 0.20 | |
.. versionchanged:: 1.4 | |
Parameters are now passed to the ``transform`` method of the | |
intermediate steps as well, if requested, and if | |
`enable_metadata_routing=True`. | |
See :ref:`Metadata Routing User Guide <metadata_routing>` for more | |
details. | |
Note that while this may be used to return uncertainties from some | |
models with ``return_std`` or ``return_cov``, uncertainties that are | |
generated by the transformations in the pipeline are not propagated | |
to the final estimator. | |
Returns | |
------- | |
y_pred : ndarray | |
Result of calling `fit_predict` on the final estimator. | |
""" | |
routed_params = self._check_method_params(method="fit_predict", props=params) | |
Xt = self._fit(X, y, routed_params) | |
params_last_step = routed_params[self.steps[-1][0]] | |
with _print_elapsed_time("Pipeline", self._log_message(len(self.steps) - 1)): | |
y_pred = self.steps[-1][1].fit_predict( | |
Xt, y, **params_last_step.get("fit_predict", {}) | |
) | |
return y_pred | |
def predict_proba(self, X, **params): | |
"""Transform the data, and apply `predict_proba` with the final estimator. | |
Call `transform` of each transformer in the pipeline. The transformed | |
data are finally passed to the final estimator that calls | |
`predict_proba` method. Only valid if the final estimator implements | |
`predict_proba`. | |
Parameters | |
---------- | |
X : iterable | |
Data to predict on. Must fulfill input requirements of first step | |
of the pipeline. | |
**params : dict of str -> object | |
- If `enable_metadata_routing=False` (default): | |
Parameters to the `predict_proba` called at the end of all | |
transformations in the pipeline. | |
- If `enable_metadata_routing=True`: | |
Parameters requested and accepted by steps. Each step must have | |
requested certain metadata for these parameters to be forwarded to | |
them. | |
.. versionadded:: 0.20 | |
.. versionchanged:: 1.4 | |
Parameters are now passed to the ``transform`` method of the | |
intermediate steps as well, if requested, and if | |
`enable_metadata_routing=True`. | |
See :ref:`Metadata Routing User Guide <metadata_routing>` for more | |
details. | |
Returns | |
------- | |
y_proba : ndarray of shape (n_samples, n_classes) | |
Result of calling `predict_proba` on the final estimator. | |
""" | |
Xt = X | |
if not _routing_enabled(): | |
for _, name, transform in self._iter(with_final=False): | |
Xt = transform.transform(Xt) | |
return self.steps[-1][1].predict_proba(Xt, **params) | |
# metadata routing enabled | |
routed_params = process_routing(self, "predict_proba", **params) | |
for _, name, transform in self._iter(with_final=False): | |
Xt = transform.transform(Xt, **routed_params[name].transform) | |
return self.steps[-1][1].predict_proba( | |
Xt, **routed_params[self.steps[-1][0]].predict_proba | |
) | |
def decision_function(self, X, **params): | |
"""Transform the data, and apply `decision_function` with the final estimator. | |
Call `transform` of each transformer in the pipeline. The transformed | |
data are finally passed to the final estimator that calls | |
`decision_function` method. Only valid if the final estimator | |
implements `decision_function`. | |
Parameters | |
---------- | |
X : iterable | |
Data to predict on. Must fulfill input requirements of first step | |
of the pipeline. | |
**params : dict of string -> object | |
Parameters requested and accepted by steps. Each step must have | |
requested certain metadata for these parameters to be forwarded to | |
them. | |
.. versionadded:: 1.4 | |
Only available if `enable_metadata_routing=True`. See | |
:ref:`Metadata Routing User Guide <metadata_routing>` for more | |
details. | |
Returns | |
------- | |
y_score : ndarray of shape (n_samples, n_classes) | |
Result of calling `decision_function` on the final estimator. | |
""" | |
_raise_for_params(params, self, "decision_function") | |
# not branching here since params is only available if | |
# enable_metadata_routing=True | |
routed_params = process_routing(self, "decision_function", **params) | |
Xt = X | |
for _, name, transform in self._iter(with_final=False): | |
Xt = transform.transform( | |
Xt, **routed_params.get(name, {}).get("transform", {}) | |
) | |
return self.steps[-1][1].decision_function( | |
Xt, **routed_params.get(self.steps[-1][0], {}).get("decision_function", {}) | |
) | |
def score_samples(self, X): | |
"""Transform the data, and apply `score_samples` with the final estimator. | |
