peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/impute
/_iterative.py
import warnings | |
from collections import namedtuple | |
from numbers import Integral, Real | |
from time import time | |
import numpy as np | |
from scipy import stats | |
from ..base import _fit_context, clone | |
from ..exceptions import ConvergenceWarning | |
from ..preprocessing import normalize | |
from ..utils import ( | |
_safe_assign, | |
_safe_indexing, | |
check_array, | |
check_random_state, | |
is_scalar_nan, | |
) | |
from ..utils._mask import _get_mask | |
from ..utils._param_validation import HasMethods, Interval, StrOptions | |
from ..utils.metadata_routing import _RoutingNotSupportedMixin | |
from ..utils.validation import FLOAT_DTYPES, _check_feature_names_in, check_is_fitted | |
from ._base import SimpleImputer, _BaseImputer, _check_inputs_dtype | |
_ImputerTriplet = namedtuple( | |
"_ImputerTriplet", ["feat_idx", "neighbor_feat_idx", "estimator"] | |
) | |
def _assign_where(X1, X2, cond): | |
"""Assign X2 to X1 where cond is True. | |
Parameters | |
---------- | |
X1 : ndarray or dataframe of shape (n_samples, n_features) | |
Data. | |
X2 : ndarray of shape (n_samples, n_features) | |
Data to be assigned. | |
cond : ndarray of shape (n_samples, n_features) | |
Boolean mask to assign data. | |
""" | |
if hasattr(X1, "mask"): # pandas dataframes | |
X1.mask(cond=cond, other=X2, inplace=True) | |
else: # ndarrays | |
X1[cond] = X2[cond] | |
class IterativeImputer(_RoutingNotSupportedMixin, _BaseImputer): | |
"""Multivariate imputer that estimates each feature from all the others. | |
A strategy for imputing missing values by modeling each feature with | |
missing values as a function of other features in a round-robin fashion. | |
Read more in the :ref:`User Guide <iterative_imputer>`. | |
.. versionadded:: 0.21 | |
.. note:: | |
This estimator is still **experimental** for now: the predictions | |
and the API might change without any deprecation cycle. To use it, | |
you need to explicitly import `enable_iterative_imputer`:: | |
>>> # explicitly require this experimental feature | |
>>> from sklearn.experimental import enable_iterative_imputer # noqa | |
>>> # now you can import normally from sklearn.impute | |
>>> from sklearn.impute import IterativeImputer | |
Parameters | |
---------- | |
estimator : estimator object, default=BayesianRidge() | |
The estimator to use at each step of the round-robin imputation. | |
If `sample_posterior=True`, the estimator must support | |
`return_std` in its `predict` method. | |
missing_values : int or np.nan, default=np.nan | |
The placeholder for the missing values. All occurrences of | |
`missing_values` will be imputed. For pandas' dataframes with | |
nullable integer dtypes with missing values, `missing_values` | |
should be set to `np.nan`, since `pd.NA` will be converted to `np.nan`. | |
sample_posterior : bool, default=False | |
Whether to sample from the (Gaussian) predictive posterior of the | |
fitted estimator for each imputation. Estimator must support | |
`return_std` in its `predict` method if set to `True`. Set to | |
`True` if using `IterativeImputer` for multiple imputations. | |
max_iter : int, default=10 | |
Maximum number of imputation rounds to perform before returning the | |
imputations computed during the final round. A round is a single | |
imputation of each feature with missing values. The stopping criterion | |
is met once `max(abs(X_t - X_{t-1}))/max(abs(X[known_vals])) < tol`, | |
where `X_t` is `X` at iteration `t`. Note that early stopping is only | |
applied if `sample_posterior=False`. | |
tol : float, default=1e-3 | |
Tolerance of the stopping condition. | |
n_nearest_features : int, default=None | |
Number of other features to use to estimate the missing values of | |
each feature column. Nearness between features is measured using | |
the absolute correlation coefficient between each feature pair (after | |
