peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/datasets
/_twenty_newsgroups.py
"""Caching loader for the 20 newsgroups text classification dataset. | |
The description of the dataset is available on the official website at: | |
http://people.csail.mit.edu/jrennie/20Newsgroups/ | |
Quoting the introduction: | |
The 20 Newsgroups data set is a collection of approximately 20,000 | |
newsgroup documents, partitioned (nearly) evenly across 20 different | |
newsgroups. To the best of my knowledge, it was originally collected | |
by Ken Lang, probably for his Newsweeder: Learning to filter netnews | |
paper, though he does not explicitly mention this collection. The 20 | |
newsgroups collection has become a popular data set for experiments | |
in text applications of machine learning techniques, such as text | |
classification and text clustering. | |
This dataset loader will download the recommended "by date" variant of the | |
dataset and which features a point in time split between the train and | |
test sets. The compressed dataset size is around 14 Mb compressed. Once | |
uncompressed the train set is 52 MB and the test set is 34 MB. | |
""" | |
# Copyright (c) 2011 Olivier Grisel <[email protected]> | |
# License: BSD 3 clause | |
import codecs | |
import logging | |
import os | |
import pickle | |
import re | |
import shutil | |
import tarfile | |
from contextlib import suppress | |
import joblib | |
import numpy as np | |
import scipy.sparse as sp | |
from .. import preprocessing | |
from ..feature_extraction.text import CountVectorizer | |
from ..utils import Bunch, check_random_state | |
from ..utils._param_validation import StrOptions, validate_params | |
from . import get_data_home, load_files | |
from ._base import ( | |
RemoteFileMetadata, | |
_convert_data_dataframe, | |
_fetch_remote, | |
_pkl_filepath, | |
load_descr, | |
) | |
logger = logging.getLogger(__name__) | |
# The original data can be found at: | |
# https://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz | |
ARCHIVE = RemoteFileMetadata( | |
filename="20news-bydate.tar.gz", | |
url="https://ndownloader.figshare.com/files/5975967", | |
checksum="8f1b2514ca22a5ade8fbb9cfa5727df95fa587f4c87b786e15c759fa66d95610", | |
) | |
CACHE_NAME = "20news-bydate.pkz" | |
TRAIN_FOLDER = "20news-bydate-train" | |
TEST_FOLDER = "20news-bydate-test" | |
def _download_20newsgroups(target_dir, cache_path): | |
"""Download the 20 newsgroups data and stored it as a zipped pickle.""" | |
train_path = os.path.join(target_dir, TRAIN_FOLDER) | |
test_path = os.path.join(target_dir, TEST_FOLDER) | |
os.makedirs(target_dir, exist_ok=True) | |
logger.info("Downloading dataset from %s (14 MB)", ARCHIVE.url) | |
archive_path = _fetch_remote(ARCHIVE, dirname=target_dir) | |
logger.debug("Decompressing %s", archive_path) | |
tarfile.open(archive_path, "r:gz").extractall(path=target_dir) | |
with suppress(FileNotFoundError): | |
os.remove(archive_path) | |
# Store a zipped pickle | |
cache = dict( | |
train=load_files(train_path, encoding="latin1"), | |
test=load_files(test_path, encoding="latin1"), | |
) | |
compressed_content = codecs.encode(pickle.dumps(cache), "zlib_codec") | |
with open(cache_path, "wb") as f: | |
f.write(compressed_content) | |
shutil.rmtree(target_dir) | |
return cache | |
def strip_newsgroup_header(text): | |
""" | |
Given text in "news" format, strip the headers, by removing everything | |
before the first blank line. | |
Parameters | |
---------- | |
text : str | |
The text from which to remove the signature block. | |
""" | |
_before, _blankline, after = text.partition("\n\n") | |
return after | |
_QUOTE_RE = re.compile( | |
r"(writes in|writes:|wrote:|says:|said:" r"|^In article|^Quoted from|^\||^>)" | |
) | |
def strip_newsgroup_quoting(text): | |
""" | |
Given text in "news" format, strip lines beginning with the quote | |
characters > or |, plus lines that often introduce a quoted section | |
(for example, because they contain the string 'writes:'.) | |
Parameters | |
---------- | |
text : str | |
The text from which to remove the signature block. | |
""" | |
good_lines = [line for line in text.split("\n") if not _QUOTE_RE.search(line)] | |
return "\n".join(good_lines) | |
def strip_newsgroup_footer(text): | |
""" | |