Call `transform` of each transformer in the pipeline. The transformed | |
data are finally passed to the final estimator that calls | |
`score_samples` method. Only valid if the final estimator implements | |
`score_samples`. | |
Parameters | |
---------- | |
X : iterable | |
Data to predict on. Must fulfill input requirements of first step | |
of the pipeline. | |
Returns | |
------- | |
y_score : ndarray of shape (n_samples,) | |
Result of calling `score_samples` on the final estimator. | |
""" | |
Xt = X | |
for _, _, transformer in self._iter(with_final=False): | |
Xt = transformer.transform(Xt) | |
return self.steps[-1][1].score_samples(Xt) | |
def predict_log_proba(self, X, **params): | |
"""Transform the data, and apply `predict_log_proba` with the final estimator. | |
Call `transform` of each transformer in the pipeline. The transformed | |
data are finally passed to the final estimator that calls | |
`predict_log_proba` method. Only valid if the final estimator | |
implements `predict_log_proba`. | |
Parameters | |
---------- | |
X : iterable | |
Data to predict on. Must fulfill input requirements of first step | |
of the pipeline. | |
**params : dict of str -> object | |
- If `enable_metadata_routing=False` (default): | |
Parameters to the `predict_log_proba` called at the end of all | |
transformations in the pipeline. | |
- If `enable_metadata_routing=True`: | |
Parameters requested and accepted by steps. Each step must have | |
requested certain metadata for these parameters to be forwarded to | |
them. | |
.. versionadded:: 0.20 | |
.. versionchanged:: 1.4 | |
Parameters are now passed to the ``transform`` method of the | |
intermediate steps as well, if requested, and if | |
`enable_metadata_routing=True`. | |
See :ref:`Metadata Routing User Guide <metadata_routing>` for more | |
details. | |
Returns | |
------- | |
y_log_proba : ndarray of shape (n_samples, n_classes) | |
Result of calling `predict_log_proba` on the final estimator. | |
""" | |
Xt = X | |
if not _routing_enabled(): | |
for _, name, transform in self._iter(with_final=False): | |
Xt = transform.transform(Xt) | |
return self.steps[-1][1].predict_log_proba(Xt, **params) | |
# metadata routing enabled | |
routed_params = process_routing(self, "predict_log_proba", **params) | |
for _, name, transform in self._iter(with_final=False): | |
Xt = transform.transform(Xt, **routed_params[name].transform) | |
return self.steps[-1][1].predict_log_proba( | |
Xt, **routed_params[self.steps[-1][0]].predict_log_proba | |
) | |
def _can_transform(self): | |
return self._final_estimator == "passthrough" or hasattr( | |
self._final_estimator, "transform" | |
) | |
def transform(self, X, **params): | |
"""Transform the data, and apply `transform` with the final estimator. | |
Call `transform` of each transformer in the pipeline. The transformed | |
data are finally passed to the final estimator that calls | |
`transform` method. Only valid if the final estimator | |
implements `transform`. | |
This also works where final estimator is `None` in which case all prior | |
transformations are applied. | |
Parameters | |
---------- | |
X : iterable | |
Data to transform. Must fulfill input requirements of first step | |
of the pipeline. | |
**params : dict of str -> object | |
Parameters requested and accepted by steps. Each step must have | |
requested certain metadata for these parameters to be forwarded to | |
them. | |
.. versionadded:: 1.4 | |
Only available if `enable_metadata_routing=True`. See | |
:ref:`Metadata Routing User Guide <metadata_routing>` for more | |
details. | |
Returns | |
------- | |
Xt : ndarray of shape (n_samples, n_transformed_features) | |
Transformed data. | |
""" | |
_raise_for_params(params, self, "transform") | |
# not branching here since params is only available if | |
# enable_metadata_routing=True | |
routed_params = process_routing(self, "transform", **params) | |
Xt = X | |
for _, name, transform in self._iter(): | |
Xt = transform.transform(Xt, **routed_params[name].transform) | |
return Xt | |
def _can_inverse_transform(self): | |
return all(hasattr(t, "inverse_transform") for _, _, t in self._iter()) | |
def inverse_transform(self, Xt, **params): | |
"""Apply `inverse_transform` for each step in a reverse order. | |
All estimators in the pipeline must support `inverse_transform`. | |
Parameters | |
---------- | |
Xt : array-like of shape (n_samples, n_transformed_features) | |
Data samples, where ``n_samples`` is the number of samples and | |
``n_features`` is the number of features. Must fulfill | |