initial imputation). To ensure coverage of features throughout the | |
imputation process, the neighbor features are not necessarily nearest, | |
but are drawn with probability proportional to correlation for each | |
imputed target feature. Can provide significant speed-up when the | |
number of features is huge. If `None`, all features will be used. | |
initial_strategy : {'mean', 'median', 'most_frequent', 'constant'}, \ | |
default='mean' | |
Which strategy to use to initialize the missing values. Same as the | |
`strategy` parameter in :class:`~sklearn.impute.SimpleImputer`. | |
fill_value : str or numerical value, default=None | |
When `strategy="constant"`, `fill_value` is used to replace all | |
occurrences of missing_values. For string or object data types, | |
`fill_value` must be a string. | |
If `None`, `fill_value` will be 0 when imputing numerical | |
data and "missing_value" for strings or object data types. | |
.. versionadded:: 1.3 | |
imputation_order : {'ascending', 'descending', 'roman', 'arabic', \ | |
'random'}, default='ascending' | |
The order in which the features will be imputed. Possible values: | |
- `'ascending'`: From features with fewest missing values to most. | |
- `'descending'`: From features with most missing values to fewest. | |
- `'roman'`: Left to right. | |
- `'arabic'`: Right to left. | |
- `'random'`: A random order for each round. | |
skip_complete : bool, default=False | |
If `True` then features with missing values during :meth:`transform` | |
which did not have any missing values during :meth:`fit` will be | |
imputed with the initial imputation method only. Set to `True` if you | |
have many features with no missing values at both :meth:`fit` and | |
:meth:`transform` time to save compute. | |
min_value : float or array-like of shape (n_features,), default=-np.inf | |
Minimum possible imputed value. Broadcast to shape `(n_features,)` if | |
scalar. If array-like, expects shape `(n_features,)`, one min value for | |
each feature. The default is `-np.inf`. | |
.. versionchanged:: 0.23 | |
Added support for array-like. | |
max_value : float or array-like of shape (n_features,), default=np.inf | |
Maximum possible imputed value. Broadcast to shape `(n_features,)` if | |
scalar. If array-like, expects shape `(n_features,)`, one max value for | |
each feature. The default is `np.inf`. | |
.. versionchanged:: 0.23 | |
Added support for array-like. | |
verbose : int, default=0 | |
Verbosity flag, controls the debug messages that are issued | |
as functions are evaluated. The higher, the more verbose. Can be 0, 1, | |
or 2. | |
random_state : int, RandomState instance or None, default=None | |
The seed of the pseudo random number generator to use. Randomizes | |
selection of estimator features if `n_nearest_features` is not `None`, | |
the `imputation_order` if `random`, and the sampling from posterior if | |
`sample_posterior=True`. Use an integer for determinism. | |
See :term:`the Glossary <random_state>`. | |
add_indicator : bool, default=False | |
If `True`, a :class:`MissingIndicator` transform will stack onto output | |
of the imputer's transform. This allows a predictive estimator | |
to account for missingness despite imputation. If a feature has no | |
missing values at fit/train time, the feature won't appear on | |
the missing indicator even if there are missing values at | |
transform/test time. | |
keep_empty_features : bool, default=False | |
If True, features that consist exclusively of missing values when | |
`fit` is called are returned in results when `transform` is called. | |
The imputed value is always `0` except when | |
`initial_strategy="constant"` in which case `fill_value` will be | |
used instead. | |
.. versionadded:: 1.2 | |
Attributes | |
---------- | |
initial_imputer_ : object of type :class:`~sklearn.impute.SimpleImputer` | |