Given text in "news" format, attempt to remove a signature block. | |
As a rough heuristic, we assume that signatures are set apart by either | |
a blank line or a line made of hyphens, and that it is the last such line | |
in the file (disregarding blank lines at the end). | |
Parameters | |
---------- | |
text : str | |
The text from which to remove the signature block. | |
""" | |
lines = text.strip().split("\n") | |
for line_num in range(len(lines) - 1, -1, -1): | |
line = lines[line_num] | |
if line.strip().strip("-") == "": | |
break | |
if line_num > 0: | |
return "\n".join(lines[:line_num]) | |
else: | |
return text | |
def fetch_20newsgroups( | |
*, | |
data_home=None, | |
subset="train", | |
categories=None, | |
shuffle=True, | |
random_state=42, | |
remove=(), | |
download_if_missing=True, | |
return_X_y=False, | |
): | |
"""Load the filenames and data from the 20 newsgroups dataset \ | |
(classification). | |
Download it if necessary. | |
================= ========== | |
Classes 20 | |
Samples total 18846 | |
Dimensionality 1 | |
Features text | |
================= ========== | |
Read more in the :ref:`User Guide <20newsgroups_dataset>`. | |
Parameters | |
---------- | |
data_home : str or path-like, default=None | |
Specify a download and cache folder for the datasets. If None, | |
all scikit-learn data is stored in '~/scikit_learn_data' subfolders. | |
subset : {'train', 'test', 'all'}, default='train' | |
Select the dataset to load: 'train' for the training set, 'test' | |
for the test set, 'all' for both, with shuffled ordering. | |
categories : array-like, dtype=str, default=None | |
If None (default), load all the categories. | |
If not None, list of category names to load (other categories | |
ignored). | |
shuffle : bool, default=True | |
Whether or not to shuffle the data: might be important for models that | |
make the assumption that the samples are independent and identically | |
distributed (i.i.d.), such as stochastic gradient descent. | |
random_state : int, RandomState instance or None, default=42 | |
Determines random number generation for dataset shuffling. Pass an int | |
for reproducible output across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
remove : tuple, default=() | |
May contain any subset of ('headers', 'footers', 'quotes'). Each of | |
these are kinds of text that will be detected and removed from the | |
newsgroup posts, preventing classifiers from overfitting on | |
metadata. | |
'headers' removes newsgroup headers, 'footers' removes blocks at the | |
ends of posts that look like signatures, and 'quotes' removes lines | |
that appear to be quoting another post. | |
'headers' follows an exact standard; the other filters are not always | |
correct. | |
download_if_missing : bool, default=True | |
If False, raise an OSError if the data is not locally available | |
instead of trying to download the data from the source site. | |
return_X_y : bool, default=False | |
If True, returns `(data.data, data.target)` instead of a Bunch | |
object. | |
.. versionadded:: 0.22 | |
Returns | |
------- | |
bunch : :class:`~sklearn.utils.Bunch` | |
Dictionary-like object, with the following attributes. | |
data : list of shape (n_samples,) | |
The data list to learn. | |
target: ndarray of shape (n_samples,) | |
The target labels. | |
filenames: list of shape (n_samples,) | |
The path to the location of the data. | |
DESCR: str | |
The full description of the dataset. | |
target_names: list of shape (n_classes,) | |
The names of target classes. | |
(data, target) : tuple if `return_X_y=True` | |
A tuple of two ndarrays. The first contains a 2D array of shape | |
(n_samples, n_classes) with each row representing one sample and each | |
column representing the features. The second array of shape | |
(n_samples,) contains the target samples. | |
.. versionadded:: 0.22 | |
""" | |
data_home = get_data_home(data_home=data_home) | |
cache_path = _pkl_filepath(data_home, CACHE_NAME) | |
twenty_home = os.path.join(data_home, "20news_home") | |
cache = None | |
if os.path.exists(cache_path): | |
try: | |
with open(cache_path, "rb") as f: | |
compressed_content = f.read() | |
uncompressed_content = codecs.decode(compressed_content, "zlib_codec") | |
cache = pickle.loads(uncompressed_content) | |