input requirements of last step of pipeline's | |
``inverse_transform`` method. | |
**params : dict of str -> object | |
Parameters requested and accepted by steps. Each step must have | |
requested certain metadata for these parameters to be forwarded to | |
them. | |
.. versionadded:: 1.4 | |
Only available if `enable_metadata_routing=True`. See | |
:ref:`Metadata Routing User Guide <metadata_routing>` for more | |
details. | |
Returns | |
------- | |
Xt : ndarray of shape (n_samples, n_features) | |
Inverse transformed data, that is, data in the original feature | |
space. | |
""" | |
_raise_for_params(params, self, "inverse_transform") | |
# we don't have to branch here, since params is only non-empty if | |
# enable_metadata_routing=True. | |
routed_params = process_routing(self, "inverse_transform", **params) | |
reverse_iter = reversed(list(self._iter())) | |
for _, name, transform in reverse_iter: | |
Xt = transform.inverse_transform( | |
Xt, **routed_params[name].inverse_transform | |
) | |
return Xt | |
def score(self, X, y=None, sample_weight=None, **params): | |
"""Transform the data, and apply `score` with the final estimator. | |
Call `transform` of each transformer in the pipeline. The transformed | |
data are finally passed to the final estimator that calls | |
`score` method. Only valid if the final estimator implements `score`. | |
Parameters | |
---------- | |
X : iterable | |
Data to predict on. Must fulfill input requirements of first step | |
of the pipeline. | |
y : iterable, default=None | |
Targets used for scoring. Must fulfill label requirements for all | |
steps of the pipeline. | |
sample_weight : array-like, default=None | |
If not None, this argument is passed as ``sample_weight`` keyword | |
argument to the ``score`` method of the final estimator. | |
**params : dict of str -> object | |
Parameters requested and accepted by steps. Each step must have | |
requested certain metadata for these parameters to be forwarded to | |
them. | |
.. versionadded:: 1.4 | |
Only available if `enable_metadata_routing=True`. See | |
:ref:`Metadata Routing User Guide <metadata_routing>` for more | |
details. | |
Returns | |
------- | |
score : float | |
Result of calling `score` on the final estimator. | |
""" | |
Xt = X | |
if not _routing_enabled(): | |
for _, name, transform in self._iter(with_final=False): | |
Xt = transform.transform(Xt) | |
score_params = {} | |
if sample_weight is not None: | |
score_params["sample_weight"] = sample_weight | |
return self.steps[-1][1].score(Xt, y, **score_params) | |
# metadata routing is enabled. | |
routed_params = process_routing( | |
self, "score", sample_weight=sample_weight, **params | |
) | |
Xt = X | |
for _, name, transform in self._iter(with_final=False): | |
Xt = transform.transform(Xt, **routed_params[name].transform) | |
return self.steps[-1][1].score(Xt, y, **routed_params[self.steps[-1][0]].score) | |
def classes_(self): | |
"""The classes labels. Only exist if the last step is a classifier.""" | |
return self.steps[-1][1].classes_ | |
def _more_tags(self): | |
tags = { | |
"_xfail_checks": { | |
"check_dont_overwrite_parameters": ( | |
"Pipeline changes the `steps` parameter, which it shouldn't." | |
"Therefore this test is x-fail until we fix this." | |
), | |
"check_estimators_overwrite_params": ( | |
"Pipeline changes the `steps` parameter, which it shouldn't." | |
"Therefore this test is x-fail until we fix this." | |
), | |
} | |
} | |
try: | |
tags["pairwise"] = _safe_tags(self.steps[0][1], "pairwise") | |
except (ValueError, AttributeError, TypeError): | |
# This happens when the `steps` is not a list of (name, estimator) | |
# tuples and `fit` is not called yet to validate the steps. | |
pass | |
try: | |
tags["multioutput"] = _safe_tags(self.steps[-1][1], "multioutput") | |
except (ValueError, AttributeError, TypeError): | |
# This happens when the `steps` is not a list of (name, estimator) | |
# tuples and `fit` is not called yet to validate the steps. | |
pass | |
return tags | |
def get_feature_names_out(self, input_features=None): | |
"""Get output feature names for transformation. | |
Transform input features using the pipeline. | |
Parameters | |
---------- | |
input_features : array-like of str or None, default=None | |
Input features. | |
Returns | |
------- | |
feature_names_out : ndarray of str objects | |
Transformed feature names. | |
""" | |
feature_names_out = input_features | |
for _, name, transform in self._iter(): | |