Imputer used to initialize the missing values. | |
imputation_sequence_ : list of tuples | |
Each tuple has `(feat_idx, neighbor_feat_idx, estimator)`, where | |
`feat_idx` is the current feature to be imputed, | |
`neighbor_feat_idx` is the array of other features used to impute the | |
current feature, and `estimator` is the trained estimator used for | |
the imputation. Length is `self.n_features_with_missing_ * | |
self.n_iter_`. | |
n_iter_ : int | |
Number of iteration rounds that occurred. Will be less than | |
`self.max_iter` if early stopping criterion was reached. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
n_features_with_missing_ : int | |
Number of features with missing values. | |
indicator_ : :class:`~sklearn.impute.MissingIndicator` | |
Indicator used to add binary indicators for missing values. | |
`None` if `add_indicator=False`. | |
random_state_ : RandomState instance | |
RandomState instance that is generated either from a seed, the random | |
number generator or by `np.random`. | |
See Also | |
-------- | |
SimpleImputer : Univariate imputer for completing missing values | |
with simple strategies. | |
KNNImputer : Multivariate imputer that estimates missing features using | |
nearest samples. | |
Notes | |
----- | |
To support imputation in inductive mode we store each feature's estimator | |
during the :meth:`fit` phase, and predict without refitting (in order) | |
during the :meth:`transform` phase. | |
Features which contain all missing values at :meth:`fit` are discarded upon | |
:meth:`transform`. | |
Using defaults, the imputer scales in :math:`\\mathcal{O}(knp^3\\min(n,p))` | |
where :math:`k` = `max_iter`, :math:`n` the number of samples and | |
:math:`p` the number of features. It thus becomes prohibitively costly when | |
the number of features increases. Setting | |
`n_nearest_features << n_features`, `skip_complete=True` or increasing `tol` | |
can help to reduce its computational cost. | |
Depending on the nature of missing values, simple imputers can be | |
preferable in a prediction context. | |
References | |
---------- | |
.. [1] `Stef van Buuren, Karin Groothuis-Oudshoorn (2011). "mice: | |
Multivariate Imputation by Chained Equations in R". Journal of | |
Statistical Software 45: 1-67. | |
<https://www.jstatsoft.org/article/view/v045i03>`_ | |
.. [2] `S. F. Buck, (1960). "A Method of Estimation of Missing Values in | |
Multivariate Data Suitable for use with an Electronic Computer". | |
Journal of the Royal Statistical Society 22(2): 302-306. | |
<https://www.jstor.org/stable/2984099>`_ | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from sklearn.experimental import enable_iterative_imputer | |
>>> from sklearn.impute import IterativeImputer | |
>>> imp_mean = IterativeImputer(random_state=0) | |
>>> imp_mean.fit([[7, 2, 3], [4, np.nan, 6], [10, 5, 9]]) | |
IterativeImputer(random_state=0) | |
>>> X = [[np.nan, 2, 3], [4, np.nan, 6], [10, np.nan, 9]] | |
>>> imp_mean.transform(X) | |
array([[ 6.9584..., 2. , 3. ], | |
[ 4. , 2.6000..., 6. ], | |
[10. , 4.9999..., 9. ]]) | |
For a more detailed example see | |
:ref:`sphx_glr_auto_examples_impute_plot_missing_values.py` or | |
:ref:`sphx_glr_auto_examples_impute_plot_iterative_imputer_variants_comparison.py`. | |
""" | |
_parameter_constraints: dict = { | |
**_BaseImputer._parameter_constraints, | |
"estimator": [None, HasMethods(["fit", "predict"])], | |
"sample_posterior": ["boolean"], | |
"max_iter": [Interval(Integral, 0, None, closed="left")], | |
"tol": [Interval(Real, 0, None, closed="left")], | |
"n_nearest_features": [None, Interval(Integral, 1, None, closed="left")], | |
"initial_strategy": [ | |
StrOptions({"mean", "median", "most_frequent", "constant"}) | |
], | |
"fill_value": "no_validation", # any object is valid | |
"imputation_order": [ | |
StrOptions({"ascending", "descending", "roman", "arabic", "random"}) | |
], | |
