peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/numpy
/ma
/API_CHANGES.txt
.. -*- rest -*- | |
================================================== | |
API changes in the new masked array implementation | |
================================================== | |
Masked arrays are subclasses of ndarray | |
--------------------------------------- | |
Contrary to the original implementation, masked arrays are now regular | |
ndarrays:: | |
>>> x = masked_array([1,2,3],mask=[0,0,1]) | |
>>> print isinstance(x, numpy.ndarray) | |
True | |
``_data`` returns a view of the masked array | |
-------------------------------------------- | |
Masked arrays are composed of a ``_data`` part and a ``_mask``. Accessing the | |
``_data`` part will return a regular ndarray or any of its subclass, depending | |
on the initial data:: | |
>>> x = masked_array(numpy.matrix([[1,2],[3,4]]),mask=[[0,0],[0,1]]) | |
>>> print x._data | |
[[1 2] | |
[3 4]] | |
>>> print type(x._data) | |
<class 'numpy.matrixlib.defmatrix.matrix'> | |
In practice, ``_data`` is implemented as a property, not as an attribute. | |
Therefore, you cannot access it directly, and some simple tests such as the | |
following one will fail:: | |
>>>x._data is x._data | |
False | |
``filled(x)`` can return a subclass of ndarray | |
---------------------------------------------- | |
The function ``filled(a)`` returns an array of the same type as ``a._data``:: | |
>>> x = masked_array(numpy.matrix([[1,2],[3,4]]),mask=[[0,0],[0,1]]) | |
>>> y = filled(x) | |
>>> print type(y) | |
<class 'numpy.matrixlib.defmatrix.matrix'> | |
>>> print y | |
matrix([[ 1, 2], | |
[ 3, 999999]]) | |
``put``, ``putmask`` behave like their ndarray counterparts | |
----------------------------------------------------------- | |
Previously, ``putmask`` was used like this:: | |
mask = [False,True,True] | |
x = array([1,4,7],mask=mask) | |
putmask(x,mask,[3]) | |
which translated to:: | |
x[~mask] = [3] | |
(Note that a ``True``-value in a mask suppresses a value.) | |
In other words, the mask had the same length as ``x``, whereas | |
``values`` had ``sum(~mask)`` elements. | |
Now, the behaviour is similar to that of ``ndarray.putmask``, where | |
the mask and the values are both the same length as ``x``, i.e. | |
:: | |
putmask(x,mask,[3,0,0]) | |
``fill_value`` is a property | |
---------------------------- | |
``fill_value`` is no longer a method, but a property:: | |
>>> print x.fill_value | |
999999 | |
``cumsum`` and ``cumprod`` ignore missing values | |
------------------------------------------------ | |
Missing values are assumed to be the identity element, i.e. 0 for | |
``cumsum`` and 1 for ``cumprod``:: | |
>>> x = N.ma.array([1,2,3,4],mask=[False,True,False,False]) | |
>>> print x | |
[1 -- 3 4] | |
>>> print x.cumsum() | |
[1 -- 4 8] | |
>> print x.cumprod() | |
[1 -- 3 12] | |
``bool(x)`` raises a ValueError | |
------------------------------- | |
Masked arrays now behave like regular ``ndarrays``, in that they cannot be | |
converted to booleans: | |
:: | |
>>> x = N.ma.array([1,2,3]) | |
>>> bool(x) | |
Traceback (most recent call last): | |
File "<stdin>", line 1, in <module> | |
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all() | |
================================== | |
New features (non exhaustive list) | |
================================== | |
``mr_`` | |
------- | |
``mr_`` mimics the behavior of ``r_`` for masked arrays:: | |
>>> np.ma.mr_[3,4,5] | |
masked_array(data = [3 4 5], | |
mask = False, | |
fill_value=999999) | |
``anom`` | |
-------- | |
The ``anom`` method returns the deviations from the average (anomalies). | |