if not hasattr(transform, "get_feature_names_out"): | |
raise AttributeError( | |
"Estimator {} does not provide get_feature_names_out. " | |
"Did you mean to call pipeline[:-1].get_feature_names_out" | |
"()?".format(name) | |
) | |
feature_names_out = transform.get_feature_names_out(feature_names_out) | |
return feature_names_out | |
def n_features_in_(self): | |
"""Number of features seen during first step `fit` method.""" | |
# delegate to first step (which will call _check_is_fitted) | |
return self.steps[0][1].n_features_in_ | |
def feature_names_in_(self): | |
"""Names of features seen during first step `fit` method.""" | |
# delegate to first step (which will call _check_is_fitted) | |
return self.steps[0][1].feature_names_in_ | |
def __sklearn_is_fitted__(self): | |
"""Indicate whether pipeline has been fit.""" | |
try: | |
# check if the last step of the pipeline is fitted | |
# we only check the last step since if the last step is fit, it | |
# means the previous steps should also be fit. This is faster than | |
# checking if every step of the pipeline is fit. | |
check_is_fitted(self.steps[-1][1]) | |
return True | |
except NotFittedError: | |
return False | |
def _sk_visual_block_(self): | |
_, estimators = zip(*self.steps) | |
def _get_name(name, est): | |
if est is None or est == "passthrough": | |
return f"{name}: passthrough" | |
# Is an estimator | |
return f"{name}: {est.__class__.__name__}" | |
names = [_get_name(name, est) for name, est in self.steps] | |
name_details = [str(est) for est in estimators] | |
return _VisualBlock( | |
"serial", | |
estimators, | |
names=names, | |
name_details=name_details, | |
dash_wrapped=False, | |
) | |
def get_metadata_routing(self): | |
"""Get metadata routing of this object. | |
Please check :ref:`User Guide <metadata_routing>` on how the routing | |
mechanism works. | |
Returns | |
------- | |
routing : MetadataRouter | |
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating | |
routing information. | |
""" | |
router = MetadataRouter(owner=self.__class__.__name__) | |
# first we add all steps except the last one | |
for _, name, trans in self._iter(with_final=False, filter_passthrough=True): | |
method_mapping = MethodMapping() | |
# fit, fit_predict, and fit_transform call fit_transform if it | |
# exists, or else fit and transform | |
if hasattr(trans, "fit_transform"): | |
( | |
method_mapping.add(caller="fit", callee="fit_transform") | |
.add(caller="fit_transform", callee="fit_transform") | |
.add(caller="fit_predict", callee="fit_transform") | |
) | |
else: | |
( | |
method_mapping.add(caller="fit", callee="fit") | |
.add(caller="fit", callee="transform") | |
.add(caller="fit_transform", callee="fit") | |
.add(caller="fit_transform", callee="transform") | |
.add(caller="fit_predict", callee="fit") | |
.add(caller="fit_predict", callee="transform") | |
) | |
( | |
method_mapping.add(caller="predict", callee="transform") | |
.add(caller="predict", callee="transform") | |
.add(caller="predict_proba", callee="transform") | |
.add(caller="decision_function", callee="transform") | |
.add(caller="predict_log_proba", callee="transform") | |
.add(caller="transform", callee="transform") | |
.add(caller="inverse_transform", callee="inverse_transform") | |
.add(caller="score", callee="transform") | |
) | |
router.add(method_mapping=method_mapping, **{name: trans}) | |
final_name, final_est = self.steps[-1] | |
if final_est is None or final_est == "passthrough": | |
return router | |
# then we add the last step | |
method_mapping = MethodMapping() | |
if hasattr(final_est, "fit_transform"): | |
method_mapping.add(caller="fit_transform", callee="fit_transform") | |
else: | |
method_mapping.add(caller="fit", callee="fit").add( | |
caller="fit", callee="transform" | |
) | |
( | |
method_mapping.add(caller="fit", callee="fit") | |
.add(caller="predict", callee="predict") | |
.add(caller="fit_predict", callee="fit_predict") | |
.add(caller="predict_proba", callee="predict_proba") | |
.add(caller="decision_function", callee="decision_function") | |
.add(caller="predict_log_proba", callee="predict_log_proba") | |
.add(caller="transform", callee="transform") | |
.add(caller="inverse_transform", callee="inverse_transform") | |
.add(caller="score", callee="score") | |
) | |
router.add(method_mapping=method_mapping, **{final_name: final_est}) | |
return router | |
def _name_estimators(estimators): | |
"""Generate names for estimators.""" | |
names = [ | |
estimator if isinstance(estimator, str) else type(estimator).__name__.lower() | |