"skip_complete": ["boolean"], | |
"min_value": [None, Interval(Real, None, None, closed="both"), "array-like"], | |
"max_value": [None, Interval(Real, None, None, closed="both"), "array-like"], | |
"verbose": ["verbose"], | |
"random_state": ["random_state"], | |
} | |
def __init__( | |
self, | |
estimator=None, | |
*, | |
missing_values=np.nan, | |
sample_posterior=False, | |
max_iter=10, | |
tol=1e-3, | |
n_nearest_features=None, | |
initial_strategy="mean", | |
fill_value=None, | |
imputation_order="ascending", | |
skip_complete=False, | |
min_value=-np.inf, | |
max_value=np.inf, | |
verbose=0, | |
random_state=None, | |
add_indicator=False, | |
keep_empty_features=False, | |
): | |
super().__init__( | |
missing_values=missing_values, | |
add_indicator=add_indicator, | |
keep_empty_features=keep_empty_features, | |
) | |
self.estimator = estimator | |
self.sample_posterior = sample_posterior | |
self.max_iter = max_iter | |
self.tol = tol | |
self.n_nearest_features = n_nearest_features | |
self.initial_strategy = initial_strategy | |
self.fill_value = fill_value | |
self.imputation_order = imputation_order | |
self.skip_complete = skip_complete | |
self.min_value = min_value | |
self.max_value = max_value | |
self.verbose = verbose | |
self.random_state = random_state | |
def _impute_one_feature( | |
self, | |
X_filled, | |
mask_missing_values, | |
feat_idx, | |
neighbor_feat_idx, | |
estimator=None, | |
fit_mode=True, | |
): | |
"""Impute a single feature from the others provided. | |
This function predicts the missing values of one of the features using | |
the current estimates of all the other features. The `estimator` must | |
support `return_std=True` in its `predict` method for this function | |
to work. | |
Parameters | |
---------- | |
X_filled : ndarray | |
Input data with the most recent imputations. | |
mask_missing_values : ndarray | |
Input data's missing indicator matrix. | |
feat_idx : int | |
Index of the feature currently being imputed. | |
neighbor_feat_idx : ndarray | |
Indices of the features to be used in imputing `feat_idx`. | |
estimator : object | |
The estimator to use at this step of the round-robin imputation. | |
If `sample_posterior=True`, the estimator must support | |
`return_std` in its `predict` method. | |
If None, it will be cloned from self._estimator. | |
fit_mode : boolean, default=True | |
Whether to fit and predict with the estimator or just predict. | |
Returns | |
------- | |
X_filled : ndarray | |
Input data with `X_filled[missing_row_mask, feat_idx]` updated. | |
estimator : estimator with sklearn API | |
The fitted estimator used to impute | |
`X_filled[missing_row_mask, feat_idx]`. | |
""" | |
if estimator is None and fit_mode is False: | |
raise ValueError( | |
"If fit_mode is False, then an already-fitted " | |
"estimator should be passed in." | |
) | |
if estimator is None: | |
estimator = clone(self._estimator) | |
missing_row_mask = mask_missing_values[:, feat_idx] | |
if fit_mode: | |
X_train = _safe_indexing( | |
_safe_indexing(X_filled, neighbor_feat_idx, axis=1), | |
~missing_row_mask, | |
axis=0, | |
) | |
y_train = _safe_indexing( | |
_safe_indexing(X_filled, feat_idx, axis=1), | |
~missing_row_mask, | |
axis=0, | |
) | |
estimator.fit(X_train, y_train) | |
# if no missing values, don't predict | |
if np.sum(missing_row_mask) == 0: | |
return X_filled, estimator | |
# get posterior samples if there is at least one missing value | |
X_test = _safe_indexing( | |
_safe_indexing(X_filled, neighbor_feat_idx, axis=1), | |
missing_row_mask, | |
axis=0, | |
) | |
if self.sample_posterior: | |
mus, sigmas = estimator.predict(X_test, return_std=True) | |
imputed_values = np.zeros(mus.shape, dtype=X_filled.dtype) | |
# two types of problems: (1) non-positive sigmas | |
# (2) mus outside legal range of min_value and max_value | |
# (results in inf sample) | |
positive_sigmas = sigmas > 0 | |