except Exception as e: | |
print(80 * "_") | |
print("Cache loading failed") | |
print(80 * "_") | |
print(e) | |
if cache is None: | |
if download_if_missing: | |
logger.info("Downloading 20news dataset. This may take a few minutes.") | |
cache = _download_20newsgroups( | |
target_dir=twenty_home, cache_path=cache_path | |
) | |
else: | |
raise OSError("20Newsgroups dataset not found") | |
if subset in ("train", "test"): | |
data = cache[subset] | |
elif subset == "all": | |
data_lst = list() | |
target = list() | |
filenames = list() | |
for subset in ("train", "test"): | |
data = cache[subset] | |
data_lst.extend(data.data) | |
target.extend(data.target) | |
filenames.extend(data.filenames) | |
data.data = data_lst | |
data.target = np.array(target) | |
data.filenames = np.array(filenames) | |
fdescr = load_descr("twenty_newsgroups.rst") | |
data.DESCR = fdescr | |
if "headers" in remove: | |
data.data = [strip_newsgroup_header(text) for text in data.data] | |
if "footers" in remove: | |
data.data = [strip_newsgroup_footer(text) for text in data.data] | |
if "quotes" in remove: | |
data.data = [strip_newsgroup_quoting(text) for text in data.data] | |
if categories is not None: | |
labels = [(data.target_names.index(cat), cat) for cat in categories] | |
# Sort the categories to have the ordering of the labels | |
labels.sort() | |
labels, categories = zip(*labels) | |
mask = np.isin(data.target, labels) | |
data.filenames = data.filenames[mask] | |
data.target = data.target[mask] | |
# searchsorted to have continuous labels | |
data.target = np.searchsorted(labels, data.target) | |
data.target_names = list(categories) | |
# Use an object array to shuffle: avoids memory copy | |
data_lst = np.array(data.data, dtype=object) | |
data_lst = data_lst[mask] | |
data.data = data_lst.tolist() | |
if shuffle: | |
random_state = check_random_state(random_state) | |
indices = np.arange(data.target.shape[0]) | |
random_state.shuffle(indices) | |
data.filenames = data.filenames[indices] | |
data.target = data.target[indices] | |
# Use an object array to shuffle: avoids memory copy | |
data_lst = np.array(data.data, dtype=object) | |
data_lst = data_lst[indices] | |
data.data = data_lst.tolist() | |
if return_X_y: | |
return data.data, data.target | |
return data | |
def fetch_20newsgroups_vectorized( | |
*, | |
subset="train", | |
remove=(), | |
data_home=None, | |
download_if_missing=True, | |
return_X_y=False, | |
normalize=True, | |
as_frame=False, | |
): | |
"""Load and vectorize the 20 newsgroups dataset (classification). | |
Download it if necessary. | |
This is a convenience function; the transformation is done using the | |
default settings for | |
:class:`~sklearn.feature_extraction.text.CountVectorizer`. For more | |
advanced usage (stopword filtering, n-gram extraction, etc.), combine | |
fetch_20newsgroups with a custom | |
:class:`~sklearn.feature_extraction.text.CountVectorizer`, | |
:class:`~sklearn.feature_extraction.text.HashingVectorizer`, | |
:class:`~sklearn.feature_extraction.text.TfidfTransformer` or | |
:class:`~sklearn.feature_extraction.text.TfidfVectorizer`. | |
The resulting counts are normalized using | |
:func:`sklearn.preprocessing.normalize` unless normalize is set to False. | |
================= ========== | |
Classes 20 | |
Samples total 18846 | |
Dimensionality 130107 | |
Features real | |
================= ========== | |
Read more in the :ref:`User Guide <20newsgroups_dataset>`. | |
Parameters | |
---------- | |
subset : {'train', 'test', 'all'}, default='train' | |
Select the dataset to load: 'train' for the training set, 'test' | |
for the test set, 'all' for both, with shuffled ordering. | |
remove : tuple, default=() | |
May contain any subset of ('headers', 'footers', 'quotes'). Each of | |
these are kinds of text that will be detected and removed from the | |
newsgroup posts, preventing classifiers from overfitting on | |
metadata. | |
'headers' removes newsgroup headers, 'footers' removes blocks at the | |
ends of posts that look like signatures, and 'quotes' removes lines | |
that appear to be quoting another post. | |
data_home : str or path-like, default=None | |
Specify an download and cache folder for the datasets. If None, | |
all scikit-learn data is stored in '~/scikit_learn_data' subfolders. | |