for estimator in estimators | |
] | |
namecount = defaultdict(int) | |
for est, name in zip(estimators, names): | |
namecount[name] += 1 | |
for k, v in list(namecount.items()): | |
if v == 1: | |
del namecount[k] | |
for i in reversed(range(len(estimators))): | |
name = names[i] | |
if name in namecount: | |
names[i] += "-%d" % namecount[name] | |
namecount[name] -= 1 | |
return list(zip(names, estimators)) | |
def make_pipeline(*steps, memory=None, verbose=False): | |
"""Construct a :class:`Pipeline` from the given estimators. | |
This is a shorthand for the :class:`Pipeline` constructor; it does not | |
require, and does not permit, naming the estimators. Instead, their names | |
will be set to the lowercase of their types automatically. | |
Parameters | |
---------- | |
*steps : list of Estimator objects | |
List of the scikit-learn estimators that are chained together. | |
memory : str or object with the joblib.Memory interface, default=None | |
Used to cache the fitted transformers of the pipeline. The last step | |
will never be cached, even if it is a transformer. By default, no | |
caching is performed. If a string is given, it is the path to the | |
caching directory. Enabling caching triggers a clone of the transformers | |
before fitting. Therefore, the transformer instance given to the | |
pipeline cannot be inspected directly. Use the attribute ``named_steps`` | |
or ``steps`` to inspect estimators within the pipeline. Caching the | |
transformers is advantageous when fitting is time consuming. | |
verbose : bool, default=False | |
If True, the time elapsed while fitting each step will be printed as it | |
is completed. | |
Returns | |
------- | |
p : Pipeline | |
Returns a scikit-learn :class:`Pipeline` object. | |
See Also | |
-------- | |
Pipeline : Class for creating a pipeline of transforms with a final | |
estimator. | |
Examples | |
-------- | |
>>> from sklearn.naive_bayes import GaussianNB | |
>>> from sklearn.preprocessing import StandardScaler | |
>>> from sklearn.pipeline import make_pipeline | |
>>> make_pipeline(StandardScaler(), GaussianNB(priors=None)) | |
Pipeline(steps=[('standardscaler', StandardScaler()), | |
('gaussiannb', GaussianNB())]) | |
""" | |
return Pipeline(_name_estimators(steps), memory=memory, verbose=verbose) | |
def _transform_one(transformer, X, y, weight, params): | |
"""Call transform and apply weight to output. | |
Parameters | |
---------- | |
transformer : estimator | |
Estimator to be used for transformation. | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Input data to be transformed. | |
y : ndarray of shape (n_samples,) | |
Ignored. | |
weight : float | |
Weight to be applied to the output of the transformation. | |
params : dict | |
Parameters to be passed to the transformer's ``transform`` method. | |
This should be of the form ``process_routing()["step_name"]``. | |
""" | |
res = transformer.transform(X, **params.transform) | |
# if we have a weight for this transformer, multiply output | |
if weight is None: | |
return res | |
return res * weight | |
def _fit_transform_one( | |
transformer, X, y, weight, message_clsname="", message=None, params=None | |
): | |
""" | |
Fits ``transformer`` to ``X`` and ``y``. The transformed result is returned | |
with the fitted transformer. If ``weight`` is not ``None``, the result will | |
be multiplied by ``weight``. | |
``params`` needs to be of the form ``process_routing()["step_name"]``. | |
""" | |
params = params or {} | |
with _print_elapsed_time(message_clsname, message): | |
if hasattr(transformer, "fit_transform"): | |
res = transformer.fit_transform(X, y, **params.get("fit_transform", {})) | |
else: | |
res = transformer.fit(X, y, **params.get("fit", {})).transform( | |
X, **params.get("transform", {}) | |
) | |
if weight is None: | |
return res, transformer | |
return res * weight, transformer | |
def _fit_one(transformer, X, y, weight, message_clsname="", message=None, params=None): | |
""" | |
Fits ``transformer`` to ``X`` and ``y``. | |
""" | |
with _print_elapsed_time(message_clsname, message): | |
return transformer.fit(X, y, **params["fit"]) | |
class FeatureUnion(_RoutingNotSupportedMixin, TransformerMixin, _BaseComposition): | |
"""Concatenates results of multiple transformer objects. | |
This estimator applies a list of transformer objects in parallel to the | |
input data, then concatenates the results. This is useful to combine | |
several feature extraction mechanisms into a single transformer. | |