imputed_values[~positive_sigmas] = mus[~positive_sigmas] | |
mus_too_low = mus < self._min_value[feat_idx] | |
imputed_values[mus_too_low] = self._min_value[feat_idx] | |
mus_too_high = mus > self._max_value[feat_idx] | |
imputed_values[mus_too_high] = self._max_value[feat_idx] | |
# the rest can be sampled without statistical issues | |
inrange_mask = positive_sigmas & ~mus_too_low & ~mus_too_high | |
mus = mus[inrange_mask] | |
sigmas = sigmas[inrange_mask] | |
a = (self._min_value[feat_idx] - mus) / sigmas | |
b = (self._max_value[feat_idx] - mus) / sigmas | |
truncated_normal = stats.truncnorm(a=a, b=b, loc=mus, scale=sigmas) | |
imputed_values[inrange_mask] = truncated_normal.rvs( | |
random_state=self.random_state_ | |
) | |
else: | |
imputed_values = estimator.predict(X_test) | |
imputed_values = np.clip( | |
imputed_values, self._min_value[feat_idx], self._max_value[feat_idx] | |
) | |
# update the feature | |
_safe_assign( | |
X_filled, | |
imputed_values, | |
row_indexer=missing_row_mask, | |
column_indexer=feat_idx, | |
) | |
return X_filled, estimator | |
def _get_neighbor_feat_idx(self, n_features, feat_idx, abs_corr_mat): | |
"""Get a list of other features to predict `feat_idx`. | |
If `self.n_nearest_features` is less than or equal to the total | |
number of features, then use a probability proportional to the absolute | |
correlation between `feat_idx` and each other feature to randomly | |
choose a subsample of the other features (without replacement). | |
Parameters | |
---------- | |
n_features : int | |
Number of features in `X`. | |
feat_idx : int | |
Index of the feature currently being imputed. | |
abs_corr_mat : ndarray, shape (n_features, n_features) | |
Absolute correlation matrix of `X`. The diagonal has been zeroed | |
out and each feature has been normalized to sum to 1. Can be None. | |
Returns | |
------- | |
neighbor_feat_idx : array-like | |
The features to use to impute `feat_idx`. | |
""" | |
if self.n_nearest_features is not None and self.n_nearest_features < n_features: | |
p = abs_corr_mat[:, feat_idx] | |
neighbor_feat_idx = self.random_state_.choice( | |
np.arange(n_features), self.n_nearest_features, replace=False, p=p | |
) | |
else: | |
inds_left = np.arange(feat_idx) | |
inds_right = np.arange(feat_idx + 1, n_features) | |
neighbor_feat_idx = np.concatenate((inds_left, inds_right)) | |
return neighbor_feat_idx | |
def _get_ordered_idx(self, mask_missing_values): | |
"""Decide in what order we will update the features. | |
As a homage to the MICE R package, we will have 4 main options of | |
how to order the updates, and use a random order if anything else | |
is specified. | |
Also, this function skips features which have no missing values. | |
Parameters | |
---------- | |
mask_missing_values : array-like, shape (n_samples, n_features) | |
Input data's missing indicator matrix, where `n_samples` is the | |
number of samples and `n_features` is the number of features. | |
Returns | |
------- | |
ordered_idx : ndarray, shape (n_features,) | |
The order in which to impute the features. | |
""" | |
frac_of_missing_values = mask_missing_values.mean(axis=0) | |
if self.skip_complete: | |
missing_values_idx = np.flatnonzero(frac_of_missing_values) | |
else: | |
missing_values_idx = np.arange(np.shape(frac_of_missing_values)[0]) | |
if self.imputation_order == "roman": | |
ordered_idx = missing_values_idx | |
elif self.imputation_order == "arabic": | |
ordered_idx = missing_values_idx[::-1] | |
elif self.imputation_order == "ascending": | |
n = len(frac_of_missing_values) - len(missing_values_idx) | |
ordered_idx = np.argsort(frac_of_missing_values, kind="mergesort")[n:] | |
elif self.imputation_order == "descending": | |
n = len(frac_of_missing_values) - len(missing_values_idx) | |
ordered_idx = np.argsort(frac_of_missing_values, kind="mergesort")[n:][::-1] | |
elif self.imputation_order == "random": | |
