peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/tests
/test_encode.py
import pickle | |
import numpy as np | |
import pytest | |
from numpy.testing import assert_array_equal | |
from sklearn.utils._encode import _check_unknown, _encode, _get_counts, _unique | |
def test_encode_util(values, expected): | |
uniques = _unique(values) | |
assert_array_equal(uniques, expected) | |
result, encoded = _unique(values, return_inverse=True) | |
assert_array_equal(result, expected) | |
assert_array_equal(encoded, np.array([1, 0, 2, 0, 2])) | |
encoded = _encode(values, uniques=uniques) | |
assert_array_equal(encoded, np.array([1, 0, 2, 0, 2])) | |
result, counts = _unique(values, return_counts=True) | |
assert_array_equal(result, expected) | |
assert_array_equal(counts, np.array([2, 1, 2])) | |
result, encoded, counts = _unique(values, return_inverse=True, return_counts=True) | |
assert_array_equal(result, expected) | |
assert_array_equal(encoded, np.array([1, 0, 2, 0, 2])) | |
assert_array_equal(counts, np.array([2, 1, 2])) | |
def test_encode_with_check_unknown(): | |
# test for the check_unknown parameter of _encode() | |
uniques = np.array([1, 2, 3]) | |
values = np.array([1, 2, 3, 4]) | |
# Default is True, raise error | |
with pytest.raises(ValueError, match="y contains previously unseen labels"): | |
_encode(values, uniques=uniques, check_unknown=True) | |
# dont raise error if False | |
_encode(values, uniques=uniques, check_unknown=False) | |
# parameter is ignored for object dtype | |
uniques = np.array(["a", "b", "c"], dtype=object) | |
values = np.array(["a", "b", "c", "d"], dtype=object) | |
with pytest.raises(ValueError, match="y contains previously unseen labels"): | |
_encode(values, uniques=uniques, check_unknown=False) | |
def _assert_check_unknown(values, uniques, expected_diff, expected_mask): | |
diff = _check_unknown(values, uniques) | |
assert_array_equal(diff, expected_diff) | |
diff, valid_mask = _check_unknown(values, uniques, return_mask=True) | |
assert_array_equal(diff, expected_diff) | |
assert_array_equal(valid_mask, expected_mask) | |
def test_check_unknown(values, uniques, expected_diff, expected_mask): | |
_assert_check_unknown(values, uniques, expected_diff, expected_mask) | |
def test_check_unknown_missing_values(missing_value, pickle_uniques): | |
# check for check_unknown with missing values with object dtypes | |
values = np.array(["d", "c", "a", "b", missing_value], dtype=object) | |
uniques = np.array(["c", "a", "b", missing_value], dtype=object) | |
if pickle_uniques: | |
uniques = pickle.loads(pickle.dumps(uniques)) | |
expected_diff = ["d"] | |
expected_mask = [False, True, True, True, True] | |
_assert_check_unknown(values, uniques, expected_diff, expected_mask) | |
values = np.array(["d", "c", "a", "b", missing_value], dtype=object) | |
uniques = np.array(["c", "a", "b"], dtype=object) | |
if pickle_uniques: | |
uniques = pickle.loads(pickle.dumps(uniques)) | |
expected_diff = ["d", missing_value] | |
expected_mask = [False, True, True, True, False] | |
_assert_check_unknown(values, uniques, expected_diff, expected_mask) | |
values = np.array(["a", missing_value], dtype=object) | |
uniques = np.array(["a", "b", "z"], dtype=object) | |
if pickle_uniques: | |
uniques = pickle.loads(pickle.dumps(uniques)) | |
expected_diff = [missing_value] | |
expected_mask = [True, False] | |
_assert_check_unknown(values, uniques, expected_diff, expected_mask) | |
def test_unique_util_missing_values_objects(missing_value, pickle_uniques): | |
# check for _unique and _encode with missing values with object dtypes | |
values = np.array(["a", "c", "c", missing_value, "b"], dtype=object) | |
expected_uniques = np.array(["a", "b", "c", missing_value], dtype=object) | |
uniques = _unique(values) | |
if missing_value is None: | |
assert_array_equal(uniques, expected_uniques) | |
else: # missing_value == np.nan | |
assert_array_equal(uniques[:-1], expected_uniques[:-1]) | |
assert np.isnan(uniques[-1]) | |
if pickle_uniques: | |
uniques = pickle.loads(pickle.dumps(uniques)) | |
encoded = _encode(values, uniques=uniques) | |
assert_array_equal(encoded, np.array([0, 2, 2, 3, 1])) | |
def test_unique_util_missing_values_numeric(): | |
# Check missing values in numerical values | |
values = np.array([3, 1, np.nan, 5, 3, np.nan], dtype=float) | |
expected_uniques = np.array([1, 3, 5, np.nan], dtype=float) | |
expected_inverse = np.array([1, 0, 3, 2, 1, 3]) | |
uniques = _unique(values) | |
assert_array_equal(uniques, expected_uniques) | |
uniques, inverse = _unique(values, return_inverse=True) | |
assert_array_equal(uniques, expected_uniques) | |
assert_array_equal(inverse, expected_inverse) | |
encoded = _encode(values, uniques=uniques) | |
assert_array_equal(encoded, expected_inverse) | |
def test_unique_util_with_all_missing_values(): | |
# test for all types of missing values for object dtype | |
values = np.array([np.nan, "a", "c", "c", None, float("nan"), None], dtype=object) | |
uniques = _unique(values) | |
assert_array_equal(uniques[:-1], ["a", "c", None]) | |
# last value is nan | |
assert np.isnan(uniques[-1]) | |
expected_inverse = [3, 0, 1, 1, 2, 3, 2] | |
_, inverse = _unique(values, return_inverse=True) | |
assert_array_equal(inverse, expected_inverse) | |
def test_check_unknown_with_both_missing_values(): | |
# test for both types of missing values for object dtype | |
values = np.array([np.nan, "a", "c", "c", None, np.nan, None], dtype=object) | |
diff = _check_unknown(values, known_values=np.array(["a", "c"], dtype=object)) | |
assert diff[0] is None | |
assert np.isnan(diff[1]) | |
diff, valid_mask = _check_unknown( | |
values, known_values=np.array(["a", "c"], dtype=object), return_mask=True | |
) | |
assert diff[0] is None | |
assert np.isnan(diff[1]) | |
assert_array_equal(valid_mask, [False, True, True, True, False, False, False]) | |
def test_get_counts(values, uniques, expected_counts): | |
counts = _get_counts(values, uniques) | |
assert_array_equal(counts, expected_counts) | |