Parameters of the transformers may be set using its name and the parameter | |
name separated by a '__'. A transformer may be replaced entirely by | |
setting the parameter with its name to another transformer, removed by | |
setting to 'drop' or disabled by setting to 'passthrough' (features are | |
passed without transformation). | |
Read more in the :ref:`User Guide <feature_union>`. | |
.. versionadded:: 0.13 | |
Parameters | |
---------- | |
transformer_list : list of (str, transformer) tuples | |
List of transformer objects to be applied to the data. The first | |
half of each tuple is the name of the transformer. The transformer can | |
be 'drop' for it to be ignored or can be 'passthrough' for features to | |
be passed unchanged. | |
.. versionadded:: 1.1 | |
Added the option `"passthrough"`. | |
.. versionchanged:: 0.22 | |
Deprecated `None` as a transformer in favor of 'drop'. | |
n_jobs : int, default=None | |
Number of jobs to run in parallel. | |
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
for more details. | |
.. versionchanged:: v0.20 | |
`n_jobs` default changed from 1 to None | |
transformer_weights : dict, default=None | |
Multiplicative weights for features per transformer. | |
Keys are transformer names, values the weights. | |
Raises ValueError if key not present in ``transformer_list``. | |
verbose : bool, default=False | |
If True, the time elapsed while fitting each transformer will be | |
printed as it is completed. | |
Attributes | |
---------- | |
named_transformers : :class:`~sklearn.utils.Bunch` | |
Dictionary-like object, with the following attributes. | |
Read-only attribute to access any transformer parameter by user | |
given name. Keys are transformer names and values are | |
transformer parameters. | |
.. versionadded:: 1.2 | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. Only defined if the | |
underlying first transformer in `transformer_list` exposes such an | |
attribute when fit. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when | |
`X` has feature names that are all strings. | |
.. versionadded:: 1.3 | |
See Also | |
-------- | |
make_union : Convenience function for simplified feature union | |
construction. | |
Examples | |
-------- | |
>>> from sklearn.pipeline import FeatureUnion | |
>>> from sklearn.decomposition import PCA, TruncatedSVD | |
>>> union = FeatureUnion([("pca", PCA(n_components=1)), | |
... ("svd", TruncatedSVD(n_components=2))]) | |
>>> X = [[0., 1., 3], [2., 2., 5]] | |
>>> union.fit_transform(X) | |
array([[ 1.5 , 3.0..., 0.8...], | |
[-1.5 , 5.7..., -0.4...]]) | |
>>> # An estimator's parameter can be set using '__' syntax | |
>>> union.set_params(svd__n_components=1).fit_transform(X) | |
array([[ 1.5 , 3.0...], | |
[-1.5 , 5.7...]]) | |
For a more detailed example of usage, see | |
:ref:`sphx_glr_auto_examples_compose_plot_feature_union.py`. | |
""" | |
_required_parameters = ["transformer_list"] | |
def __init__( | |
self, transformer_list, *, n_jobs=None, transformer_weights=None, verbose=False | |
): | |
self.transformer_list = transformer_list | |
self.n_jobs = n_jobs | |
self.transformer_weights = transformer_weights | |
self.verbose = verbose | |
def set_output(self, *, transform=None): | |
"""Set the output container when `"transform"` and `"fit_transform"` are called. | |
`set_output` will set the output of all estimators in `transformer_list`. | |
Parameters | |
---------- | |
transform : {"default", "pandas"}, default=None | |
Configure output of `transform` and `fit_transform`. | |
- `"default"`: Default output format of a transformer | |
- `"pandas"`: DataFrame output | |
- `None`: Transform configuration is unchanged | |
Returns | |
------- | |
self : estimator instance | |
Estimator instance. | |
""" | |
super().set_output(transform=transform) | |
for _, step, _ in self._iter(): | |
_safe_set_output(step, transform=transform) | |
return self | |
def named_transformers(self): | |
# Use Bunch object to improve autocomplete | |
return Bunch(**dict(self.transformer_list)) | |
def get_params(self, deep=True): | |
"""Get parameters for this estimator. | |
Returns the parameters given in the constructor as well as the | |
estimators contained within the `transformer_list` of the | |
`FeatureUnion`. | |
Parameters | |
---------- | |
deep : bool, default=True | |
If True, will return the parameters for this estimator and | |
contained subobjects that are estimators. | |
Returns | |
------- | |
params : mapping of string to any | |