ordered_idx = missing_values_idx | |
self.random_state_.shuffle(ordered_idx) | |
return ordered_idx | |
def _get_abs_corr_mat(self, X_filled, tolerance=1e-6): | |
"""Get absolute correlation matrix between features. | |
Parameters | |
---------- | |
X_filled : ndarray, shape (n_samples, n_features) | |
Input data with the most recent imputations. | |
tolerance : float, default=1e-6 | |
`abs_corr_mat` can have nans, which will be replaced | |
with `tolerance`. | |
Returns | |
------- | |
abs_corr_mat : ndarray, shape (n_features, n_features) | |
Absolute correlation matrix of `X` at the beginning of the | |
current round. The diagonal has been zeroed out and each feature's | |
absolute correlations with all others have been normalized to sum | |
to 1. | |
""" | |
n_features = X_filled.shape[1] | |
if self.n_nearest_features is None or self.n_nearest_features >= n_features: | |
return None | |
with np.errstate(invalid="ignore"): | |
# if a feature in the neighborhood has only a single value | |
# (e.g., categorical feature), the std. dev. will be null and | |
# np.corrcoef will raise a warning due to a division by zero | |
abs_corr_mat = np.abs(np.corrcoef(X_filled.T)) | |
# np.corrcoef is not defined for features with zero std | |
abs_corr_mat[np.isnan(abs_corr_mat)] = tolerance | |
# ensures exploration, i.e. at least some probability of sampling | |
np.clip(abs_corr_mat, tolerance, None, out=abs_corr_mat) | |
# features are not their own neighbors | |
np.fill_diagonal(abs_corr_mat, 0) | |
# needs to sum to 1 for np.random.choice sampling | |
abs_corr_mat = normalize(abs_corr_mat, norm="l1", axis=0, copy=False) | |
return abs_corr_mat | |
def _initial_imputation(self, X, in_fit=False): | |
"""Perform initial imputation for input `X`. | |
Parameters | |
---------- | |
X : ndarray of shape (n_samples, n_features) | |
Input data, where `n_samples` is the number of samples and | |
`n_features` is the number of features. | |
in_fit : bool, default=False | |
Whether function is called in :meth:`fit`. | |
Returns | |
------- | |
Xt : ndarray of shape (n_samples, n_features) | |
Input data, where `n_samples` is the number of samples and | |
`n_features` is the number of features. | |
X_filled : ndarray of shape (n_samples, n_features) | |
Input data with the most recent imputations. | |
mask_missing_values : ndarray of shape (n_samples, n_features) | |
Input data's missing indicator matrix, where `n_samples` is the | |
number of samples and `n_features` is the number of features, | |
masked by non-missing features. | |
X_missing_mask : ndarray, shape (n_samples, n_features) | |
Input data's mask matrix indicating missing datapoints, where | |
`n_samples` is the number of samples and `n_features` is the | |
number of features. | |
""" | |
if is_scalar_nan(self.missing_values): | |
force_all_finite = "allow-nan" | |
else: | |
force_all_finite = True | |
X = self._validate_data( | |
X, | |
dtype=FLOAT_DTYPES, | |
order="F", | |
reset=in_fit, | |
force_all_finite=force_all_finite, | |
) | |
_check_inputs_dtype(X, self.missing_values) | |
X_missing_mask = _get_mask(X, self.missing_values) | |
mask_missing_values = X_missing_mask.copy() | |
if self.initial_imputer_ is None: | |
self.initial_imputer_ = SimpleImputer( | |
missing_values=self.missing_values, | |
strategy=self.initial_strategy, | |
fill_value=self.fill_value, | |
keep_empty_features=self.keep_empty_features, | |
).set_output(transform="default") | |
X_filled = self.initial_imputer_.fit_transform(X) | |
else: | |
X_filled = self.initial_imputer_.transform(X) | |
valid_mask = np.flatnonzero( | |
np.logical_not(np.isnan(self.initial_imputer_.statistics_)) | |
) | |
if not self.keep_empty_features: | |
# drop empty features | |
Xt = X[:, valid_mask] | |
mask_missing_values = mask_missing_values[:, valid_mask] | |
else: | |
# mark empty features as not missing and keep the original | |
# imputation | |
mask_missing_values[:, valid_mask] = True | |