download_if_missing : bool, default=True | |
If False, raise an OSError if the data is not locally available | |
instead of trying to download the data from the source site. | |
return_X_y : bool, default=False | |
If True, returns ``(data.data, data.target)`` instead of a Bunch | |
object. | |
.. versionadded:: 0.20 | |
normalize : bool, default=True | |
If True, normalizes each document's feature vector to unit norm using | |
:func:`sklearn.preprocessing.normalize`. | |
.. versionadded:: 0.22 | |
as_frame : bool, default=False | |
If True, the data is a pandas DataFrame including columns with | |
appropriate dtypes (numeric, string, or categorical). The target is | |
a pandas DataFrame or Series depending on the number of | |
`target_columns`. | |
.. versionadded:: 0.24 | |
Returns | |
------- | |
bunch : :class:`~sklearn.utils.Bunch` | |
Dictionary-like object, with the following attributes. | |
data: {sparse matrix, dataframe} of shape (n_samples, n_features) | |
The input data matrix. If ``as_frame`` is `True`, ``data`` is | |
a pandas DataFrame with sparse columns. | |
target: {ndarray, series} of shape (n_samples,) | |
The target labels. If ``as_frame`` is `True`, ``target`` is a | |
pandas Series. | |
target_names: list of shape (n_classes,) | |
The names of target classes. | |
DESCR: str | |
The full description of the dataset. | |
frame: dataframe of shape (n_samples, n_features + 1) | |
Only present when `as_frame=True`. Pandas DataFrame with ``data`` | |
and ``target``. | |
.. versionadded:: 0.24 | |
(data, target) : tuple if ``return_X_y`` is True | |
`data` and `target` would be of the format defined in the `Bunch` | |
description above. | |
.. versionadded:: 0.20 | |
""" | |
data_home = get_data_home(data_home=data_home) | |
filebase = "20newsgroup_vectorized" | |
if remove: | |
filebase += "remove-" + "-".join(remove) | |
target_file = _pkl_filepath(data_home, filebase + ".pkl") | |
# we shuffle but use a fixed seed for the memoization | |
data_train = fetch_20newsgroups( | |
data_home=data_home, | |
subset="train", | |
categories=None, | |
shuffle=True, | |
random_state=12, | |
remove=remove, | |
download_if_missing=download_if_missing, | |
) | |
data_test = fetch_20newsgroups( | |
data_home=data_home, | |
subset="test", | |
categories=None, | |
shuffle=True, | |
random_state=12, | |
remove=remove, | |
download_if_missing=download_if_missing, | |
) | |
if os.path.exists(target_file): | |
try: | |
X_train, X_test, feature_names = joblib.load(target_file) | |
except ValueError as e: | |
raise ValueError( | |
f"The cached dataset located in {target_file} was fetched " | |
"with an older scikit-learn version and it is not compatible " | |
"with the scikit-learn version imported. You need to " | |
f"manually delete the file: {target_file}." | |
) from e | |
else: | |
vectorizer = CountVectorizer(dtype=np.int16) | |
X_train = vectorizer.fit_transform(data_train.data).tocsr() | |
X_test = vectorizer.transform(data_test.data).tocsr() | |
feature_names = vectorizer.get_feature_names_out() | |
joblib.dump((X_train, X_test, feature_names), target_file, compress=9) | |
# the data is stored as int16 for compactness | |
# but normalize needs floats | |
if normalize: | |
X_train = X_train.astype(np.float64) | |
X_test = X_test.astype(np.float64) | |
preprocessing.normalize(X_train, copy=False) | |
preprocessing.normalize(X_test, copy=False) | |
target_names = data_train.target_names | |
if subset == "train": | |
data = X_train | |
target = data_train.target | |
elif subset == "test": | |
data = X_test | |
target = data_test.target | |
elif subset == "all": | |
data = sp.vstack((X_train, X_test)).tocsr() | |
target = np.concatenate((data_train.target, data_test.target)) | |
fdescr = load_descr("twenty_newsgroups.rst") | |
frame = None | |
target_name = ["category_class"] | |
if as_frame: | |
frame, data, target = _convert_data_dataframe( | |
"fetch_20newsgroups_vectorized", | |
data, | |
target, | |
feature_names, | |
target_names=target_name, | |
sparse_data=True, | |
) | |
if return_X_y: | |
return data, target | |
return Bunch( | |
data=data, | |
target=target, | |
frame=frame, | |
target_names=target_names, | |
feature_names=feature_names, | |
DESCR=fdescr, | |
) | |