Parameter names mapped to their values. | |
""" | |
return self._get_params("transformer_list", deep=deep) | |
def set_params(self, **kwargs): | |
"""Set the parameters of this estimator. | |
Valid parameter keys can be listed with ``get_params()``. Note that | |
you can directly set the parameters of the estimators contained in | |
`transformer_list`. | |
Parameters | |
---------- | |
**kwargs : dict | |
Parameters of this estimator or parameters of estimators contained | |
in `transform_list`. Parameters of the transformers may be set | |
using its name and the parameter name separated by a '__'. | |
Returns | |
------- | |
self : object | |
FeatureUnion class instance. | |
""" | |
self._set_params("transformer_list", **kwargs) | |
return self | |
def _validate_transformers(self): | |
names, transformers = zip(*self.transformer_list) | |
# validate names | |
self._validate_names(names) | |
# validate estimators | |
for t in transformers: | |
if t in ("drop", "passthrough"): | |
continue | |
if not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr( | |
t, "transform" | |
): | |
raise TypeError( | |
"All estimators should implement fit and " | |
"transform. '%s' (type %s) doesn't" % (t, type(t)) | |
) | |
def _validate_transformer_weights(self): | |
if not self.transformer_weights: | |
return | |
transformer_names = set(name for name, _ in self.transformer_list) | |
for name in self.transformer_weights: | |
if name not in transformer_names: | |
raise ValueError( | |
f'Attempting to weight transformer "{name}", ' | |
"but it is not present in transformer_list." | |
) | |
def _iter(self): | |
""" | |
Generate (name, trans, weight) tuples excluding None and | |
'drop' transformers. | |
""" | |
get_weight = (self.transformer_weights or {}).get | |
for name, trans in self.transformer_list: | |
if trans == "drop": | |
continue | |
if trans == "passthrough": | |
trans = FunctionTransformer(feature_names_out="one-to-one") | |
yield (name, trans, get_weight(name)) | |
def get_feature_names_out(self, input_features=None): | |
"""Get output feature names for transformation. | |
Parameters | |
---------- | |
input_features : array-like of str or None, default=None | |
Input features. | |
Returns | |
------- | |
feature_names_out : ndarray of str objects | |
Transformed feature names. | |
""" | |
feature_names = [] | |
for name, trans, _ in self._iter(): | |
if not hasattr(trans, "get_feature_names_out"): | |
raise AttributeError( | |
"Transformer %s (type %s) does not provide get_feature_names_out." | |
% (str(name), type(trans).__name__) | |
) | |
feature_names.extend( | |
[f"{name}__{f}" for f in trans.get_feature_names_out(input_features)] | |
) | |
return np.asarray(feature_names, dtype=object) | |
def fit(self, X, y=None, **fit_params): | |
"""Fit all transformers using X. | |
Parameters | |
---------- | |
X : iterable or array-like, depending on transformers | |
Input data, used to fit transformers. | |
y : array-like of shape (n_samples, n_outputs), default=None | |
Targets for supervised learning. | |
**fit_params : dict, default=None | |
Parameters to pass to the fit method of the estimator. | |
Returns | |
------- | |
self : object | |
FeatureUnion class instance. | |
""" | |
_raise_for_unsupported_routing(self, "fit", **fit_params) | |
transformers = self._parallel_func(X, y, fit_params, _fit_one) | |
if not transformers: | |
# All transformers are None | |
return self | |
self._update_transformer_list(transformers) | |
return self | |
def fit_transform(self, X, y=None, **fit_params): | |
"""Fit all transformers, transform the data and concatenate results. | |
Parameters | |
---------- | |
X : iterable or array-like, depending on transformers | |
Input data to be transformed. | |
y : array-like of shape (n_samples, n_outputs), default=None | |
Targets for supervised learning. | |
**fit_params : dict, default=None | |
Parameters to pass to the fit method of the estimator. | |
Returns | |
------- | |
X_t : array-like or sparse matrix of \ | |
shape (n_samples, sum_n_components) | |
The `hstack` of results of transformers. `sum_n_components` is the | |
sum of `n_components` (output dimension) over transformers. | |
""" | |
results = self._parallel_func(X, y, fit_params, _fit_transform_one) | |
if not results: | |
# All transformers are None | |
return np.zeros((X.shape[0], 0)) | |
Xs, transformers = zip(*results) | |
self._update_transformer_list(transformers) | |
return self._hstack(Xs) | |
def _log_message(self, name, idx, total): | |
if not self.verbose: | |