Xt = X | |
return Xt, X_filled, mask_missing_values, X_missing_mask | |
def _validate_limit(limit, limit_type, n_features): | |
"""Validate the limits (min/max) of the feature values. | |
Converts scalar min/max limits to vectors of shape `(n_features,)`. | |
Parameters | |
---------- | |
limit: scalar or array-like | |
The user-specified limit (i.e, min_value or max_value). | |
limit_type: {'max', 'min'} | |
Type of limit to validate. | |
n_features: int | |
Number of features in the dataset. | |
Returns | |
------- | |
limit: ndarray, shape(n_features,) | |
Array of limits, one for each feature. | |
""" | |
limit_bound = np.inf if limit_type == "max" else -np.inf | |
limit = limit_bound if limit is None else limit | |
if np.isscalar(limit): | |
limit = np.full(n_features, limit) | |
limit = check_array(limit, force_all_finite=False, copy=False, ensure_2d=False) | |
if not limit.shape[0] == n_features: | |
raise ValueError( | |
f"'{limit_type}_value' should be of " | |
f"shape ({n_features},) when an array-like " | |
f"is provided. Got {limit.shape}, instead." | |
) | |
return limit | |
def fit_transform(self, X, y=None): | |
"""Fit the imputer on `X` and return the transformed `X`. | |
Parameters | |
---------- | |
X : array-like, shape (n_samples, n_features) | |
Input data, where `n_samples` is the number of samples and | |
`n_features` is the number of features. | |
y : Ignored | |
Not used, present for API consistency by convention. | |
Returns | |
------- | |
Xt : array-like, shape (n_samples, n_features) | |
The imputed input data. | |
""" | |
self.random_state_ = getattr( | |
self, "random_state_", check_random_state(self.random_state) | |
) | |
if self.estimator is None: | |
from ..linear_model import BayesianRidge | |
self._estimator = BayesianRidge() | |
else: | |
self._estimator = clone(self.estimator) | |
self.imputation_sequence_ = [] | |
self.initial_imputer_ = None | |
X, Xt, mask_missing_values, complete_mask = self._initial_imputation( | |
X, in_fit=True | |
) | |
super()._fit_indicator(complete_mask) | |
X_indicator = super()._transform_indicator(complete_mask) | |
if self.max_iter == 0 or np.all(mask_missing_values): | |
self.n_iter_ = 0 | |
return super()._concatenate_indicator(Xt, X_indicator) | |
# Edge case: a single feature. We return the initial ... | |
if Xt.shape[1] == 1: | |
self.n_iter_ = 0 | |
return super()._concatenate_indicator(Xt, X_indicator) | |
self._min_value = self._validate_limit(self.min_value, "min", X.shape[1]) | |
self._max_value = self._validate_limit(self.max_value, "max", X.shape[1]) | |
if not np.all(np.greater(self._max_value, self._min_value)): | |
raise ValueError("One (or more) features have min_value >= max_value.") | |
# order in which to impute | |
# note this is probably too slow for large feature data (d > 100000) | |
# and a better way would be good. | |
# see: https://goo.gl/KyCNwj and subsequent comments | |
ordered_idx = self._get_ordered_idx(mask_missing_values) | |
self.n_features_with_missing_ = len(ordered_idx) | |
abs_corr_mat = self._get_abs_corr_mat(Xt) | |
n_samples, n_features = Xt.shape | |
if self.verbose > 0: | |
print("[IterativeImputer] Completing matrix with shape %s" % (X.shape,)) | |
start_t = time() | |
if not self.sample_posterior: | |
Xt_previous = Xt.copy() | |
normalized_tol = self.tol * np.max(np.abs(X[~mask_missing_values])) | |
for self.n_iter_ in range(1, self.max_iter + 1): | |
if self.imputation_order == "random": | |
ordered_idx = self._get_ordered_idx(mask_missing_values) | |
for feat_idx in ordered_idx: | |
neighbor_feat_idx = self._get_neighbor_feat_idx( | |
n_features, feat_idx, abs_corr_mat | |
) | |
Xt, estimator = self._impute_one_feature( | |
Xt, | |
mask_missing_values, | |
feat_idx, | |
neighbor_feat_idx, | |
estimator=None, | |
fit_mode=True, | |
) | |
estimator_triplet = _ImputerTriplet( | |