return None | |
return "(step %d of %d) Processing %s" % (idx, total, name) | |
def _parallel_func(self, X, y, fit_params, func): | |
"""Runs func in parallel on X and y""" | |
self.transformer_list = list(self.transformer_list) | |
self._validate_transformers() | |
self._validate_transformer_weights() | |
transformers = list(self._iter()) | |
params = Bunch(fit=fit_params, fit_transform=fit_params) | |
return Parallel(n_jobs=self.n_jobs)( | |
delayed(func)( | |
transformer, | |
X, | |
y, | |
weight, | |
message_clsname="FeatureUnion", | |
message=self._log_message(name, idx, len(transformers)), | |
params=params, | |
) | |
for idx, (name, transformer, weight) in enumerate(transformers, 1) | |
) | |
def transform(self, X): | |
"""Transform X separately by each transformer, concatenate results. | |
Parameters | |
---------- | |
X : iterable or array-like, depending on transformers | |
Input data to be transformed. | |
Returns | |
------- | |
X_t : array-like or sparse matrix of \ | |
shape (n_samples, sum_n_components) | |
The `hstack` of results of transformers. `sum_n_components` is the | |
sum of `n_components` (output dimension) over transformers. | |
""" | |
# TODO(SLEP6): accept **params here in `transform` and route it to the | |
# underlying estimators. | |
params = Bunch(transform={}) | |
Xs = Parallel(n_jobs=self.n_jobs)( | |
delayed(_transform_one)(trans, X, None, weight, params) | |
for name, trans, weight in self._iter() | |
) | |
if not Xs: | |
# All transformers are None | |
return np.zeros((X.shape[0], 0)) | |
return self._hstack(Xs) | |
def _hstack(self, Xs): | |
adapter = _get_container_adapter("transform", self) | |
if adapter and all(adapter.is_supported_container(X) for X in Xs): | |
return adapter.hstack(Xs) | |
if any(sparse.issparse(f) for f in Xs): | |
Xs = sparse.hstack(Xs).tocsr() | |
else: | |
Xs = np.hstack(Xs) | |
return Xs | |
def _update_transformer_list(self, transformers): | |
transformers = iter(transformers) | |
self.transformer_list[:] = [ | |
(name, old if old == "drop" else next(transformers)) | |
for name, old in self.transformer_list | |
] | |
def n_features_in_(self): | |
"""Number of features seen during :term:`fit`.""" | |
# X is passed to all transformers so we just delegate to the first one | |
return self.transformer_list[0][1].n_features_in_ | |
def feature_names_in_(self): | |
"""Names of features seen during :term:`fit`.""" | |
# X is passed to all transformers -- delegate to the first one | |
return self.transformer_list[0][1].feature_names_in_ | |
def __sklearn_is_fitted__(self): | |
# Delegate whether feature union was fitted | |
for _, transformer, _ in self._iter(): | |
check_is_fitted(transformer) | |
return True | |
def _sk_visual_block_(self): | |
names, transformers = zip(*self.transformer_list) | |
return _VisualBlock("parallel", transformers, names=names) | |
def __getitem__(self, name): | |
"""Return transformer with name.""" | |
if not isinstance(name, str): | |
raise KeyError("Only string keys are supported") | |
return self.named_transformers[name] | |
def make_union(*transformers, n_jobs=None, verbose=False): | |
"""Construct a :class:`FeatureUnion` from the given transformers. | |
This is a shorthand for the :class:`FeatureUnion` constructor; it does not | |
require, and does not permit, naming the transformers. Instead, they will | |
be given names automatically based on their types. It also does not allow | |
weighting. | |
Parameters | |
---------- | |
*transformers : list of estimators | |
One or more estimators. | |
n_jobs : int, default=None | |
Number of jobs to run in parallel. | |
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
for more details. | |
.. versionchanged:: v0.20 | |
`n_jobs` default changed from 1 to None. | |
verbose : bool, default=False | |
If True, the time elapsed while fitting each transformer will be | |
printed as it is completed. | |
Returns | |
------- | |
f : FeatureUnion | |
A :class:`FeatureUnion` object for concatenating the results of multiple | |
transformer objects. | |
See Also | |
-------- | |
FeatureUnion : Class for concatenating the results of multiple transformer | |
objects. | |
Examples | |
-------- | |
>>> from sklearn.decomposition import PCA, TruncatedSVD | |
>>> from sklearn.pipeline import make_union | |
>>> make_union(PCA(), TruncatedSVD()) | |
FeatureUnion(transformer_list=[('pca', PCA()), | |
('truncatedsvd', TruncatedSVD())]) | |
""" | |
return FeatureUnion(_name_estimators(transformers), n_jobs=n_jobs, verbose=verbose) | |