feat_idx, neighbor_feat_idx, estimator | |
) | |
self.imputation_sequence_.append(estimator_triplet) | |
if self.verbose > 1: | |
print( | |
"[IterativeImputer] Ending imputation round " | |
"%d/%d, elapsed time %0.2f" | |
% (self.n_iter_, self.max_iter, time() - start_t) | |
) | |
if not self.sample_posterior: | |
inf_norm = np.linalg.norm(Xt - Xt_previous, ord=np.inf, axis=None) | |
if self.verbose > 0: | |
print( | |
"[IterativeImputer] Change: {}, scaled tolerance: {} ".format( | |
inf_norm, normalized_tol | |
) | |
) | |
if inf_norm < normalized_tol: | |
if self.verbose > 0: | |
print("[IterativeImputer] Early stopping criterion reached.") | |
break | |
Xt_previous = Xt.copy() | |
else: | |
if not self.sample_posterior: | |
warnings.warn( | |
"[IterativeImputer] Early stopping criterion not reached.", | |
ConvergenceWarning, | |
) | |
_assign_where(Xt, X, cond=~mask_missing_values) | |
return super()._concatenate_indicator(Xt, X_indicator) | |
def transform(self, X): | |
"""Impute all missing values in `X`. | |
Note that this is stochastic, and that if `random_state` is not fixed, | |
repeated calls, or permuted input, results will differ. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
The input data to complete. | |
Returns | |
------- | |
Xt : array-like, shape (n_samples, n_features) | |
The imputed input data. | |
""" | |
check_is_fitted(self) | |
X, Xt, mask_missing_values, complete_mask = self._initial_imputation( | |
X, in_fit=False | |
) | |
X_indicator = super()._transform_indicator(complete_mask) | |
if self.n_iter_ == 0 or np.all(mask_missing_values): | |
return super()._concatenate_indicator(Xt, X_indicator) | |
imputations_per_round = len(self.imputation_sequence_) // self.n_iter_ | |
i_rnd = 0 | |
if self.verbose > 0: | |
print("[IterativeImputer] Completing matrix with shape %s" % (X.shape,)) | |
start_t = time() | |
for it, estimator_triplet in enumerate(self.imputation_sequence_): | |
Xt, _ = self._impute_one_feature( | |
Xt, | |
mask_missing_values, | |
estimator_triplet.feat_idx, | |
estimator_triplet.neighbor_feat_idx, | |
estimator=estimator_triplet.estimator, | |
fit_mode=False, | |
) | |
if not (it + 1) % imputations_per_round: | |
if self.verbose > 1: | |
print( | |
"[IterativeImputer] Ending imputation round " | |
"%d/%d, elapsed time %0.2f" | |
% (i_rnd + 1, self.n_iter_, time() - start_t) | |
) | |
i_rnd += 1 | |
_assign_where(Xt, X, cond=~mask_missing_values) | |
return super()._concatenate_indicator(Xt, X_indicator) | |
def fit(self, X, y=None): | |
"""Fit the imputer on `X` and return self. | |
Parameters | |
---------- | |
X : array-like, shape (n_samples, n_features) | |
Input data, where `n_samples` is the number of samples and | |
`n_features` is the number of features. | |
y : Ignored | |
Not used, present for API consistency by convention. | |
Returns | |
------- | |
self : object | |
Fitted estimator. | |
""" | |
self.fit_transform(X) | |
return self | |
def get_feature_names_out(self, input_features=None): | |
"""Get output feature names for transformation. | |
Parameters | |
---------- | |
input_features : array-like of str or None, default=None | |
Input features. | |
- If `input_features` is `None`, then `feature_names_in_` is | |
used as feature names in. If `feature_names_in_` is not defined, | |
then the following input feature names are generated: | |
`["x0", "x1", ..., "x(n_features_in_ - 1)"]`. | |
- If `input_features` is an array-like, then `input_features` must | |
match `feature_names_in_` if `feature_names_in_` is defined. | |
Returns | |
------- | |
feature_names_out : ndarray of str objects | |
Transformed feature names. | |
""" | |
check_is_fitted(self, "n_features_in_") | |
input_features = _check_feature_names_in(self, input_features) | |
names = self.initial_imputer_.get_feature_names_out(input_features) | |
return self._concatenate_indicator_feature_names_out(names, input_features) | |